
International Journal of Network Security, Vol.6, No.2, PP.238–240, Mar. 2008 238

Attacking LCCC Batch Verification of RSA

Signatures

Martin Stanek

Department of Computer Science, Comenius University

Mlynská dolina, 842 48 Bratislava, Slovak Republic (Email: stanek@dcs.fmph.uniba.sk)

(Received Apr. 13, 2006; revised and accepted Aug. 28, 2006)

Abstract

Batch verification of digital signatures is used to improve
the computational complexity when a large number of
digital signatures must be verified. Lee at al. [2] pro-
posed a new method to identify bad signatures in batches
efficiently. We show that the method is flawed.

Keywords: Batch verification, digital signatures, RSA

1 Introduction

A batch verification of digital signatures provides bet-
ter computational complexity when several signatures are
verified together. Several batch verification algorithms
have been proposed for various digital signature schemes,
e.g. DSA or RSA.

Having n message/signature pairs (m1, s1), . . . , (mn,
sn) the batch verification algorithm answers the follow-
ing question: “Are all the signatures correct (valid)?” In
the negative case, further investigation (and computation)
is necessary in order to identify bad signature or signa-
tures. Lee at al. [2] proposed a method to identify bad
RSA-type signatures in batches efficiently (we will refer
their method as LCCC). However, the LCCC method is
flawed. We show an explicit attack on the LCCC method
for identifying a single bad signature. In addition, we
show that using this attack the LCCC method for identi-
fying multiple bad signatures offers none or only marginal
computational savings over straightforward divide-and-
conquer approach. In the following section we describe
the LCCC method, and present our attacks. We also
propose a modification to original scheme that prevents
the attacks. However, the security of such modification
should be investigated closer.

2 LCCC Method and its Security

Problems

Let N be a public RSA modulus, i.e. N = pq for suf-
ficiently large primes p and q. Let e be a public expo-
nent for this RSA instance, i.e. e is relatively prime to

(p−1)(q−1). A signature s of a message m is valid if and
only if se ≡ m (mod N). In order to simplify notation,
we use m instead of H(m), i.e. m denotes a hash of an
actual message.

The LCCC method uses a standard “generic test” to
test the validity of a batch (m1, s1), . . . , (mn, sn). The
generic test (GT) can be instantiated as a Random Sub-
set Test or Small Exponents Test, see [1]. The GT can be
viewed as a probabilistic algorithm with security Param-
eter l:

GT(x)
input: x = ((m1, s1), . . . , (mn, sn))
return “true”

whenever all signatures are valid
return “false”

whenever x contains at least one bad signature
(in this case with probability of mistake 2−l)

Since the choice of GT does not affect our analysis, we
do not describe it in greater detail.

Lee at al. [2] proposed method for identifying single
bad signature, and its generalization to multiple bad sig-
natures.

2.1 Single Bad Signature

The algorithm called DBIbasic is aimed at identifying sin-
gle bad signature in a batch (if such a signature exists),
see Figure 1. The authors claim the following properties
of DBIbasic:

1) If all signatures in the batch x are valid, DBIbasic(x)
returns “true”.

2) If there is exactly one bad signature in the batch
x, DBIbasic(x) returns the index of this bad mes-
sage/signature pair.

3) If there are more then one bad signature in the batch
x, DBIbasic(x) returns “false” (This is the reason for
the test GT(x r (mk, sk))).



International Journal of Network Security, Vol.6, No.2, PP.238–240, Mar. 2008 239

DBIbasic(x)
input: x = ((m1, s1), . . . , (mn, sn))

if GT(x) then return “true”;

M ←
∏n

i=1 mi; M∗ ←
∏n

i=1 mi
i;

S ←
∏n

i=1 si; S∗ ←
∏n

i=1 si
i;

find k ∈ {1, . . . , n} such that
(

Se

M

)k
≡ (S∗)e

M∗
(mod N); (∗)

if k does not exist then return “false”;

if GT(x r (mk, sk)) then return k (index of bad signature);

return “false”;

Figure 1: DBIbasic(x)

The Problem

We show that the Property 2 can be easily attacked
(and thus, Theorem 1 in [2] does not hold). Let x =
((m1, s1), . . . , (mn, sn)) be a batch where all signatures
are valid. Let j be an arbitrary even number from the
set {1, . . . , n}. Let us replace the pair (mj , sj) with pair
(mj ,−sj). We denote this new batch as x′. Since the
public exponent e is odd number, we get

(−sj)
e ≡ −(se

j) ≡ −mj 6≡ mj (mod N).

Hence, batch x′ contains exactly one bad signature.
When evaluating DBIbasic(x

′), the property (∗) is sat-
isfied for every even k from the set {1, . . . , n}:

left side:

(

Se

M

)k

≡

(

(−sj)
e ·
∏

i∈{1,...,n}−{j} se
i

mj ·
∏

i∈{1,...,n}−{j} mi

)k

≡

(

(−sj)
e

mj

)k

≡

(

se
j

mj

)k

≡ 1 (mod N)

right side:
(S∗)e

M∗
≡

((−sj)
j)e ·

∏

i∈{1,...,n}−{j}(s
i
i)

e

m
j
j ·
∏

i∈{1,...,n}−{j} mi
i

((−sj)
j)e

m
j
j

≡
((sj)

j)e

m
j
j

≡ 1 (mod N).

When simplifying left and right sides of (∗) we make use
of the fact that k and j are even numbers, respectively.
Hence, the first tested even k (probably k = 2 when im-
plemented in a standard for-loop) will be determined as
an index of bad signature. If k 6= j, the subsequent test
GT(x r (mk, sk)) returns “false”. Let us summarize: the
batch x′ contains single bad signature, but DBIbasic was
unable to find it.

Remark. The DBIbasic method cannot be easily fixed.
Testing every candidate k satisfying (∗) will destroy
intended efficiency of the method. Moreover, testing
whether bad signature is just −1 multiple of the valid sig-
nature is computationally as demanding as simply check-
ing the signature alone.

Remark. Modifying (∗) in such way that only odd expo-
nents are used, i.e. M∗ ←

∏n

i=1 m2i−1
i , S∗ ←

∏n

i=1 s2i−1
i ,

and (∗) transforms into

(

Se

M

)2k−1

≡
(S∗)e

M∗
(mod N),

would prevent our attack. However, the security of this
modification should be investigated closer.

2.2 Multiple Bad Signatures

Lee at al. extended their DBIbasic method to identify
multiple bad signatures in a batch. The authors used
divide-and-conquer approach and denoted their method
DBIα (see Figure 2). DBIα(x) returns the set of indices
of bad signatures. For this reason, the value “true” can
be viewed as an empty set in Figure 2.

The attack described for DBIbasic is not applicable to
DBIα. The reason is that for the case n = 2 there is
single even number (thus k = j), and the correctness of
the result from the test (∗) is checked again with GT.

However, the reason for DBIα existence is its per-
formance advantage over straightforward divide-and-
conquer approach employing GT, see [3]. Lee at al. an-
alyzed DBIα, and implemented several experiments that
support the claim of its superior performance.

The Problem

The idea of our attack from Section 2.1 can be used to
increase the DBIα complexity. Let us illustrate this in-
crease on case of single bad signature and α = 2. Result
can be easily generalized for multiple bad signatures and
other values of α. Let n = 2m, and let us assume that (∗)
is tested in a standard for-loop.

The adversary modifies signature sn to −sn. Then the
(∗) is satisfied for k = 2, but GT(x r (m2, s2)) returns
“false”, thus forcing division of x, and recursive calls of
DBI2(x1) and DBI2(x2). DBI2(x1) requires one GT. How-
ever, DBI2(x2) requires two GT, since (∗) is satisfied for



International Journal of Network Security, Vol.6, No.2, PP.238–240, Mar. 2008 240

DBIα(x)
input: x = ((m1, s1), . . . , (mn, sn))

if n = 1 then

if GT(x) return “true”;

else return {1} (index of bad signature);

if n = 2 then

if GT(x) return “true”;

else find k ∈ {1, 2} such that
(

(s1s2)e

m1m2

)k

≡
(s1s2

2
)e

m1m2

2

(mod N); (∗∗)

if k = 1 return {1};

if k = 2 return {2};

else return {1, 2};

/* case n > 2 */

if GT(x) then return “true”;

M ←
∏n

i=1 mi; M∗ ←
∏n

i=1 mi
i;

S ←
∏n

i=1 si; S∗ ←
∏n

i=1 si
i;

find k ∈ {1, . . . , n} such that
(

Se

M

)k
≡ (S∗)e

M∗
(mod N); (∗)

if k exists then

if GT(x r (mk, sk)) then return {k};

/* k does not exist or GT(x r (mk, sk) returns “false” */

divide x into α batch instances (x1, . . . , xα) containing approx. n
α

pairs each;

return DBIα(x1) ∪ · · · ∪DBIα(xα);

Figure 2: DBIα(x)

k = 2m−1 +2, and leads to further recursive calls. Count-
ing all GT’s (regardless of their input size) performed dur-
ing DBI2 computation gives 3(m− 1) invocations of GT.
On the other hand, standard divide-and-conquer method
requires only 2m + 1 invocations of GT.

Remark. Using odd exponents, as proposed in Section 2.1,
would prevent this “complexity attack”.

References

[1] M. Bellare, J.A. Garay, and T. Rabin, “Fast Batch
Verification for Modular Exponentiation and Dig-
ital Signatures,”in Advances in Cryptology (Euro-
crypt’98), LNCS 1403, pp. 236-250, Springer-Verlag,
1998

[2] S. Lee, S. Cho, J. Choi, and Y. Cho,“Efficient Identi-
fication of Bad Signatures in RSA-Type Batch Signa-
ture,”IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences,
vol. E89-A, no. 1, pp. 74-80, 2006

[3] J. Pastuszak, D. Michalek, J. Pieprzyk, and
J. Seberry,“Identification of Bad Signatures in
Batches,”in Public Key Cryptography (PKC’00),
LNCS 1751, pp. 28-45, Springer-Verlag, 2000

Martin Stanek received his PhD.
in Computer Science from Comenius
University. He is currently a teach-
ing assistant of Department of Com-
puter Science, Faculty of Mathemat-
ics, Physics and Informatics, Come-
nius University. His current research
interests include cryptography and in-

formation security.


