
International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 270

A Hybrid Group Key Management Protocol for
Reliable and Authenticated Rekeying

Depeng Li and Srinivas Sampalli

(Corresponding author: Srinivas Sampalli)

Faculty of Computer Science, Dalhousie University

6050 University Avenue, Halifax, Nova Scotia B3H 1W5, Canada (Email: srini@cs.dal.ca)

(Received Mar. 3, 2006; revised and accepted Mar. 18, 2006)

Abstract

We present a hybrid group key management protocol
that incorporates both a centralized and a contributory
scheme for key management, and a tree-based Elliptic
Curve Diffie-Hellman technique for group key updates.
It combines the advantage of the centralized approach’s
efficiency and the contributory scheme’s fault tolerance.
In addition, our rekeying algorithm updates the group
key in the presence of any sequence of node failures, node
restorations, and membership changes. Furthermore, our
scheme incorporates a reliable and authenticated rekeying
message transport method. Performance analysis indi-
cates that our protocol reduces computational costs and
communication overhead as compared to other popular
protocols.

Keywords: Authenticated multicast, group key manage-
ment, periodic batch rekeying, reliability

1 Introduction

There has been a growing demand in the past few years
for security in collaborative environments deployed for
emergency services, as well as many applications in mili-
tary, business, government and research organizations [5].
Many of these applications involve secure group commu-
nications. To protect group communication data against
passive and active adversaries, providing confidentiality
becomes one of the top concerns. To satisfy this require-
ment, a common and efficient solution is to deploy a sym-
metric group key shared by all group application partici-
pants. Whenever a member leaves or joins the group, or
whenever a node failure or restoration occurs, the group
key should be updated to provide forward and backward
secrecy. Therefore, a key management protocol that com-
putes the symmetric group key and forwards the rekeying
messages to all legitimate group members is central to the
security of the group application.

1.1 Centralized and Contributory Group
Key Management Schemes

A number of group key management schemes have been
proposed for network group applications. They can be
broadly classified into two categories, namely, centralized
[10, 12, 13, 18, 21, 22] and contributory [2, 4, 5, 6].

In a typical centralized group key management scheme,
a trusted third party, known as the key server, is re-
sponsible to generate, to encrypt and to distribute the
symmetric group key, auxiliary keys and individual keys
to all other group members. It has the advantages of
efficiency of the symmetric key encryption/decryption
[10, 18, 21, 22]. However, it suffers from the following
drawbacks. 1) Since all group secrets are generated and
stored in one place, the key server could present itself as
an attractive attack target for adversaries. 2) The key
server can become the single point of failure/bottleneck.
3) The authentication technique for rekeying messages
may result in high communication overheads and may
not guarantee the reliable delivery of rekeying messages
[17, 18].

In contrast, in contributory group key management
schemes, every group member contributes to the group
key generation. It has the advantage of fault-tolerance.
However, for group membership changes, it lacks scala-
bility in terms of computational cost. For example, Tree-
based Group Diffie-Hellman (TGDH) [5] is one of the most
efficient contributory group key agreement techniques. It
still has the following drawbacks. 1) Every group mem-
ber performs the expensive public key Diffie-Hellman key
exponentiation [1, O(log2 n)] times for every group mem-
bership update where n is the group size. 2) Every spon-
sor should sign and forward a large number of rekeying
multicast messages to update a group key. This results
in expensive communication overhead and computational
costs.

Furthermore, previous well-known contributory group
key managements [2, 4, 5, 6] do not address reliable multi-
casting of group rekeying messages. In addition, although
previous approaches address the authentication of uni-

International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 271

M
12

M
11

M
13

M
1

M
2

M
3

M
10

M
7

M
8

M
9

M
6

M
5

M
4

Figure 1: Battelfield scenario

cast rekeying messages, they do not include schemes for
efficient amortized authentication of multicast messages.
This is of importance because most of rekeying messages
are forwarded via multicast services.

1.2 Motivation

In many secure group applications, a hybrid of central-
ized and contributory schemes may be required. In such
cases, the group key management should be both efficient
and failure-tolerant. We describe one example from a mil-
itary scenario (Figure 1). A collection of wireless mobile
devices carried by soldiers or a tank cooperate in relaying
packets. In such a scenario, mobile nodes dynamically
establish routes among themselves to form their own net-
work “on the fly”. However, all nodes except the one
with the tank, have limited battery power and process-
ing capacities. For the sake of power-consumption and
computational efficiency, the tank can work as the key
server while a centralized group key management scheme
is deployed.

However, it is possible for the tank to be out of ser-
vice during adverse conditions. Alternatively, some of the
soldiers, for example M4, M6, and M7 in the example,
may not be able to be in contact with the tank because
they are too far away from the tank, or, because M5, the
node to relay communication data, is out of service. In
case of such emergencies, a straightforward solution is to
launch a contributory group key agreement, for example,
TGDH [5] or TECH [7], among the nodes which cannot
be in contact with the centralized key server. But, the
disadvantages are: 1) every node should install two sets
of group key management schemes, 2) every node should
store two sets of individual keys, auxiliary keys and group
keys, 3) it takes up critical time to generate the new con-
tributory group key, and 4) generating the new group key
requires the additional computational cost and communi-
cation overhead.

1.3 Objective

In this paper, we propose a novel hybrid group key man-
agement protocol that removes the above drawbacks. In
particular, our protocol enables fast switching between
centralized and contributory schemes with minimal com-
munication costs and computational overheads, and uses
less number of keys. Furthermore, our contributory
scheme reduces the number of rekeying messages and,
therefore decreases the number of signing operations. The
main contributions of our approach are given below.

1) Hybrid Architecture: We introduce a hybrid archi-
tecture in which the centralized and the contribu-
tory group key management schemes use a Logical
Key Hierarchy (LKH)-based management technique
to maintain one set of keys in a binary key tree.
When the key server is online, the computationally
efficient and reliable centralized management is de-
ployed. While the key server is out of service for all
group members or part of the group members and
to handle network disconnections, we propose an ef-
ficient contributory scheme to update the group key
shared by the group members that cannot connect
with the key server.

2) Contributory Rekeying: Our protocol includes an ef-
ficient contributory rekeying scheme based on the
dominating path concept to handle J Join & L Leave
scenario for a binary key tree. It handles periodic
batch rekeying, multi-group merging and group par-
titioning.

3) Authentication of Rekeying Messages: Our proposal
signs multicast rekeying messages via Modified Sig-
nature Amortization using Information Dispersal Al-
gorithm (M-SAIDA) for protection against active ad-
versaries. A reliable function is also presented to
guarantee that all rekeying messages are received by
all group members.

The rest of this paper is organized as follows. We pro-
vide a literature review of previous works in Section 2.
Requirements and background are introduced in Section
3. Our proposal including the hybrid architecture and
the contributory rekeying is described in Section 4. How
to authenticate rekeying messages without packet loss for
both partial keys and authentication information is pre-
sented in Section 5. Performance analysis is presented in
Section 6. Concluding remarks are given in Section 7.

2 Related Works

Various cryptographic techniques have been proposed to
address the group key management problem (e.g. [15]).
In this section, we review centralized and contributory
group key managements and the efficient authentication
of reliable rekeying messages.

International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 272

Centralized schemes: A single entity is required to
generate the group key, and then to distribute it to
other group members. It deploys inexpensive approaches
such as private-key encryption/decryption to encrypt
rekeying messages. But the entire group will be affected
if there is a problem with the centralized controller (e.g.,
the key server) although some previous proposals (e.g.
[10, 12, 13, 18, 21, 22]) achieve good results. Logical Key
Hierarchy [18] (LKH) uses a Key Distribution Center
(KDC) to maintain a key tree. When the membership
updates, new auxiliary and group keys are generated and
encrypted with keys held by current group members.
The rekeying messages will contain at most 2log2n keys.
Efficient Large-Group Key [10] (ELK) uses a hierarchical
tree. This novel and sophisticated agreement applicable
to large groups, refreshes its key tree in intervals for the
group member join. Keygem [21, 22] follows a periodic
batch rekeying method, where all members should have
their time synchronized and agree on a rekeying period.
Furthermore, they present a reliable multicast scheme to
forward rekeying messages.

Contributory schemes: The group key is generated
in a contributory fashion, where all members contribute
their own shares to compute the group key. Unlike the
centralized flavor, it is fault tolerant. But these schemes
typically use expensive public key operations. Accord-
ing to the performance analysis and experiments [5, 6],
the most efficient proposals are Tree-based Group Diffie-
Hellman [5] (TGDH) and Skinny TRee [6] (STR).

TGDH takes advantage of the hierarchy of the binary
tree. Each leaf node in the tree represents a group mem-
ber, say, Mi. The internal nodes are used for the key
management. The node key associated to the node, for
example, (l, v), is k(l,v) and its blinded key b(l,v) = αk(l,v).
For each internal node (l, v), its associated key k(l,v) is de-
rived from its children’s keys in the following way:

k(l,v) = b
k(l+1,2v)
(l+1,2v+1) = αk(l+1,2v)k(l+1,2v+1) .

STR’s group key structure is similar to that of TGDH.
The new group member is always treated as the current
root’s sibling and a new root node is created which works
as the former root and the new member’s parent. It
shows computational and communication efficiency for
group membership additions but not always for group
membership deletions. To satisfy frequent join/leave
requests, individual rekeying focuses on the reduction
of communication latency since the instant group key
updating scheme is deployed. STR reduces the round
number of the group key management.

Authentication: Previous contributory group key
agreements propose a number of authentication tech-
niques to protect rekeying messages against insider active
attacks. For example, SA-GDH [1] authenticates GDH.3
[3] protocol. In TGDH [5] and STR [6], authenticated
channels are assumed and rekeying messages are digitally

signed by the sender with some efficiently strong public
key signature methods such as DSA or RSA to guarantee
the non-repudiation service. Digital signatures are com-
putationally expensive. Simulation results of Wong and
Lam [18] show that devoting all the processor time of a
Pentium II 300 MHz machine can only generate 80 512-
bit RSA signatures per second and that a digital signature
operation is around two orders of magnitude slower than
a key encryption using DES.

Some other authenticated group key agreements are
also proposed: An ID-based authentication is proposed
in [20] which does not need a dedicated server or group
controller. Implicitly Certificated Public Keys method
(ICPK) [11] modified by Shortened Digital Signatures
Signcryption (SDSS) [23] is introduced to reduce the over-
head of the certificate validation checking process and to
improve computational efficiency.

Wong and Lam introduce the authentication scheme
benefiting from the authentication tree with the usage
of the amortized signature method. However, its com-
munication overhead is large and every packet needs
verification.

Reliability: To provide no-packet-loss service, Keygem
[21, 22] deploys the FEC and ACK techniques. The Tor-
nado code technique is appropriate when a large number
(hundreds to thousands) of segments are being encoded as
compared to IDA [16]. However, IDA has the advantage
of less communication overhead.

3 Preliminaries

In this section, we briefly introduce security requirements
for group key management, the Tree-based Elliptic Curve
Diffie-Hellman (TECH) [7] and the Marking algorithm
[21], which form the necessary background for our pro-
posal.

3.1 Security Requirements

Two basic requirements of a secure group key manage-
ment protocol are Forward Secrecy and Backward Secrecy.

Forward Secrecy: Previous group members who know
contiguous subsets of old group keys must not be able to
discover subsequent group keys after they leave the group.

Backward Secrecy: Current group members who know
a contiguous subset of current group keys must not be
able to discover preceding group keys.

Therefore, every group membership request such as
join/leave should be processed immediately. However,
the individual rekeying strategy introduces inefficiency
and out-of-sync problems [21], especially for resource-
limited networks. For example, suppose that a set of
malicious users repeatedly request to join and then to
leave the group immediately. Because each rekeying mes-

International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 273

sage should be digitally signed to guarantee data source
authentication, we find that frequent rekeying transac-
tions introduce a number of signing operations which are
heavyweight [18]. If there are J Join & L Leave operations
during a rekeying interval, J +L times signing operations
are performed to maintain the key tree [18].

In contrast to individual rekeying, a periodic batch
rekeying strategy [21] can alleviate the out-of-sync prob-
lem and to improve the efficiency. In this technique, all
join and leave requests are processed in a batch at the end
of each rekeying interval. It means that the group mem-
bers that need to leave can stay longer and the new group
members have to join later. In [21], the authors define the
concept of a vulnerability window which is the period of
time starting at the request of the join or leave and end-
ing at the end of the rekeying interval. If the vulnerability
window is too long, security can be compromised. Thus,
periodic batch rekeying is a tradeoff between the group
key security and the efficiency.

3.2 Tree-based Elliptic Curve Diffie-
Hellman Key Exchange [7]

Our protocol uses a Tree-based Elliptic Curve Diffie-
Hellman (TECH) algorithm for updating the group key.
Details of this algorithm can be found in our previous
work [7]. For the sake of completeness, we provide a brief
overview of the algorithm in the following. A binary tree
T is a key tree in which every node can be denoted as
< h, i > where h is the height (level) of the node and
i is the index of the node at level h. Thus, every node
is uniquely identified. Each node < h, i > is associated
with a private key, PV<h,i>, and a public key, PB<h,i>.
The PB<h,i> is computed from the private key PV<h,i>,
from Equation (1) below where P is a base point of an
Elliptic Curve Equation E, • is the scalar multiplication
operation, and both E and P are shared by all group
members and the key server in advance.

PB<h,i> = PV<h,i> • P . (1)

Without loss of generality, we call PV<h,0> the group
key. There are two kinds of nodes in a binary tree T. One
is the leaf, < h, i >, which is associated with one and
only one group member. We say that the leaf < h, i >
represents the group member Mi. The private key of one
leaf is defined by the following rule, where ri is a random
integer generated by the group member Mi:

PV<h,i>> = ri • P.

The other is the intermediate node which has two chil-
dren. It does not represent any group member but repre-
sents a sub-group in which every sub-group member hosts
it. The intermediate node’s private key is treated as the
sub-group key. It can be calculated by the following rule
where node < h, i >′s two children are < h − 1, 2i > and

1, 0
l
= 1
 1, 1
 1, 2
 1, 3

2, 0
 2, 1
 2, 3
2, 2
l
= 2

M
1
 M
2
 M
3
 M
4
 M
6

M
7

3, 0
 3, 1
l
= 3

4, 0
l
= 4

1, 4
 1, 5

M
5

Figure 2: Binary key tree

< h − 1, 2i + 1 >:

PV<h,i> = Xco(PV<h−1,2i> • PB<h−1,2i+1>)

= Xco(PV<h−1,2i+1> • PB<h−1,2i>)

= Xco(PV<h−1,2i> • PV<h−1,2i+1> • P),

where Xco is the x-coordinate of the point represented
within the parentheses. The concepts key-path, sibling
path and key sub-path are defined below.

Key path: A path starting at the leaf hosted by Mi and
ending at the key tree’s root. Mi hosts all nodes on its
key path, namely, KPi. All PBs and PV s on the key
path, KPi, are denoted as PBs

∗@KPi and PV s
∗@KPi,

respectively.

Sibling path: Siblings corresponding with every node
on Mi’s key-path constitute Mi’s sibling path, namely,
SPi. All PBs and PV s on the sibling path, SPi, are
denoted as PBs

∗@SPi and PV s
∗@SPi.

Key sub-path: For group member Mi, a path starting at
any node Nx and ending at any other node Ny, on the key
path KPi is called a key sub-path. All PBs and PV s on
key sub-path, KSPi,x,y, are denoted as PBs

∗@KSPi,x,y

and PV s
∗@KSPi,x,y, respectively.

In both the centralized and contributory group key
management schemes, every group member, Mi, should
store PV s

∗@KPi, and PBs
∗@SPi. Every node also is

aware of the entire structure of the key tree.
In addition, in our centralized group key management,

the key server stores all PBs and PV s on the key tree
T, similar to previous approaches.

Figure 2 shows an example of a key tree.
Node < 3, 0 >, is hosted by the group members,

M1, M2, M3, and M4 which are represented by the leaves<
1, 0 >, < 1, 1 >, < 1, 2 >, and < 1, 3 > respectively.
We say that M1, M2, M3, and M4 construct sub-group

International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 274

Figure 3: J Join/L Leave scenario handled by marking algorithm

< 3, 0 >. Then, PV<3,0> is the sub-group key of sub-
group < 3, 0 >.

Group member M2’s key-path: KP2 = {< 1, 1 >
, < 2, 0 >, < 3, 0 >, < 4, 0 >}, its sibling-path: SP2 =
{< 1, 0 >, < 2, 1 >, < 3, 1 >}. So, M2 knows
PV s

∗@KPi = {PV<1,1>, PV<2,0>, PV<3,0>, PV<4,0>},
and PBs

∗@SPi = {PB<1,0>, PB<2,1>, PB<3,1>}.

3.3 Centralized Periodic Batch Rekeying
- Marking Algorithm [21]

In [21], the authors introduce a periodic batch rekeying
algorithm, called the Marking algorithm, for centralized
group key management.

Consider a J Join & L Leave operation (J members
need to join and L members need to leave the group), in
a group G with n users, {M1, M2, · · · , Mn} :

If J ≥ L, the key tree is updated as follows: J of
theL departed nodes are replaced with the J join nodes
following the one-to-one map, {MDepart

i → MJoin
i }. The

remaining L−J departed nodes’ siblings will be promoted
to their parents’ position and their parents will be erased
in the key tree. So, PV s and PBs of L key paths should
be updated. Figure 3(a) demonstrates this procedure in
which Mx joins, meanwhile M3 and M5 leave. Mx takes
M3’s position while M3 leaves and M6 is promoted to
its parents’ position because M5 leaves. PV s@M4 and
PV s@M6 are updated by the sponsors M4 and M6 re-
spectively.

If J > L, L new join group members take the places of
the L departed members. The remaining J−L new group
members comprise a child key tree joining the key tree at
the shallowest point. So, PV s and PBs of L + 1 key
paths should be updated. Figure 3(b) demonstrates this
procedure in which Mx, My, and Mz join, meanwhile M1

and M5 leave. My and Mz take M5 and M1’s positions
respectively while M5 and M1 leave. Mx plays the role
of M3’s sibling after Mx joins. PV s@M2, PV s@M3 and
PV s@M6 are updated by the sponsors M2, M3 and M6

respectively.
Note that in the centralized algorithm, the key server

knows all keys in a key tree and therefore it is not hard for
the key server to update the key tree for J Join & L Leave
during a rekeying interval. However, in the contributory
group key management, no group member knows all the
keys on the key tree. So, how to efficiently update the
group key in a batch requires all group members’ coop-
eration. Furthermore, when a group is divided into sev-
eral sub groups due to network partitions, or several sub
groups merge into a super group due to network restora-
tions, we need an efficient technique to process the J Join
& L Leave operation.

4 Hybrid Group Key Manage-
ment

In this section, we present the hybrid architecture that
combines the advantages of the centralized approach’s
efficiency and the contributory scheme’s fault tolerance.
Furthermore, we present an efficient contributory rekey-
ing scheme.

4.1 Hybrid Architecture

The basic idea behind our hybrid architecture is the fol-
lowing. If the key server is down (off-line), then the group
key management is done using the contributory scheme.
If the key server is on-line, then there are two possibil-
ities. If all the group members are able access the key
server (no partitioning of the group), then a centralized
scheme is used. On the other hand, if the group is parti-
tioned (some of the members are not able to access the key
server), then we use a combination of the two schemes -
the members with access to the key server use the central-
ized scheme while the others use the contributory scheme.
Both of them follow the periodic tree-based Elliptic Curve
Diffie-Hellman key management (TECH) to update the

International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 275

Server

Key Tree

Structure

Maintenance

(Marking)

Reliable

Multicas
 t

Periodic

Rekey

Scheme

Group

Member

Join/leave

Group Member

Encrypt&Signing

Verify&Decrypt

Update Key

Path

Group Member Join/leave

Maintenance Key Tree

Structure (Marking)

Periodic Rekey Scheme

Key Tree Structure

Maintenance

ID

Compare

Key

Tree

Update

Group Member Join/leave Request

Authentication

Reliability

2
-
party

DH

Multicast

Sponsor

SAIDA

New

Group

Member

Group

Member

Group

Member

Group

Member

Dominating

Algorithm

(Group Member)

 (a)
 (b)

Figure 4: (a) Centralized group key management (b) Contributory group key management

public and private keys associated with the nodes on the
binary key tree.

Figures 4(a) and (b) demonstrate the required compo-
nents to implement the centralized and the contributory
group key management schemes, respectively. As in [5, 6],
we assume that every group member or the key server
should be aware of any group membership changes based
on the group member join/leave request component. Fur-
thermore, the server and the members modify the key tree
structure according to the key tree structure maintenance
component.

In general, the centralized group key management ad-
ministers the group key update for group membership
changes. In Figure 4(a), the key server is responsible
to update, encrypt and authenticate rekeying messages
including individual keys, auxiliary keys, and group keys.
Furthermore, it forwards the encrypted rekeying messages
to other group members via the em reliable and authenti-
cated multicast component. Every group member should
utilize the verify & decrypt component to process the
rekeying messages to update its key paths.

However, the centralized scheme cannot handle situa-
tions such as the key server failure or network partitions
due to intermediate nodes being out-of-service or severe
network congestions. This problem can be efficiently dealt
with by our contributory scheme. When the key server
loses its availability, all group members manage the key
tree themselves in a contributory mode. Since centralized
and contributory key managements use the same rekey-
ing scheme, TECH, no rekeying operations are processed
and no rekeying messages are forwarded to implement the
switch from the centralized scheme to the contributory
scheme.

Figure 4(b) shows the components of the contributory
scheme, in which the ID-Comparison and Dominating al-
gorithms are deployed to update the key tree. The spon-
sor’s (i.e., group member selected by the algorithm to
update and forward the keys on the key path [5, 6]) re-

liable and authenticated multicast component forwards to
the other group members the updated public keys. Upon
receipt, other group members calculate the new group
key. As in previous contributory group key managements
[5, 6], the sponsor should also process the 2-party DH key
exchange with the new group member.

4.2 Centralized Periodic Batch Group
Rekeying

At the end of every periodic interval, the key server up-
dates the key tree using the Marking algorithm [21] and
TECH. Furthermore, like previous centralized group key
managements [21], the key server will encrypt the updated
keys with the private key associated with the leaf as the
key and will multicast all encrypted messages after sign-
ing them. In order to save communication overhead and
to guarantee that all rekeying messages arrive at all group
member nodes, our centralized scheme utilizes M-SAIDA,
which will be introduced in section 5, for multicast ser-
vice.

4.3 Contributory Group Key Scheme

In our contributory scheme, three protocols, contributory
periodic rekeying, partitioning, and merging protocols are
proposed to process different J Join & L Leave scenarios.
In all the three protocols, each group member utilizes the
Marking algorithm [21] to select the key path to be up-
dated and also to select the corresponding sponsor. Fur-
thermore, we propose the Dominating algorithm to effi-
ciently update the keys and forward rekeying messages. In
the contributory periodic rekeying protocol, every group
member will handle the J Join & L Leave scenario at the
end of each periodic interval. When the group is divided
into sub-groups, say due to network disconnections, the
partitioning protocol will treat the members that cannot
be in contact with the group as leaving members. In this

International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 276

case, each group member will implement the 0 join & L
leave scenario. In a similar way, when sub-groups merge
due to network re-connections, the merging protocol im-
plements the J join & 0 leave scenario. For every sub-
group, the group member hosting the leftmost key path
is treated as the sponsor for the sub-group which gener-
ates the new session secret key, updates keys on its key
path and multicast the updated keys.

As shown in Figures 3 and 4(b), the ID comparison
algorithm is used to find intersections on the key path. We
notice that n intersections divide the key path into n + 1
key sub-paths. Furthermore, the dominating algorithm is
proposed to decide which sponsor is responsible to update
keys on each key sub-path and forward to other group
members updated public keys.

We use an ID comparison algorithm similar to [24] to
let every sponsor decide whether its key path intersects
others (note: the root does not count).

Algorithm 1: ID comparison
Input: KPk: key path for Mk; KPj: key path for Mj;

Output: value i;
1: i = 1;
2: compare KPk[i] with KPj[i]
3: If they are the same, i = i+1, goto 2

For example, in Figure 3(b), i should be 2 with
sponsors M2 and M3 as the input. Next we introduce the
concept of a dominating key path.

Dominating key path: If two key paths intersect, we
say that the right key path is dominated by the left key
path. Therefore, the left key path is the dominating key
and is responsible to update the overlapped nodes on the
two key paths.

For example, in Figure 3(b), KP2, the key path ofM2,
intersects KP3, the key path of M3, at < 3, 0 >. Because
KP2 is at the left of KP3, KP2 dominates KP3. Therefore,
M2 should update and multicast the public keys of <
3, 1 >.

Let’s now take a look at the J Join & L Leave sce-
nario in which the Marking algorithm decides that k key
paths should be updated. Without the consideration of
the root of the key tree, a key path KPi intersects n − 1
other key paths, KP1, KP2 · · ·KPi−1, KPi+1 · · ·KPn−1,
one by one from the leaf to the root, where n < k.
Assume that the n − 1 corresponding intersections are
< x1, y1 >, < x2, y2 > · · ·< xn−1, yn−1 >. The key path
KPi, is divided into the key sub-paths below.

KSPi,<1,i>,<x1,y1>, KSPi,<x1,y1>,<x2,y2> · · ·

KSPi,<xn−1,yn−1>,<h,0>.

Next we propose the dominating algorithm which de-
cides how to update and forward the keys on key sub-
paths mentioned above. For example, in Figure 3(b):

1stround:

Algorithm 2: Dominating Algorithm
Every Sponsor Mi:

1: updates KSPi,<1,i>,<x1,y1>

2: if all public keys are on the key paths,
dominated by Mi, are multicast:

3: repeat calculating PVs and PBs on
its key path until it cannot continue

4: multicast updated PBs it calculated
5: else
6: wait for PBs sent from the sponsor whose

key path is dominated by Mi’s key path
All group members:

1: after receiving the PBs from all sponsors,
update the PVs on its key path.

Key path of M3 is dominated by that of M2.
M3 multicasts PB<0,2> + PB<1,2> + PB<2,1>

M6 does not dominate others’ key path. And others
do not dominate M6.

M6 multicasts PB<1,5> + PB<2,2> + PB<3,1>.

2ndround:
M2 multicasts PB<1,1> + PB<2,0> + PB<3,0>

All group members update the PBs and PVs on their
key path and get the group key.

We notice that in our algorithm every sponsor forwards
1 message. In contrast, in TGDH, every sponsor forwards
[1, log2k] messages. Therefore, in total, all sponsors for-
ward k messages for our contributory scheme and 2k − 1
messages for TGDH, where k is the number of sponsors.

5 Authenticated and Reliable
Rekeying Message Multicast

In this section, we present our reliable and authenticated
multicast algorithm known as M-SAIDA (Modified Sig-
nature Amortization Information Dispersal Algorithm).
This is a modification of SAIDA proposed in [9]. In addi-
tion to the efficient signing feature, we also propose some
techniques to guarantee the reliability for not only the dig-
ital signatures but also rekeying messages. Furthermore,
benefiting from the dominating key path we introduced
earlier, the number of signing operations is reduced as
compared to previous popular schemes. Our algorithm
satisfies the requirements of zero packet loss and compu-
tational efficiency.

To guarantee a reliable multicast service for authen-
tication information, Park, Chong and Siegel [9] pro-
pose the Signature Amortization Information Dispersal
Algorithm (SAIDA) to encode authentication informa-
tion with Rabin’s Information Dispersal Algorithm (IDA).
Due to the no-packet-loss requirement, our rekeying trans-
port protocol, outlined in Algorithm 3 below, M-SAIDA,
encodes not only rekeying messages but also authentica-
tion information.

International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 277

Algorithm 3: M-SAIDA
Sponsor Mi:

INPUT: Public keys PB1, PB2 · · ·PBn,
OUTPUT: Public keys and signature encoded by Algorithm 4 IDA-Encode;.
1: Notation. ‖: concatenation; H = NULL; / * the hash value for PB1, PB2 · · ·PBn */
2: for 1 ≤ i ≤ n; i + +;
3: H = Hash(H ‖ PBi); /* Hash is an secure one-way-hash function such as SHA-256 */
4: end for
5: Mi multicast (IDA-Encode (PB1), · · · IDA-Encode(PBn), IDA-Encode (SignRSA(H)));
6: /*RSA is used because it is efficient in verification.*/
The Receiver M1· · ·Mn:
INPUT: Public keys and signature encoded by Algorithm 4 IDA-Encode;
OUTPUT: Public keys and signature;
1: for 1 ≤ i ≤ n; i + +;
2: IDA-Decode (PBi);
3: H = Hash(H ‖ PBi); /* Hash is an secure one-way-hash function such as SHA-256*/
4: end for

5: VerifyRSA (H, IDA-Decode (SignRSA(H)))

Algorithm 4 outlines on the implementation of the
IDA which presents reliable transmission for data packets
by introducing some amount of information redundancy.
IDA splits the source data, for example, PBi, into n
pieces, which are then encoded by the IDA algorithm.
At the receiver end, the IDA can reconstruct PBi after
receiving any m pieces where m < n. However, guar-
anteeing zero packet loss comes at the cost of increased
communication overhead. For example, for r public keys,
assume every public key is 1024 bits. Therefore, n is 32,
m can be 30. 1024 ∗ r ∗ n/m bits’ data are sent over the
network and at least 1024 ∗ r bits’ data are received. For
example, in Figure 3(b):

1stround:

M3 multicasts (IDA-Encode (PB<0,2>), IDA-
Encode(PB<1,2>), (IDA-Encode (PB<2,1>), IDA-Encode
(SignRSA(H(PB<0,2> ‖ (H(PB<1,2> ‖ (H(PB<2,1>)))));

M6 multicasts (IDA-Encode (PB<1,5>), IDA-
Encode(PB<2,0>), (IDA-Encode (PB<3,1>), IDA-Encode
(SignRSA(H(PB<1,5> ‖ (H(PB<2,0> ‖ (H(PB<3,1>)))));

2ndround:

M2 multicasts (IDA-Encode (PB<1,1>), IDA-
Encode(PB<2,0>), (IDA-Encode (PB<3,0>), IDA-Encode
(SignRSA(H(PB<1,1> ‖ (H(PB<2,0> ‖ (H(PB<3,0>)))));

All group members use IDA-Decode to decode mes-
sages and verify signatures. Hence they can update the
PBs and PVs on their key path and get the group key.

We notice that, benefiting from Dominating algorithm
and M-SAIDA, every sponsor signs once in our contrib-
utory scheme. In contrast, every sponsor signs [1, log 2k]
times in TGDH. Therefore, in total, all sponsors signs k
times for our contributory scheme and 2k − 1 times for
TGDH, where k is the number of sponsors. In our cen-
tralized scheme, the signing operation is performed once
by the key server. Other group members do not need any

signing operation.

6 Performance Evaluation

This section analyzes the computational cost and com-
munication overhead for our centralized and contributory
group key management schemes. The metrics we use to
evaluate computational cost are the number of exponen-
tiations and the number of signature generations for a
sponsor and for the total group members. The commu-
nication overhead metric is the number of messages for-
warded by all group members. In addition, the number of
rounds is used to measure the group key updating time in
a periodic interval in a merge operation or in a partition
operation.

TGDH [5] and STR [6] have been known to be the most ef-
ficient contributory group key managements providing ef-
ficient rekeying schemes and authenticated multicast ser-
vice to forward rekeying messages. Please refer to [2]
for a detailed comparison with other contributory Diffie-
Hellman based group key managements. However, our
scheme deploys Elliptic Curve Diffie-Hellman (ECDH)
which is more lightweight as compared to regular DH used
by TGDH and STR. To show that not all of our perfor-
mance gain is from ECDH, we compare our centralized
and contributory schemes with TGDH and STR by de-
ploying regular DH rather than ECDH.

In Table 1, we summarize our centralized and contribu-
tory group key managements, TGDH and STR. The cur-
rent group size is denoted by N and height of the key tree
for TGDH and our protocol is h. For a merge protocol,
the number of sub-groups is k and the number of group
members in k merging sub-groups is m. For a partition
protocol, the number of leaving members is p. For TGDH
and our proposal, the overhead is varied according to the
balance of the key tree and the join or leave member’s

International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 278

Algorithm 4: IDA
The Sender Party A: IDA-Encode

INPUT: a block of data Cj

OUTPUT: encoded vectors T1, T2 · · ·Tn

1: (1) Split Cj into N/m pieces where N=n/8:
2: Cj = (C1, · · · , Cm), (Cm=1, · · · , C2m), · · · , (CN−m−1, · · · , CN)where Ci : byte
3: Ri = (C(i−1)m+1, · · · , Cim), wherei < N/m
4: (2) Process Cj : following the specification of IDA [6], choose n
5: vectors, Ai = (ai1, · · · , aim), 1 ≤ i ≤ n, let every subset of m different vectors
6: are linearly independent. Then, process Cj :

7: Ti = Ai · (R1, R2, · · · , RN/m) = (ai1, · · · , aim) ·













C1, Cm+1, · · ·CN−m+1

·
·
·
Cm, C2m, · · ·CN













where1 ≤ i ≤ n (2)

8: (3) Send T1, T2 · · ·Tn to the receiver.
The Receiver Party B: IDA-Decode

INPUT: encoded vectors T1, T2 · · ·Tm

OUTPUT: a block of data Cj

1: (1) Assume that the receiver receives T1, T2 · · ·Tm

2: T1 = A1 · R1, A1R2, · · · , A1 · RN/m

3: T2 = A2 · R1, A2R2, · · · , A2 · RN/m

· · ·
4: Tm = Am · R1, AmR2, · · · , Am · RN/m

5: (2) Prepare for the calculation of R1

6: Based on T1 · · ·Tm, and Formula (2), we can get:

7: A′g













C1

·
·
·
Cm













=













A1gR1

·
·
·
AmgR1













where A′ =













a11 · · ·a1m

· · ·
· · ·
· · ·
am1 · · ·amm













8: (3) Since A’ is invertible, we can calculate R1:

9: R1 =













C1

·
·
·
Cm













=













a11 · · · a1m

· · ·
· · ·
· · ·
am1 · · · amm













−1 











A1gR1

·
·
·
AmgR1













10: (4) Repeat step 3, we can calculate R2 · · ·RN/m.
11: (5) Reconstruct Cj:
12: Cj = R1 ‖ R2 · · · ‖ RN/mwhere‖denotes concatenation.

International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 279

T
a
b
le

1
:

C
o
m

p
u
ta

ti
o
n
a
l
co

st
a
n
d

co
m

m
u
n
ic

a
ti
o
n

ov
er

h
ea

d

C
o
m

m
u
n
ic

a
ti

o
n

o
v
e
r
h
e
a
d

C
o
m

p
u
ta

ti
o
n
a
l
c
o
s
t

T
o
ta

l
M

a
in

sp
o
n
so

r
T
o
ta

l
R

o
u
n
d
s

M
es

sa
g
es

E
x
p
o
n
en

ti
a
ti
o
n

S
ig

n
a
tu

re
s

E
x
p
o
n
en

ti
a
ti
o
n

S
ig

n
a
tu

re
s

T
G

D
H

J
jo

in
&

L
le

av
e

2
J

+
L

2
J

+
L

2
h
(J

+
L

)
J

+
L

(2
n
−

1
)(

J
+

L
)

2
J

+
L

T
G

D
H

M
er

g
e

lo
g

2
k

+
1

2
k

2
h

lo
g

2
k

+
1

2
(h

−
lo

g
2
k
)k

+
(2

k
−

1
)

2
k

T
G

D
H

m
in

(l
o
g

2
p

+
1
,h

)
m

in
(2

h
,2

p
)

2
h

m
in

(l
o
g

2
p

+
1
,h

)
2
(h

−
lo

g
2
p
)p

m
in

(2
h
,2

p
)

+
(2

p
−

1
)

S
T

R
J

jo
in

&
L

le
av

e
2
J
+

L
2
J
+

L
4
J
+

(3
n
/
2
+

2
)L

J
+

L
(2

n
+

2
)J

+
(3

n
/
2
+

2
)L

2
J
+

L
S
T

R
M

er
g
e

2
k
+

1
3
m

+
1

2
(n

+
m

)m
+

3
m

+
1

k
+

1
S
T

R
P
a
rt

it
io

n
1

1
3
n
/
2
+

2
1

(n
-1

)
(3

n
/
4
+

1
)

+
3
n
/
2
+

2
1

O
u
r

C
o
n
tr

.
J

jo
in

&
L

le
av

e
m

in
(l
o
g

2
L

+
1
,h

)
L

2
h

1
2
(h

−
lo

g
2
L

)L
+

2
L
−

1
k

O
u
r

C
o
n
tr

.
M

er
g
e

lo
g

2
k

+
1

k
2
h

1
2
(h

−
lo

g
2
k
)k

+
(2

k
−

1
)

k
O

u
r

C
o
n
tr

.
P
a
rt

it
io

n
m

in
(l
o
g
2
p
+

1
,
h
)

p
2
h

1
2
(h

−
lo

g
2
p
)p

+
(2

p
−

1
)

p
O

u
r

C
en

tr
.1

J
jo

in
&

L
le

av
e

1
1

2
h
*

1
2
(h

−
lo

g
2
L

)L
+

(2
L
−

1
)
+

2
h
n

1
O

u
r

C
en

tr
.1

M
er

g
e

1
1

2
h
*

1
2
(h

−
lo

g
2
k
)k

+
(2

k
−

1
)
+

2
h
n

1
O

u
r

C
en

tr
.1

P
a
rt

it
io

n
1

1
2
h
*

1
2
(h

−
lo

g
2
p
)p

+
(2

p
−

1
)
+

2
h
n

1

*
E

n
cr

y
p
ti
o
n
/
d
ec

ry
p
ti
o
n

in
st

ea
d

o
f
th

e
m

o
d
u
la

r
ex

p
o
n
en

ti
at

io
n

is
re

q
u
ir

ed
.

1
:

In
ce

n
tr

a
li
ze

d
sc

h
em

e,
k
ey

se
rv

er
w

h
ic

h
is

in
ch

a
rg

e
o
f
th

e
k
ey

tr
ee

u
p
d
a
te

is
n
o
t

tr
ea

te
d

a
s

a
sp

o
n
so

r.

location. Our performance analysis for them is based on
the worst scenario. But for the leaving group member-
ship for STR, we compute the average case, in which the
(n/2)th node leave, to follow the same analysis as that in
[6].
Our centralized group key management is as same as
keygem [21] with the difference that keygem updates the
keys with random key generations but ours updates the
keys following TECH. Furthermore, the key tree’s degree
can be any optimized number but ours is 2. Please refer to
[21] for a detailed performance analysis between keygem
and other centralized group key managements.
In the following, we introduce the worst-case scenario for
the tree-based group key managements such as TGDH
and our two schemes. We also compare the performance
and study the overhead of the reliable multicast.

6.1 The Worst-case Scenario

As demonstrated in Figure 5(a), the worst-case scenario
occurs when the sponsors are evenly distributed on the
tree leaf nodes. As a consequence, the overlapped public
and private key updates are least in number [21]. Fig-
ure 5(b) shows how to update public keys on different
key paths and how to multicast them by corresponding
sponsors for the dominating algorithm.

6.2 Performance Comparison

J join & L leave: As seen from Table I, our two
schemes are comparatively efficient in terms of number of
rounds, number of messages, number of exponentiations
and number of signing operations because they take
advantage of periodic batch rekeying. STR requires the
most computational cost. Both STR and TGDH demand
the most communication overhead. But TGDH and
STR, which implement individual rekeying, can provide
forward and backward security with 0 vulnerability
window [21].

Merge: Our contributory and centralized schemes re-
quire less cost as compared to TGDH and STR in terms
of number of messages and computational cost. STR
needs the most number of exponentiation operations and
TGDH requires the most number of signing operations.
Our centralized scheme and STR use a constant number
of rounds.

Partition: In terms of other computational metrics, our
centralized and contributory schemes are more efficient.
TGDH demands the most communication overhead and
computation cost. Our centralized scheme and STR are
more bandwidth saving and they require a constant num-
ber of signing operations.
The performance evaluation earlier shows us that our cen-
tralized group key management scheme is the most effi-
cient among these four schemes. However the drawback
is the requirement of a key server.

International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 280

 (a)
 (b)

0,0

2,3

2,0
 2,2
2,1

3,6
3,0
 3,4
3,2
 3,7
3,1
 3,5
3,3

1,0
 1,1

Updated

Key Path

Key

Sub
-
Tree

S
1
 S
2
 S
3
 S
4
 S
5
 S
6
 S
7
 S
8

0,0

2,3
2,0
 2,2
2,1

3,6
3,0
 3,4
3,2
 3,7
3,1
 3,5
3,3

1,0
 1,1

Updated

Key Path

Key

Sub
-
Tree

S
1
 S
2
 S
3
 S
4
 S
5
 S
6
 S
7
 S
8

Key Paths updated by

corresponding sponsors

Figure 5: (a) Worst-cases scenario (b) Dominating key path

6.3 Reliability

Unlike other contributory group key managements which
assume the reliable multicast service, our proposal M-
SAIDA guarantees all rekeying messages arriving other
members without packet loss and with the running com-
plexity, O(n2).
Since the actual packet loss follows the burst rather than
the independent model, Yajnik et al. [19] introduce the 2-
state Markov chain (2-MC) loss model and Miner et al. [8]
introduce the Biased Coin Toss (BCT) loss model. Both
of them can accurately model bursty loss patterns. Park,
Chong and Siegel [9] analyze the authentication proba-
bility, Pr{Pi verifiable | Pi is received} of SAIDA using
the two loss models. The result suggests that making the
block size large could decrease the communication over-
head if relatively long verification delays are tolerated.
Unlike TGDH which multicasts single public keys fre-
quently, our group key management always multicasts all
the updated public keys on the entire key path within one
message. Hence, the message size is large and higher send-
ing delays are tolerable. Therefore, the SAIDA method
suits our proposal well.

6.4 Authentication

The communication cost of M-SAIDA is:

NUMkey overhead = (n/m) ∗ (NUMkey + (H + s))

NUMsignature = 1.

The cost for Wong-Lam’s authentication tree is:

NUMkey overhead = NUMkey + (Hhn + s)

NUMsignature = 1,

where NUM is the number; s: signature size; H : hash
size; h is the height of the key tree Notice that Wong-
Lam’s method cannot guarantee no-packet-loss.

7 Conclusion

Security in group communications is an important and
evolving field. Group key management requiring both
efficiency and failure-tolerance over resource-limited net-
works is a challenging task. This paper presents the de-
sign and specification of a hybrid architecture which in-
cludes a contributory and a centralized group key man-
agement based on one set of keys. It takes advantage of
centralized scheme’s efficiency and contributory scheme’s
failure-tolerance. Furthermore, no computational and
communication cost are involved to switch between the
two schemes. We also propose a contributory rekeying
scheme which can handle the periodic batch rekeying,
merge and partition protocols efficiently as well as coop-
erate with the centralized scheme. Finally, we propose a
multicast protocol that has zero packet loss (reliable) and
authenticated. Our performance analysis shows that our
technique reduces the number of rounds, the number of
messages, the number of exponentiations and the number
of signing operations as compared to other popular key
management schemes.

References

[1] G. Ateniese, M. Steiner, and G. Tsudik, “New multi-
party authentication services and key agreement pro-
tocols,” IEEE Journal of Selective Areas Communi-
cation, vol. 18, no. 4, pp. 628-639, 2000.

[2] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J.
Stanton, and G. Tsudik, “Secure group communica-
tion using robust contributory key agreement,” IEEE
Tranactions On Parallel and Distributed Systems.
vol. 15, no. 5, pp. 468-480, May 2004.

[3] G. Ateniese, M. Steiner, and G. Tsudik, “Authenti-
cated group key agreement and friends,” in Proceed-

International Journal of Network Security, Vol.6, No.3, PP.270–281, May 2008 281

ings of ACM Conference on Computer and Commu-
nication Security (CCS’98), pp. 17-26, 1998.

[4] E. Bresson, O. Chevassut, D. Pointcheval, and J.
J. Quisquater, “Provably authenticated group Diffie-
Hellman key exchange,” in 8th ACM Conference on
Computer and Communication Security (CCS’01),
pp. 255-264, 2001.

[5] Y. Kim. A. Perrigm, and G. Tsudik. “Simple and
fault-tolerant key agreement for dynamic collabora-
tive groups,” in 7th ACM Conference on Computer
and Communications Security (CCS’00), pp. 235-24,
Nov. 20004.

[6] Y. Kim. A. Perrig, and G. Tsudik, “Group key Agree-
ment efficient in communication,” IEEE Transac-
tions on Computers, vol. 53, no. 7, pp. 905-921, July
2004.

[7] D. Li and S. Sampalli, “An efficient group key estab-
lishment in location-aided mobile ad hoc networks,”
in The 2nd ACM Workshop on Performance Eval-
uation of Wireless Ad Hoc, Sensor, and Ubiquitous
(PE-WASUN’05), pp. 57-64, 2005.

[8] S. Miner and J. Staddon, “Graph-based authenti-
cation of digital streams,” in Proceedings of IEEE
symposium on Research in Security and Privacy, pp.
232-246, 2001.

[9] J. M. Park, E. K. P. Park, and H. J. Siegel, “Effi-
cient multicast stream authentication using erasure
codes,” ACM Transactions On Information and Sys-
tem Security, vol 6, no. 2, pp. 258-285, May 2003.

[10] A. Perrig, D. Song, and J. D. Tygar. “ELK, A new
protocol for efficient large-group key distribution,” in
Proceeding of the IEEE Symposium on Security and
Privacy (IEEE S&P), pp. 247-262, 2001.

[11] K. H. Rhee, Y. H. Park, and G. Tsudk, “A group
key management architecture for mobile ad-hoc net-
works,” Journal of Information science and engi-
neering, vol 21, pp. 415-428, 2005.

[12] S. Setia, S. Koussih, and S. Jajodia, “Kronos: A scal-
able group re-keying approach for secure multicast,”
in Proceedings of the IEEE Symposium on Security
and Privacy (IEEE S&P), pp. 215 - 228, May 2000.

[13] A. T. Sherman and D. A. Mcgrew, “Key establish-
ment in large dynamic groups using one-way function
trees,” IEEE Transactions on Software Engineering,
vol. 29, no. 5, pp. 444-458, May 2003.

[14] M. Steiner, G. Tsudik, and M. Waidner, “Key agree-
ment in dynamic peer groups,” IEEE Transactions
on Parallel and Distributed Systems, vol. 11, no. 8,
pp. 769-780, Aug. 2000.

[15] Y. Sun and K. J. Ray Liu, “Securing dynamic Mem-
bership Informationin Multicast Communications,”
in Proceedings of IEEE INFOCOM, Mar. 2004.

[16] H. Weatherspoon, C. Wells, P. Eaton, B. Zhao, and
J. Kubiatowicz. Silverback: A Global-Scale Archival
System, Technical Report UCB/CSD-01-1139, Com-
puter Science Division, University of California,
Berkeley, CA.

[17] C. K. Wong and S. S. Lam. “Digital signatures for
flows and multicasts,” IEEE/ACM Transactions on
Networking, vol. 7, no. 4, pp. 502-513, Aug. 1999.

[18] C. K. Wong, G. Gouda, and S. S. Lam, “Secure group
communications using key graphs,” IEEE/ACM
Transactions on Networking, vol. 8, no. 1, pp. 16-30,
Feb. 2000.

[19] M. Yajnik, S. Moon, and D. Towsley, “Measurement
and modeling of the temporal dependence in package
loss,” in Proceedings of IEEE Conference on Com-
puter Communications (INFOCOM ’99), pp. 345-
352, 1999.

[20] W. H. Yang and S. P. Shieh, “Secure key agreement
for group communications,” International Journal of
Network Management, vol. 11, no. 6, pp. 365-374,
2001.

[21] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam,
“Reliable group rekeying: A performance analysis,”
in Proceeding of ACM SIGCOMM’01, pp. 27-38,
Aug. 2001.

[22] X. B. Zhang, S. S. Lam, D. Y. Lee, and Y. R.
Yang, “Protocol design for scalable and reliable
group rekeying,” IEEE/ACM Transactions on Net-
working, vol. 11, no. 6, pp. 908-922, Dec. 2003.

[23] Y. Zheng, “Shortened digital signatures, signcryp-
tion and compact and unforgeable key agreement
schemes,” Submission to IEEE P1363a: Standard
Specifications for Public-Key Cryptography, 1998.

[24] X. K. Zou, B. Ramamurthy, and S. S. Magliveras,
Secure Group Communication over Data Networks,
Springer, 2005.

Depeng Li received the Bachelor and
Master degrees in Computer Science
from Shandong University, Jinan, P.
R. China. He is currently working to-
ward the Ph.D. degree in Computer
Science at Dalhousie University, Hal-
ifax, Canada. His research interests

are in the areas of network security, peer-to-peer group
communication and performance evaluation.

Srinivas Sampalli is a Professor and

3M Teaching Fellow in the Faculty of
Computer Science, Dalhousie Univer-
sity, Halifax, Nova Scotia, Canada. He
has been actively researching in the
area of security and quality of ser-
vice in wireless and wireline networks.

Specifically, he has been involved in research projects on
protocol vulnerabilities, security best practices, risk miti-
gation and analysis, and the design of secure networks. He
is currently the principal investigator for the Wireless Se-
curity project sponsored by Industry Canada. Dr. Sam-
palli has received many teaching awards including the 3M
Teaching Fellowship, Canada’s most prestigious teaching
acknowledgement.

