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Abstract

Consider the following scenario with N + 2 parties, A, B,
X1, X2, · · · , XN . Party A has a secret a, party B has a
secret b, and party Xi has a secret xi, for i = 1, · · · , N .
They want to know if a = b without revealing any in-
formation about their secrets. We propose a distributed
protocol for this problem based on the Paillier threshold
homomorphic encryption scheme with a public broadcast
channel. This protocol is suitable for voting which re-
quires public verifiability. This protocol is secure and
robust in an honest majority environment. We proved
the security in a formal framework for secure multi-party
computation.

Keywords: Homomorphic encryption, PET, plaintext
equivalence test, secure multi-party computation protocol

1 Introduction

In this problem, there are N + 2 parties, A, B, X1, X2,
· · · , XN . Party A has a secret a, party B has a secret
b, and party Xi has a secret xi, for i = 1, · · · , N . xi is
share of the private key of the underlying homomorphic
encryption scheme. They want to know if a = b, un-
der the constraint that A, B and Xi (for i = 1, · · · , N)
should not learn anything about other’s secrets. The pro-
tocol to deal with this problem is known as the Plaintext
Equivalence Test (PET) and is a specific instance of se-
cure multiparty computation [10, 11]. We briefly sketch
previous protocols.

In 2000, Jakobsson and Juels [10] presented a dis-
tributed plaintext equality test based on the ElGamal
public-key system [5]. In their protocol, the equivalence
of the plaintexts a and b corresponding to two ElGamal
ciphertexts Epk(a) = (αa, βa), Epk(b) = (αb, βb) is deter-
mined. A trusted third party C, who owns the secret
key SK of the ElGamal scheme, picks a random number
r, computes (ζ, ξ) = ((αa/αb)

r, (βa/βb)
r) and decrypts

(ζ, ξ). C declares that a = b if Dsk((ζ, ξ)) = 1; C declares
that a 6= b otherwise, where Dsk(·) denotes the ElGamal
decryption algorithm. Note that the party C can be a
group of users sharing the decryption key and Dsk(·) can

be executed in a distributed manner. Their protocol is
secure unless more than t users are colluding. It is useful
for applications such as voting or auction based on the
ElGamal public-key system. However, a protocol of sim-
ilar purpose is unavailable for applications based on the
Paillier [15] public-key system.

In 2005, Li and Wu [11] proposed a co-operative pri-
vate equality test based on the Paillier public-key system.
There are three parties in their protocol: A, B, and C,
in which A and B know a, b individually and C knows
the decryption key SK. First, A and B jointly gener-
ate a random number rab. Second, A encrypts raba as
ξ = Epk(raba) and sends ξ to B through a secure chan-
nel. Then B encrypts −rabb as η = Epk(−rabb), computes
ζ = ηξ and sends ζ to C through a secure channel. Fi-
nally, C decrypts ζ and declares that a = b if Dsk(ζ) = 0,
or a 6= b otherwise. In the above, Epk(·) and Dsk(·) de-
note the Paillier encryption and decryption algorithms,
respectively. Li and Wu have proved that their protocol
is secure under the assumptions of the passive adversary
model and a secure channel. There are two problems with
the above protocol. First, it is quite often that in a vot-
ing or an auction scenario, to disrupt the protocol or to
manipulate the protocol results in a brute-force way is as
interesting as to learn the intents of other players. For
example, if C cheats, he can declare arbitrarily a = b or
a 6= b; if B is dishonest, he can send Epk(0) or Epk(1)
to manipulate the result. It is essential to consider active
adversaries in the design of a practical protocol. Second,
the employment of homomorphic encryption schemes en-
ables the design of a public verifiable voting application,
the secure channel model used in Li’s [11] protocol hinders
the protocol from scrutiny of the public.

In this paper, we propose a protocol for distributed
plaintext equivalence test based on the threshold Paillier
public-key system with a public broadcast channel. The
protocol is efficient and secure with honest majority as-
sumption and is analyzed in a formal secure multi-party
computation framework [7, Chap. 7].

In Section 2, we recall the cryptographic primitives
such as Paillier cryptosystem, threshold Paillier decryp-
tion algorithm, and some zero-knowledge proofs. In Sec-
tion 3, we recall the multi-party computation model and
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give a formal secure definition to the protocol for PET. In
Section 4, the complete protocol is described. Then, we
present the formal security analysis in Section 5, a typical
voting application in Section 6, and give some conclusions
in Section 7.

2 Cryptographic Primitives

2.1 Paillier Cryptosystem

The Paillier Cryptosystem [15] is briefly summarized: let
n = pq, where p and q are large primes. Let g be an
element in Z

∗
n2 with g’s order being a non-zero multiple

of n. (n, g) is the public key and λ(n) = lcm(p− 1, q − 1)
is the private key of the cryptosystem. The encryption
and decryption algorithms are described as follows:

Encryption: for plaintext m < n
select a random r ∈ Z

∗
n

ciphertext c = gmrn mod n2.

Decryption: for ciphertext c < n2

plaintext m = L(cλ mod n2)
L(gλ mod n2)

mod n

where L(u) = (u − 1)/n for u = 1 mod n.

The Paillier cryptosystem has the additive homomor-
phic property, which is essential to the design of the ho-
momorphic tallying process of many e-voting protocols:

for all m1, m2 ∈ Zn and k ∈ N,

Epk(m1)Epk(m2) = Epk(m1 + m2)

Epk(k · m) = Epk(m)k.

The Paillier encryption is proved multi-message seman-
tically secure under the assumption of decisional com-
posite residue (DCRA) [15], which implies computational
composite residue (CRA) and then implies RSA assump-
tion with public encryption coefficient being n.

Definition 1. multi-message indistinguishable
encryption (G, Ē, D̄) [7, Def. 5.2.14]

∀x̄ = (x1, . . . , xt(n)), xi ∈ {0, 1}`(n),

∀ȳ = (y1, . . . , yt(n)), yi ∈ {0, 1}`(n), and
∀ probabilistic polynomial time A,
|Pr{A(1n, G(1n), ĒG(1n)(x̄)) = 1}−

Pr{A(1n, G(1n), ĒG(1n)(ȳ)) = 1}| < 1
p(n) .

2.2 Threshold Paillier Cryptosystem

In order to avoid possible frauds in which a party who
knows the secret key decrypts an arbitrary ciphertext and
violates the privacy of a participating party, we use the
threshold Paillier cryptosystem [1, 3] to encrypt and de-
crypt.

The protocol includes the following players: a dealer
and a set of N users Xi.

• Initialization: A user Xi gets a secret share SKi of
the private key SK corresponding to the public key
PK through a trusted dealer. This trusted dealer can
be replaced by a distributed key generation algorithm
[4].

• Encryption: Any user can run the encryption algo-
rithm described in Section 2.1 using PK.

• Decryption: A user Xi decrypts the ciphertext c
using his share of the secret key SKi to get the par-
tial decryption ci and forms a zero-knowledge proof
(ZKP) of validity of the partial decryption. A set of
more than t cooperating users, whose validity proofs
are validated correctly, can recover the plaintext us-
ing a Lagrange-like combining protocol. The details
will be integrated into the protocol and explained in
Section 4.

2.3 Zero-knowledge Proof

ZKP for equal discrete logs: This ZKP follows [3]
and is a generalization of [2] over Z

∗
n2 . The prover and

verifier know the values u, ũ, v, ṽ, n and the prover knows
the secret y such that ũ = uy mod n2 and ṽ = vy mod
n2. The prover wants to convince the verifier that the
two discrete log dlogu(ũ) and dlogv(ṽ) are equal without
revealing the value y.

First, the prover chooses a random number r ∈ Zn and
commits a = ur mod n2, b = vr mod n2 to the verifier.
Then, the verifier chooses a random challenge e ∈ Zn

and sends e to the prover. Finally, the prover sends
the response z = r + ey to the verifier and the verifier
checks whether uz = aũe mod n2, vz = bṽe mod n2. If
both equations hold, then the verifier is convinced that
dlogu(ũ) = dlogv(ṽ).

3 Secure Multi-party Computa-

tion

3.1 Y-evaluation and PET

Y-evaluation is a general secure multi-party computation
problem [12, 16], in which N parties, X1, X2, · · · , XN ,
want to compute y = f(x1, x2, · · · , xN ) without revealing
any information about their secret inputs xi. PET is a
specific instance of the Y-evaluation problem.

In this paper, we use a version of threshold Paillier
system [3] with its public key pk ∈ PK and the shares of
secret key xi ∈ SK. Party A encrypts a as ā = Epk(a)
and party B encrypts b as b̄ = Epk(b). The set-up as-
sumptions are that the public key pk, ā, and b̄ are known
to all parties and the share xi of the secret key is held by
the party Xi. The function is computed jointly by N par-
ties in the multi-party computation model and is defined
by:

f : X × X × · · · × X → {0, 1}
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and

f(x1, x2, · · · , xN ) =

{

1, if a 6= b
0, if a = b

where X = SK.
Our goal is to design a protocol for the PET problem

with the following properties:

1) Correctness: After the protocol, all parties will be
convinced of the correctness of the result.

2) Privacy: No one in the protocol can learn more in-
formation about other party’s secret except a = b or
not.

3) Robustness: No one can disrupt the protocol or ma-
nipulate the results under the threshold assumption.

3.2 Adversary Model

In the following, we consider the multi-party computation
model with honest majority [7] where an adversary V con-
trols some minority of parties to learn extra information,
to disrupt the protocol or to manipulate the results of
the protocol. Since every NP problem has a correspond-
ing ZKP [8], we augment each secure protocol step with
ZKPs to guarantee the detection of any deviation from
the protocol. The remaining protocol messages are there-
fore valid as if the adversaries were passive. Our protocol
only requires that the number of colluding parties is less
than t = N

2 .
We assume all parties communicate via a public broad-

cast channel such as a bulletin board system (BBS). Be-
sides, we assume that the decisional composite residue
problem [15] is computationally intractable.

3.3 Security Definition

In this section, we give a formal security definition for the
Plaintext Equivalence Test protocol. The privacy of the
protocol is defined in terms of the behavioral differences
between the ideal and real world model [7, 11].

In the real model, all parties run the real protocol
and the adversary attacks the protocol. An adversary
V controls t − 1 parties of {Xφ(i)}i=1,··· ,t−1 where φ :
{1, · · · , t−1} → {1, · · · , N} is a one-to-one mapping. Af-
ter the protocol, all parties output the value received and
the adversary outputs arbitrary functions of their joint
views.

In the ideal model, a trusted party K obtains secret
inputs from all parties X̂1, X̂2, · · · , X̂N , computes f pri-
vately and sends the result back to each party. An adver-
sary V̂ controls parties {X̂φ(i)}i=1,··· ,t−1 with the same
index set as in the real model. All parties output the
value received from K and the adversary outputs arbi-
trary functions of their joint views.

Definition 2. A Plaintext Equivalence Test protocol
is secure with honest majority if for all real proba-
bilistic polynomial-time adversary V , controlling some

minority of the parties {Xφ(i)}i=1,··· ,t−1 and (t − 1)-
inputs {xφ(i)}i=1,··· ,t−1, there exists an ideal probabilis-

tic polynomial-time adversary V̂ , controlling the same
set of parties and inputs, such that for all possible
x1, x2, · · · , xN the outputs of (X1, X2, · · · , XN , V ) in the
real model and those of (X̂1, X̂2, · · · , X̂N , V̂ ) in the ideal
model are computationally indistinguishable [9].

4 Our Plaintext Equivalence Test

Protocol

Assume there are N parties, X1, X2, · · · , and XN ,
participating this protocol, and external parties A and
B having their secret inputs a, b, respectively. They
want to know whether a = b without revealing other
information. For the sake of simplicity, we assume a
trusted dealer D in the generation and distribution of
the underlying threshold Paillier system. Note that the
trusted party D can be removed by using distributed
key generation protocols [14, 4]. Let threshold t be N

2 .
This protocol is secure if there are less than t colluding
active adversaries. Figure 1 illustrates the procedure of
the proposed protocol.

Key generation:

D picks the primes p and q such that p = 2p′ + 1 and q =
2q′ +1 where p′ and q′ are large primes. Let n = pq, m =
p′q′, g = 1+n, and ∆ = N !. Then, D calculates d with the
Chinese Remainder Theorem such that d = 0 mod m and
d = 1 mod n and selects a polynomial f(X) =

∑t
i=0 aiX

i

where a0 = d and {ai}i=1,··· ,N are random numbers in
{0, · · · , n(m− 1)}. The secret share of d is xi = f(i) (for
i = 1, · · · , N) and the public key pk is (g, n). For the
verification of each joint decryption, D picks a random
number v ∈R Z

∗
n2 , computes vi = v∆xi for each Xi and

publishes v, {vi}i=1,··· ,N .

Setup: The external party A encrypts a as ā = Epk(a)
and B encrypts b as b̄ = Epk(b) by Paillier encryption
algorithm with the public key (g, n). The public key
(g, n), ā and b̄ are known to all parties and the share
xi of the secret key is held by the party Xi.

Step 1: Each Xi secretly picks a random number ri ∈
Z
∗
n, computes c̄i = (ā/b̄)ri mod n2 and submits

a proof-of-knowledge of the discrete log dlog(ā/b̄)c̄i

ZKP [17] as shown in Step 1 of Figure 1.

Step 2: All parties jointly determine the set S =
{i|Xi submits the correct proof for c̄i} and calculate

c =
∏

i∈S

c̄i mod n2.

Due to the additive homomorphic property men-
tioned in Section 2.1, we know that c is the encryp-
tion of (a − b) · (

∑

i∈S ri).
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Figure 1: Illustrative diagram of the protocol

Step 3: Each party Xi calculates the partial decryption
ci = c2∆xi mod n2 and publishes it as shown in Step
3 of Figure 1. Besides, Xi provides the ZKP for equal
discrete logs as described in Section 2.3 to prove that
he uses exactly the same secret xi that is involved in
the calculation of ci and vi, i.e. dlogc4(c2

i ) = dlogvvi.

Step 4: If there are more than t ci’s having valid
ZKPs, each party determines the set S′ =
{i|Xi submits the valid proof for ci} and calculates

c′ =
∏

i∈S′

c2λi

i mod n2,

where λi = ∆
∏

i′∈S′\i

−i′

i − i′
are integers. The de-

crypted plaintext is z = L(c′ mod n2)(4∆2)−1 mod
n. If z = 0 then the protocol declares a = b; other-
wise, declares a 6= b.

Note that the threshold Paillier cryptosystem used
in this paper can be replaced by other variants of
threshold Paillier cryptosystems such as [1].

5 Security Analysis

In this section, we analyze the security of the proposed
protocol and prove the privacy according to the definition

in Section 3.3.

Correctness: Consider the Step4 in Section 4:

c =
∏

i∈S

c̄i =
∏

i∈S

(
ā

b̄
)ri = (

ā

b̄
)
∑

i∈S
ri mod n2.

Let r denote
∑

i∈S ri. The probability that nλ | r is
clearly negligible if there is at least one party Xi choosing
ri randomly. By the additive homomorphic property, we
know that c is the encryption of (a − b) · r, i.e.

c = (
ā

b̄
)r = (

gara
n

gbrb
n

)r

= (gr(a−b)(rar−1
b )rn) mod n2.

Then,

c′ =
∏

i∈S′

c2λi

i =
∏

i∈S′

(c2∆xi)2λi

= c4∆
∑

i∈S′ xi∆
∏

i′∈S′\i

−i
′

i−i′

= c4∆2f(0) = c4∆2d mod n2.

Note that c = gr(a−b)(rar−1
b )rn, thus

c′ = c4∆2d = g4∆2dr(a−b)((rar−1
b )4∆

2drn) mod n2.

Since d = 0 mod m, d = 1 mod n, and g = 1+ n, we have
(1 + n)kn = 1 mod n2 and x2mn = 1 mod n2. Thus,

c′ = (1 + n)4∆
2r(a−b) mod n2,

and

z = L(c′ mod n2)(4∆2)−1 mod n

= (
((1 + n)4∆

2r(a−b) mod n2) − 1

n
) ·

(4∆2)−1 mod n

= (
1 + 4∆2r(a − b)n − 1

n
)(4∆2)−1 mod n

= 4∆2r(a − b)(4∆2)−1 = r(a − b) mod n.

Thus, z = 0 if a = b; z 6= 0 if a 6= b and r 6= 0 mod nλ.

Privacy: Through the use of a threshold cryptosystem,
no colluding group of size less than t can decrypt ā and b̄
to get the plaintexts a and b, respectively. Thus, the se-
crecy of a and b is protected by the secret sharing scheme
and the DCRA computational intractability assumption
of the underlying Paillier cryptosystem. Besides, the hon-
est majority assumption implies that nobody knows the
exact value of r, z = r · (a− b) tells nothing about a or b
except whether a equals b.

Now we provide a formal security proof with respect
to the privacy definition in the secure multi-party com-
putation model and the security definition of a multi-
message indistinguishable encryption. We consider N
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participating parties {Xi}i=1,...,N as well as a passive
adversary V who controls t − 1 parties, {Xi}i∈Φ where
Φ = {φ(i)}i=1,...,t−1. To simplify the following proof, we
treat the private random value ri as input, i.e. each player
Xi inputs independently uniformly distributed xi and ri

and V merely gathers information about private inputs of
honest players {Xi}i∈Φ̄ where Φ̄ denotes the complement
set {1, . . . , N}\Φ.

Suppose the protocol is not secure, by definition there
exists a PPT adversary V in the real model such that
for all possible PPT adversaries V̂ in the ideal world,
(X1(·), · · · , XN (·), V (·)) and (X̂1(·), · · · , X̂N(·), V̂ (·)) are
computationally distinguishable for all possible inputs
x1, · · · , xN and r1, · · · , rN , where Xi(·) is the output of
Xi, V (·) is the output of V , X̂i(·) is the output of X̂i,
and V̂ (·) is the output of V̂ . Without deviating from the
protocol, the output of any real player Xi can always be
simulated in the ideal model by X̂i while those adversarial
behaviors are modelled by the output of V and V̂ . Thus,
we focus on the outputs of the adversaries in both models.

In the real world, the adversary V can see the views of
t − 1 parties {Xi}i∈Φ. Thus, the information viewed by
V is

viewV , { pk = (g, n), ā = Epk(a), b̄ = Epk(b),

{xi}i∈Φ, {ri}i∈Φ,

{c̄i}i=1,··· ,N , c, {ci}i=1,··· ,N , c′, z,

f((x1, r1), · · · , (xN , rN )) and

all the zero-knowledge proofs }.

In the ideal world, the information viewed by V̂ is

viewV̂ , { pk = (g, n), ā = Epk(a), b̄ = Epk(b),

{xi}i∈Φ, {ri}i∈Φ,

and f((x1, r1), · · · , (xN , rN )) }.

If the protocol is not secure, ∃ a PPT V , ∀ PPT V̂ , ∃ a
PPT distinguisher D, ∃ a polynomial p(n), for infinitely
many n’s

|Pr{D(V (viewV )) = 1} − Pr{D(V̂ (viewV̂ )) = 1}|

=
1

p(n)
.

Because c =
∏N

i=1 c̄i is directly derived from
{c̄i}i=1,...,N , z is derived from c′, {c̄i}i∈Φ are derived from
{ri}i∈Φ as (ā/b̄)ri , {ci}i∈Φ are derived from {xi}i∈Φ as
c2∆xi , and all ZKPs are zero knowledge, we can safely
omit these terms from the inputs of V in the above in-
equality, i.e.,

|Pr{D(V (viewV̂ , {Epk(ri · (a − b))}i∈Φ̄,

{Epk(2∆ · xi · r · (a − b))}i∈Φ̄, c′)) = 1}

−Pr{D(V̂ (viewV̂ )) = 1}| =
1

p(n)
.

Note that z = r · (a − b) = (
∑N

i=1 ri) · (a − b) is uni-
formly distributed provided that one ri∗ is uniformly dis-
tributed where i∗ ∈ Φ̄. z = L(c′ mod n2) ·(4∆2)−1 mod n
also implies that c′ is uniformly distributed. Denote
{Epk(ri · (a − b))}i∈Φ̄ and {Epk(2∆ · xi · r · (a − b))}i∈Φ̄

in the viewV as a ciphertext vector Epk(m) and observe
that these ciphertexts are independent because {ri}i∈Φ̄

and {xi}i∈Φ̄ are independent. For an arbitrary input set

{x
(0)
i }i=1,...,N , {r

(0)
i }i=1,...,N , construct a ciphertext vec-

tor Epk(m0) as ({Epk(r
(0)
i · (a − b))}i∈Φ̄, {Epk(2∆ · x

(0)
i ·

(
∑N

i=1 r
(0)
i ) · (a − b))}i∈Φ̄).

Because V̂ is an arbitrary PPT algorithm, we can
pick an adversary V̂ ′ that takes a uniformly distributed
random number ĉ′ and the above vector Epk(m0)

as extra inputs. The output of V̂ ′ is denoted as
V̂ ′(viewV̂ , Epk(m0), ĉ′). Thus, ∃ a PPT V , ∃ a PPT dis-
tinguisher D, ∃ a polynomial p(n), for infinitely many n’s

| Pr{D(V (viewV̂ , Epk(m), c′) = 1} −

Pr{D(V̂ ′(viewV̂ , Epk(m0), ĉ
′)) = 1} | =

1

p(n)
,

where the first probability is over all possible m, i.e.
averaged over all possible ri and xi. Thus, there ex-

ists a ciphertext vector Epk(m1) = ({Epk(r
(1)
i · (a −

b))}i∈Φ̄, {Epk(2∆ · x
(1)
i · (

∑N
i=1 r

(1)
i ) · (a − b))}i∈Φ̄) such

that

| Pr{D(V (viewV̂ , Epk(m1), c
′) = 1} −

Pr{D(V̂ ′(viewV̂ , Epk(m0), ĉ
′)) = 1} | =

1

p(n)
.

Therefore, we concluded that the underlying Paillier
cryptosystem is not a multi-message indistinguishable en-
cryption and obtained the contradiction.

Robustness: We consider active adversaries who want
to disrupt the protocol. In our protocol, each Xi pro-
vides ZKPs to prove that his operations are conforming
to the protocol. Thus, the protocol can distinguish dis-
honest players from honest ones. If V inputs the incorrect
{xi}i∈Φ into the protocol, V cannot provide the correct
ZKPs described in Step 3 of the protocol. Thus, the
protocol can ignore the invalid values and go on with the
valid ones in an honest majority environment.

6 Applications

In this section, we give a comprehensive example to show
the applicability of the proposed plaintext equivalence
test protocol in voting.
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Assume the ciphertext T is the encryption of the tally
of the votes for the candidate Alice and there are k voters
together with a voting center V C. V C and the voters
want to know that whether Alice wins majority supports
but do not want to reveal the tally to anyone in order
to eliminate possible voting strategies. V C can use the
proposed protocol as following:

Step 1: First, V C prepares a (k +1)-by-2 conversion ta-
ble S where the first column is the possible tally enu-
meration from the set the set {0, 1, 2, · · · , k} and the
second column is the unary representation of the first
column. It is shown as Table 1.

Table 1: The conversion table S
tally unary representation

0 (0, 0, · · · , 0)
1 (1, 0, · · · , 0)
2 (1, 1, · · · , 0)
· ·
· ·

k − 1 (1, 1, · · · , 1, 0)
k (1, 1, · · · , 1)

Step 2: V C encrypts all entries in S, uses a verifiable
mix-net [13, 6] to shuffle the conversion table, and
obtains the shuffled conversion table S̃ as shown in
Table 2.

Table 2: The shuffled conversion table S̃
tally ciphertext vector of

ciphertext the unary representation
Epk(3) (Epk(1), Epk(1), · · · , Epk(0))

Epk(k − 1) Epk(1), Epk(1), · · · , Epk(1))
Epk(0) (Epk(0), Epk(0), · · · , Epk(0))

· ·
· ·

Epk(1) (Epk(1), Epk(0), · · · , Epk(0))
Epk(2) (Epk(1), Epk(1), · · · , Epk(0))

Step 3: V C uses the proposed plaintext equivalence test
protocol to find the index i such that the decryption
of T and the decryption of the ciphertext of the i-th
row of the first column of S̃ are equal.

Step 4: V C decrypts the k/2-th element of the i-th row
of the second column of S̃. If it is 1, then V C declares
that Alice wins majority supports. Otherwise, V C
declares that Alice has only minority supports.

Through the use of the proposed plaintext equivalence
test protocol and the verifiable shuffle schemes, we can
keep even tally information secret in an e-voting scheme.

7 Conclusion

We propose an efficient plaintext equivalence test pro-
tocol based on the threshold Paillier cryptosystem. By
using a threshold system and zero-knowledge proofs, the
protocol archives its security goals and resists possible at-
tacks from practical active adversaries. We analyze the
protocol under secure multi-party protocol formulation
and give a formal proof about its privacy. The protocol
communicates through a practical public broadcast chan-
nel without demanding a secure channel as in [11]. It is
suitable for public verifiable secure applications such as
votings or auctions to determine the equality of secrets
without revealing any other information.
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