
International Journal of Network Security, Vol.6, No.2, PP.201–210, Mar. 2008 201

SurePath: An Approach to Resilient Anonymous
Routing

Yingwu Zhu1 and Yiming Hu2

(Corresponding author: Yingwu Zhu)

Department of CSSE, Seattle University1

901 12th Ave., P.O.Box 222000, Seattle, WA 98122-1090 (Email: zhuy@seattleu.edu)

Department of ECECS, University of Cincinnati, Cincinnati, OH 45221-00302

(Received Mar. 21, 2006; revised and accepted May 31, 2006)

Abstract

Current anonymous systems either use a small, fixed core
set of mixes or randomly choose a sequence of peer nodes
to form anonymous paths/tunnels. The resulting paths
are fragile and shortlived — that is, a path fails if one
of the mixes/nodes fails or leaves the system. In this pa-
per, we propose SurePath, a failure-resilient tunnelling
approach for anonymity built on distributed hash ta-
bles (DHTs). SurePath aims to make anonymous tun-
nels fault-tolerant to node failures. The basic idea behind
SurePath is to decouple anonymous tunnels from “fixed”
nodes and form anonymous tunnels from dynamic mix
nodes by relying on DHT routing infrastructure and data
replication mechanism. We have implemented SurePath
in Java on FreePastry 1.3. We also provide analysis of
anonymity and performance evaluation for SurePath.

Keywords: Anonymity, forward tunnel, peer-to-peer, relay
set, reply tunnel

1 Introduction

Many Internet applications such as anonymous web-
browsing, anonymous e-mail services and private P2P file
sharing, need anonymization to provide anonymity for
the participants such that their identities cannot be re-
vealed by third-party observers. There are different types
of anonymity [12]. Initiator anonymity hides the iden-
tity of the initiator from all other nodes including the
responder. Responder anonymity means that the identity
of the responder is hidden to all other nodes including
the initiator. Mutual anonymity provides both initiator
anonymity and responder anonymity. Unlinkability means
that even if the initiator and responder can each be identi-
fied as participating in some communication, they cannot
be identified as communicating with each other.

One example of an anonymous system is
Anonymizer [22] in which all anonymous paths go
through the centralized Anoymizer server. While simple,

Anonymizer suffers from the single point of failure
problem: It fails if the server reveals a user’s identity or
if an adversary can observe the server’s traffic.

To address the problem of single point of failures,
some systems such as Anonymous Remailer [1] and Onion
Routing [21] propose to achieve anonymity by having
anonymous paths route through a small, fixed core set
of mixes [3]. However, such systems have several limita-
tions. First, if a corrupt entry mix receives traffic from
a non-core node, it can identify that node as the origin
of the traffic. Further, colluding entry and exit mixes
can use timing analysis to disclose both source and des-
tination. Second, traffic analysis attacks are difficult to
counter. Cover traffic has been proposed to deal with
such attacks, but it could incur a big bandwidth overhead.
Third, the drastic imbalance between the relatively small
number of mixes and the potential large number of users
might pose a capacity problem. Lastly, legal attacks are
another major threat, i.e., law enforcement could prevent
institutions from operating a mix.

To overcome the aforementioned drawbacks, systems
such as Crowds [12], MorphMix [13] and Tarzan [7] pro-
vide anonymity by having messages route through anony-
mous paths involving a randomly chosen sequence of
nodes. In such systems, each node is a mix and an anony-
mous path can follow any possible path through the sys-
tem. However, the resulting anonymous paths are vulner-
able to node failures: If a node on a tunnel is down, the
request/reply message is not able to route through the
tunnel to the destination. Consequently, node failures
pose a functionality problem for anonymous paths.

In this paper, we propose a novel tunnelling ap-
proach to achieving anonymity in distributed hash tables
(DHTs) [11, 15, 20, 24], called SurePath. The basic idea is
to decouple anonymous tunnels from “fixed” peer nodes.
An anonymous tunnel is composed of a sequence of re-
lay sets, each of which has a unique identifier rsetId and
is dynamically mapped into a peer node called relay set
agent. Leveraging DHT routing infrastructure and data

International Journal of Network Security, Vol.6, No.2, PP.201–210, Mar. 2008 202

replication mechanism, SurePath makes anonymous tun-
nels resilient to node failures.

The main motivation of SurePath is to strike a balance
between functionality and anonymity in DHTs. Current
tunnelling techniques [7, 12, 13] have a problem in main-
taining long-standing remote login sessions if a node on a
tunnel fails. Moreover, when constructing an anonymous
path, they cannot make sure if the anonymous tunnel
contains only nodes that remain active with high proba-
bility. However, SurePath can support long-standing re-
mote login sessions in the face of node failures. Another
application is anonymous email systems. Current tun-
nelling techniques may fail to route the reply email back
to the sender due to node failures along the tunnel, while
SurePath can route the reply back to the sender thanks
to its robustness in the face of node failures (as will be
shown in Section 4.6 by using a reply tunnel). We have
implemented SurePath in Java on FreePastry 1.3 [8]. We
also provide analysis of anonymity and performance eval-
uation for SurePath in this paper.

The rest of the paper is structured as follows. Sec-
tion 2 provides related work and necessary background.
Section 3 describes goals and threat model in SurePath.
We discuss design of SurePath in Section 4. Section 5
gives security analysis. We present experimental results
in Section 6 and conclude the paper in Section 7.

2 Related Work and Background

2.1 Centralized Anonymous Systems

Anonymizer [22] is a centralized anonymous system which
provides fast, anonymous, interactive communication ser-
vices. In this system, all anonymous paths go through a
proxy called Anonymizer Server. Such a system fails if
the proxy reveals a user’s identity or if an adversary can
observe the proxy’s traffic.

2.2 Mixes-based Anonymous Systems

Many Systems such as Anonymous Remailer [1] and
Onion Routing [21] achieve anonymity by having anony-
mous paths route through a small, fixed core set of
mixes [3]. Each mix decrypts messages, delays, and re-
order messages before relaying them to the next mix.

Onion Routing [21] provides anonymous routing using
a dedicated set of “onion routers” that are similar to real-
time Chaum Mixes. To send a message in an Onion Rout-
ing session, the sender chooses a path of onion routers,
then encrypts the message in a layered manner using the
public keys of each onion router from the last member of
the path, creating an onion. As a message routes through
an anonymous path, each onion router removes or adds
a layer of encryption, depending upon the direction of
traversal of the message. Tor [6], the second generation
of Onion Routing, achieves initiator anonymity and re-
sponder anonymity by using rendezvous points.

Ogata et al. [10] proposed two schemes that are based
on the hardness of factorization and the difficulty of the
discrete log problem respectively, to offer robust anony-
mous tunnels when less than a half of mixes are faulty.
SurePath differs from [10] in that it relies on the DHT’s
routing infrastructure and data replication mechanism to
provide resilient anonymous routing.

2.3 P2P-based Anonymous Systems

Many anonymous systems where every node is a mix
have been proposed. Crowds [12] aims at providing web-
browsing anonymity using random forwarding. The ini-
tiator sends the message to a randomly-chosen node called
jondo. Upon the message, each jondo randomly decides
to either send the message to the responder or to forward
it to another jondo. Tarzan [7] provides a P2P anonymiz-
ing network layer by employing cover traffic. It achieves
anonymity with layer encryption and multihop routing
similar to Onion Routing. MorphMix [13] uses a collusion
detection mechanism to detect colluding mixes. Xiao et
al. [23] proposed two protocols for mutual anonymity in
hybrid P2P networks.

P5 [18] uses broadcast channels to achieve mutual
anonymity. Nodes join one or more broadcast groups to
retain anonymity. P5 allows users to trade-off the degree
of anonymity for communication efficiency. Hordes [19]
provides initiator anonymity using multicast. An initia-
tor sends a request to a responder using Crowds or Onion
Routing, while the responder multicasts the response to
the multicast group that is formed by all the initiators.
APFS [17] uses an intermediate proxy and Onion Routing
to provide mutual anonymity. We reported our prelimi-
nary results of resilient anonymous routing in TAP [25].

Freenet [4] uses probabilistic routing to achieve
anonymity. FreeHaven [5] uses both cryptography and
routing to provide anonymity.

2.4 Background: DHT Infrastructure

Without loss of generality, we take Pastry/PAST [15, 16]
as the example. Other DHTs [11, 20, 24] have the similar
characteristics to the ones discussed below.

Pastry is a P2P routing substrate that is efficient, scal-
able, fault-resistant and self-organizing. Each node in the
overlay network has a unique nodeId and a pair of pub-
lic and private keys. Given a file with a fileId, Pastry
maps the file into a destination node whose nodeId is nu-
merically closest to the fileId. Given an overlay network
consisting of N nodes, Pastry can route to the numerically
closest node for a given fileId in O(log N) hops. PAST is
a large scale, P2P persistent storage utility layer on top of
of Pastry. It employs a replication mechanism to store a
file on the k nodes whose nodeIds are numerically closest
to the file’s fileId. The k nodes are called replica set for
the file with fileId, and k is called replication factor. The
k replicas for a file is maintained to increase availability

International Journal of Network Security, Vol.6, No.2, PP.201–210, Mar. 2008 203

under node churn. In other words, a file can be located
unless all k nodes have failed simultaneously.

3 Design Goals and Threat Model

3.1 Goals

SurePath uses an Internet-wide pool of nodes, num-
bered in thousands, to relay each other’s traffic to gain
anonymity. In particular, the goals of SurePath are to
meet the following requirements:

1) Initiator Anonymity: The identity of an initiator
is hidden to all other node including the responder.

2) Unlinkability: Identities of the communicating par-
ties (initiators and responders) are hidden to adver-
saries.

3) Failure-Resilience: Anonymous paths are fault-
tolerant to node failures on the paths.

4) Low Latency: Anonymous communication latency
is low. Anonymity should not severely compromise
performance.

5) Responder Anonymity: SurePath can easily be
extended to support responder anonymity, by using
an additional level of indirection.

3.2 Threat Model

We assume adversaries control a fraction of nodes in the
SurePath network. These compromised nodes collude
and share each other’s information, attempting to break
anonymity of legitimate users by getting control of the
anonymous tunnels. The adversaries can observe some
fraction of network traffic. There is zero latency for mes-
sages sent between colluding nodes.

4 SurePath Design

SurePath uses layered encryption and multi-hop routing:
Each hop of an anonymous path removes or adds a layer of
encryption depending on the traversal direction of mes-
sages. The basic idea behind SurePath is to decouple
anonymous paths from “fixed” nodes. Unlike current tun-
nelling techniques, SurePath defines an anonymous path
by a sequence of relay sets, each of which is specified by a
relay set identifier rsetId instead of an IP address. rsetId

is similar to the file identifier fileId in DHTs such as
Pastry. Given a rsetId, the relay set consists of k nodes
whose nodeIds are numerically closest to the rsetId (k is
the replication factor). The one with nodeId numerically
closest to rsetId is called relay set agent and the other
k − 1 nodes in the relay set are candidates.

An anonymous path consists of a sequence of relay sets.
The relay set agent of a relay set is responsible for de-
crypting the forwarding path information for a message

and forwarding the message to the next relay set. If the
relay set agent has failed, the other nodes in the relay set
will undertake its responsibilities. Unless all the k nodes
in a relay set have failed simultaneously, a relay set is ca-
pable of relaying messages successfully. All members in a
relay set have a replica of relay set anchor (RSA) (Sec-
tion 4.1), by which the candidate nodes in the relay set
can take the place of the relay set agent in case that the
agent has failed. Put another way, the RSA is replicated
on k different nodes covered by the relay set. Leveraging
DHT routing infrastructure and data replication mecha-
nism, SurePath makes anonymous paths resilient to node
failures.

In SurePath, a node seeking initiator anonymity gen-
erates a small number of RSAs (Section 4.2), deploys
the RSAs into the DHT overlay (Section 4.3), forms an
anonymous path using a subset of the deployed RSAs
(Section 4.5), and sends messages through the resulting
anonymous path (Section 4.6).

Figure 1 depicts an anonymous path from the initiator
I via relay sets rs1, rs2 and rs3. We denote by {X}K
encryption of the content X with a key K. When I sends
a message M (which may be encrypted for privacy, e.g.,
by D’s public key) to the destination server D through
the anonymous path, it encrypts the message in a layered
manner from the last hop of the path with the symmet-
ric keys, which results in {rs2, {rs3, {D, M}K3

}K2
}K1

.
Then, I sends the encrypted message to A1, which is the
relay set agent for rs1. Upon the message, A1 removes
one layer of encryption using K1, determines the next re-
lay set according to the identifier in the header, and sends
it to A2, which is relay set agent for rs2. This process re-
peats until the tail relay set agent A3 of rs3 is reached,
which relays the message M to D. As will be discussed
later, the corresponding reply is sent back to I using a
different anonymous tunnel (called reply tunnel which is
included in message M by I).

Consider the case when A1 receives the message from I

and is going to send the message to A2, which has already
failed. Relying on P2P routing infrastructure and data
replication, A1 is able to route the message to A′

2, which
has become the relay set agent for rs2 after A2 fails. A′

2

then removes one layer of encryption using the symmetric
key K2 from its replica of RSA < rs2, K2, h(PW2) > and
sends the message to A3, allowing the message to continue
on the anonymous tunnel.

Having anonymous tunnels consist of an open-ended
set of peer nodes, however, introduces a new challenge.
An adversary can easily operate several malicious nodes
in the system and try to break anonymity of legitimate
users by getting full control of their anonymous tunnels.
With the replication of RSAs, the probability for collud-
ing nodes to compromise other users’ anonymity becomes
higher. The main motivation behind SurePath is to strike
a balance between functionality and anonymity, and our
goal is not to provide perfect anonymity in P2P systems.

SurePath does not employ cover traffic due to several
reasons. First, cover traffic is very expensive in terms of

International Journal of Network Security, Vol.6, No.2, PP.201–210, Mar. 2008 204

< rs2, K2, h(PW2) >

M

< rs2, K2, h(PW2) >

{rs3, {D, M}K3
}K2

< rs3, K3, h(PW3) >

{D, M}K3

< rs1, K1, h(PW1) >

A2 A3A1I

< rs1, K1, h(PW1) >

< rs3, K3, h(PW3) >

{rs2, {rs3, {D, M}K3
}K2

}K1

D

Figure 1: Tunnelling mechanism. rsi represents the rsetId for the ith relay set. Ai represents the corresponding
relay set agent. < rsi, Ki, h(PWi) > is the i-th relay set anchor. Ki is a symmetric key.

bandwidth overhead and it does not protect from internal
attackers (malicious nodes who act as mixes in SurePath).
Second, the number of mixes in SurePath is large (num-
bered in thousands) and they are probably spread across
several countries and ISPs, rendering the global eaves-
dropper very unlikely. Lastly, the dynamism of P2P sys-
tems makes cover traffic hard to maintain.

In what follows, we describe relay set anchors (RSAs),
and discuss how to generate and deploy RSAs. Then, we
use examples to demonstrate uses of SurePath to achieve
initiator anonymity and responder anonymity. We also
present a technique to improve anonymous routing per-
formance. Finally, we give a brief discussion on secure
routing. Without loss of generality, we take Pastry as
the DHT example. However, we believe that our tun-
nelling approach can be easily adapted to other DHT sys-
tems [11, 20, 24]

4.1 Relay Set Anchor

A relay set is “anchored” in the system through a re-
lay set anchor (RSA). A RSA is in the form of <

rsetId, K, h(PW) >, where rsetId uniquely identifies a
relay set and functions as a DHT key for the RSA’s
storage and retrieval, K is a symmetric key for encryp-
tion/decryption, and h(PW) is the hash of a password
PW . It can be envisioned a small file stored on the sys-
tem, where rsetId is the fileId, and {K, h(PW)} is the
file content.

Like a normal file, a RSA is stored on k nodes whose
nodeIds are numerically closest to its associated rsetId.
These k nodes are the replica set for the RSA and k is
the replication factor. One of the nodes in the replica set
is the relay set agent and the other k − 1 nodes are the
relay set agent candidates. Once the agent fails, one of the
candidates will take its place, thus making an anonymous
tunnel fault-tolerant to node failures.

The security of RSAs is critical to anonymous tunnels
in SurePath. The nodes who have a right to access a RSA
must be restricted. Only its owner (the initiator who has
deployed it) and the nodes in its replica set have the right
to access it, while all other nodes cannot be allowed to
access it. Any node who wants to access a RSA must be
verified that it is either the owner or one of the nodes in
the replica set. The identity of an owner can be verified
by presenting the corresponding PW of a RSA as will
be shown later, while the identity of the nodes in the
replica set can be verified due to the verifiable constraint

that these nodes’ nodeIds must be numerically closest to
the rsetId of the RSA. It is worth pointing out that a
malicious node can disclose the RSAs stored in its local
storage to other colluding nodes such that the malicious
nodes can pool their RSAs to break anonymity of other
users. Section 6 will show evaluation results.

4.2 Generating RSAs

Any node seeking anonymity has to generate and deploy
a number of RSAs before using anonymous tunnels. In
order to avoid collision in generating RSAs, we propose a
RSA generating mechanism which allows a node to gener-
ate node-specific RSAs without revealing the node’s iden-
tity. Note that the uniqueness of a RSA is determined
by its rsetId. So the rsetId for a given node can be
computed from a node-specific identifier node ID (which
could be, for example, the node’s IP address, private key
or public key), a secret bit-string hkey, and a time t at
which the rsetId is created. The purpose of the hkey

and t is to prevent other nodes from linking the rsetId

with a particular node by performing recomputation of
the rsetId upon each node in the system, and revealing
that node’s identity. The following equation presents the
generation more formally:

rsetId←h(node ID, hkey, t).

Where h is a uniform collision-resistant hash function,
i.e., SHA-1. After generating the rsetId for a RSA, the
node then generates a random bit-string as the symmetric
key K and another random bit-string as PW .

With the RSA generating approach described above,
we can see that, the RSAs a node generates not only avoid
collision with those of other nodes, but also prevent other
nodes from linking them with the node.

4.3 Deploying RSAs

Before forming a tunnel, a node seeking anonymity must
deploy a number of RSAs into the system as the anchors
of its relay sets. More importantly, the node must de-
ploy them anonymously such that nobody can link a RSA
with itself. So, the node needs a bootstrapping anony-
mous tunnel to deploy the RSAs for its first anonymous
tunnel. Relying on a public key infrastructure (PKI) on
a P2P system by assuming each node has a pair of pri-
vate and public keys, the node can use Onion Routing

International Journal of Network Security, Vol.6, No.2, PP.201–210, Mar. 2008 205

as the bootstrapping tunnel by choosing a set of nodes 1,
to deploy the RSAs for its first anonymous tunnel. It
creates an onion carrying instructions for each node on
the Onion path to store a RSA on the system. For ex-
ample, a node I creates an onion for the path P0, P1,
P2 is {P1, RSA0, {P2, RSA1, {D, RSA2}K2

}K1
}K0

, where
Ki is Pi’s public key. It then sends the onion to P0. Each
node on the path removes one layer of encryption and
stores the corresponding RSA on the system. Or a node
can deploy only one RSA during each Onion Routing ses-
sion.

It is worth pointing out that Onion Routing is only
used to bootstrap a node’s first anonymous tunnel. Once
the node is able to form the first tunnel using the deployed
RSAs, it will use this tunnel to deploy other RSAs if nec-
essary. Without doubt, if a node on the bootstrapping
Onion path fails, the deploying process will be aborted.
We argue that this is not a problem because the deploy-
ing process is not performance critical. A node can always
try to use another Onion path to deploy its initial RSAs
until the first anonymous tunnel is able to be formed. A
node can also rent a trusted node’s anonymous tunnels
to deploy its initial RSAs. We leave this approach to our
future work.

Note that malicious nodes can simply try to flood the
system with random RSAs so that “real” RSAs cannot be
inserted. This sort of data flooding is a form of denial of
service attacks, as it prevents other nodes from deploying
RSAs to form anonymous tunnels and gaining anonymity.
The usual way of counteracting this type of attack is to
charge the node for deploying a RSA. This charge can take
the form of anonymous e-cash or a CPU-based payment
system that forces the node to solve some puzzles before
deploying a RSA.

4.4 Deleting RSAs

Our system provides a mechanism for a node to delete
the RSAs which it previously deployed, but no node can
delete other nodes’ deployed RSAs by using this mech-
anism. Recall that when a node deploys a RSA, a PW

is generated and the h(PW) is included in the RSA. The
reason that this value is stored as opposed to just the PW

is that it prevents a malicious node from learning the pass-
word PW and deleting the RSA. To delete a RSA, a node
has to present the secret PW as a proof of the owner. The
nodes which store the RSA will hash the received PW ,
compare the hash value with the stored H(PW), and if
they match, remove the RSA from their local storage.

4.5 Forming Tunnels

When forming a tunnel, a node selects a set of RSAs it has
already deployed. The chosen RSAs must scatter in the
DHT identifier space as far as possible (i.e., with different
rsetId’s prefixes) to avoid the case that a single node has

1We can employ the peer selection technique proposed in Tarzan

by considering the chosen nodes’ IP address prefixes.

the information of multiple or all relay sets of the tunnel
to be formed.

4.6 Example: Anonymous File Retrieval

In this section we demonstrate how to use SurePath for
an initiator I to anonymously retrieve a file (with fid as
its fileId) in DHTs such as Pastry.

In the forward path, an initiator I creates a forward
tunnel Tf and performs a layered encryption for each relay
set. More precisely, consider a forward tunnel Tf that
consists of a sequence of 3 relay sets (rs1, rs2, rs3), where
rsi’s RSA is < ridi, Ki, h(PWi) >. Then I produces the
message

M = {rid1, {rid2, {rid3, {fid, PI , Tr}K3
}K2
}K1
},

where PI is a temporary public key for I and Tr is a
reply tunnel for the requested file to route back. Tr

is a different tunnel from Tf , consisting of a sequence
of 3 relay sets (rs1

′, rs2
′, rs3

′), where rsi
′’s RSA is <

ridi
′, Ki

′, h(PWi
′) >. So

Tr = {rid1

′

, {rid2

′

, {rid3

′

, {bid, fakeOnion}K3
′}K2

′}K1
′},

where fakeOnion is introduced to confuse the last hop in
Tr. bid is an identifier subject to a condition that I is the
node whose nodeId is numerically closest to it. Therefore,
it guarantees that the reply will be route back to I.

To retrieve the file, the initiator I sends the message M

to the first relay set agent corresponding to rid1. The first
relay agent node retrieves the symmetric key K1 from its
local storage, removes one layer of encryption using K1,
reveals the next relay set, and sends the extracted mes-
sage to the next relay set agent. This process continues
until the message reaches the tail relay set agent of rid3.
The tail relay set agent strips off the innermost layer of
encryption, revealing I’s request for file specified by fid.
Then it sends the request together with the reply tunnel
Tr and PI

′ to the responder node R who stores the file
f corresponding to fid. Note that PI and Tr can be en-
crypted with R’s public key for privacy, i.e., {PI , Tr}PR

.

Upon receiving the message, the responder R retrieves
the file f from its local storage, encrypts f with a sym-
metric key Kf (i.e., {f}Kf

), encrypts Kf with PI (i.e.,
{Kf}PI

), and sends the {f}Kf
, {Kf}PI

and the reply
tunnel Tr to the relay set agent of rid1

′. On the reply
path, each successive relay set agent removes one layer of
encryption from the reply tunnel Tr, revealing the next
relay set, and sends {f}Kf

, {Kf}PI
and the stripped re-

ply tunnel to the next relay set. This process repeats
until the reply message reaches I, which decrypts Kf us-
ing the corresponding temporary private key PI

−, and
then decrypts the file f using Kf . Note that each tunnel
hop performs only a single symmetric key operation per
message.

It is worth pointing out that a request tunnel is differ-
ent from a reply tunnel in SurePath. This makes it harder
for an adversary to correlate a request with a reply.

International Journal of Network Security, Vol.6, No.2, PP.201–210, Mar. 2008 206

4.7 Extending to Support Responder
Anonymity

In this section, we show how the responder R uses a reply
tunnel TR to achieve responder anonymity in the above
example.

In order to serve its file f with identifier fid anony-
mously, R first hooks fid with a reply tunnel TR (which
is constructed in the same way as Tr) and anonymously
stores < fid, TR > into the node D which is responsible
for fid. When the message M from I arrives at the relay
set agent of rid3, it forwards the request together with
the reply tunnel Tr and PI included in M to D. Then, D

consults its locally stored < fid, TR > and routes fid, Tr

and PI through the reply tunnel TR to R. Upon receiving
the message, R sends the file f to I using I’s reply tunnel
Tr as described above.

Recent work [9] introduced a notion of extended desti-
nation routing (EDR) which relies on routing header to
achieve responder anonymity. The reply tunnel used to
gain responder anonymity in SurePath essentially serves
the same purpose of a routing header, but with enhanced
resilience to node failures by decoupling the tunnel from
fixed nodes.

4.8 Tunnel Performance Enhancement

Note that routing through an anonymous tunnel of l re-
lay sets involves l·O(logN) overlay hops, introducing a
big performance overhead. In this section, we propose
a performance enhancement scheme for SurePath’s basic
tunnelling mechanism.

More precisely, consider a tunnel T = (rs1, rs2, rs3),
where rsi’s RSA is < ridi, Ki, h(PWi) >. For each relay
set rsi, the initiator gets the IP address ipi of the corre-
sponding relay set agent 2. Then it creates an encrypted
message in the form of

{rid1, ip1, {rid2, ip2, {rid3, ip3, {D, M}K3
}K2

}K1
}.

by embedding the IP address of each relay set agent.
The initiator first attempts to send the message di-

rectly to the node with the IP address ip1. If this node
does not exist or it is not the relay set agent of rid1 any
more, it falls back to the DHT routing infrastructure and
routes to the relay set agent of rid1. Each successive re-
lay set agent on the tunnel removes a layer of encryption,
revealing the next relay set with a IP address and rsetId.
It first tries the IP address, if it fails, then routes the mes-
sage to the relay set agent corresponding to the rsetId.
This process repeats until the message reaches the tail re-
lay set agent, which in turn routes the message M to the
destination node D. Obviously, the tunnelling approach
with the IP address embedded as a hint at each hop pro-
vides a shortcut to the next relay set agent along the path,
resulting in great performance improvement (see Section
6).

2The initiator can maintain a cache of the mappings between a

tunnel hop ridi and the IP address of its relay set agent, and it can

periodically refresh the cache.

4.9 Discussion: Secure Routing

As discussed earlier, the ability of SurePath in making
anonymous tunnels resilient to node failures relies on the
DHT routing infrastructure and data replication mecha-
nism. A big concern is how a message can be securely
routed to a relay set agent given a rsetId in DHT over-
lays where a fraction of nodes are malicious to pose a
threat. Fortunately, we can address the secure routing
problem by following the techniques used in [2] — that is,
assigning certified nodeIds to nodes, maintaining secure
routing table and routing messages. The certified nodeIds
not only prevent nodes from forging nodeIds, but also are
able to prevent an attacker from easily obtaining a large
number of nodeId certificates by requiring some form of
real-world currency or solving crypto puzzles. Therefore,
the cost of controlling a significant portion of nodes in a
large overlay can be made high enough to deter most at-
tackers. Maintaining secure routing tables and using the
secure routing tables to forward messages are two parts
in routing. To enable secure routing table maintenance,
we could impose strong constraints on the set of nodeIds
that can fill routing table entries. To forward a message,
we could apply routing failure test to detect problems and
then use diverse routes. More detail of secure routing can
refer to [2]. In summary, secure routing takes a message
and a destination key (e.g.,, rsetId) and ensures that with
very high probability the message reaches the destination
(e.g., the relay set agent) for the key in DHT overlays
under the faulty network models.

5 Security Analysis

In this section, we analyze how SurePath can defend
against attacks from the various parties in the net-
work. In particular, we focus the analysis on initiator
anonymity.

A global eavesdropper: As discussed earlier, SurePath
does not employ cover traffic. So if a global eavesdropper
can observe every single node in the system, it should be
able to break the anonymity of all participants by means
of timing attacks at the nodes along anonymous tunnels
or end-to-end timing attacks at the first and tail nodes.
However, we argue that such an attacker is not realistic
in a P2P network with thousands of nodes distributed
in the Internet. First, in SurePath each node is a mix
and therefore the number of mixes is very large and they
are spread across several countries and ISPs. Recent
studies [13, 14] also argue that a global attacker is very
unlikely in such a P2P system. Second, the dynamism
of P2P networks due to node joins and leaves makes it
virtually impossible for anyone to get knowledge of the
whole network at any time.

A local eavesdropper: An adversary can monitor all
local traffic to and from an initiator. Although the eaves-
dropper will reveal the initiator’s traffic patterns (both

International Journal of Network Security, Vol.6, No.2, PP.201–210, Mar. 2008 207

sent and received), it cannot figure out the initiator’s
destination or message content without the cooperation
from other nodes.

The responder: The probability that the responder
correctly guesses the initiator’s identity is 1

N−1
(N is the

number of nodes in system), since all other nodes have
the same likelihood of being the initiator.

A malicious node: The mix homogeneity (each node is
a potential mix) of our design prevents an adversary from
deterministically concluding the identity of an initiator:
All nodes both originate and forward traffic. Thus, a
malicious node along the tunnel cannot know for sure
whether it is the first hop in the tunnel. It can only guess
that its immediate predecessor is the initiator with some
confidence.

Colluding malicious nodes: We consider the case that
an adversary operates a portion of nodes which collude
with each other to compromise the anonymity of legit-
imate users. It can read messages addressed to nodes
under its control; it can analyze the contents of these
messages. The adversary can use timing analysis to de-
termine whether messages seen at different hops belong to
the same tunnel. In SurePath, each relay set anchor RSA
is replicated on a replica set of k nodes. If one of these k

nodes is malicious, it can disclose the RSA to other col-
luding nodes. Therefore, malicious nodes can pool their
RSAs to break the anonymity of other users. With some
probability, the adversary can (1) have the RSAs for all
the hops following the initiator along a tunnel (where the
first tunnel hop node is under the adversary’s control) or
(2) control at least the first tunnel hop node and the tail
tunnel hop node of a tunnel (in this case, the adversary
can use timing analysis attack to compromise the tun-
nel). Thus, if a message is routed through such corrupt
tunnels, the adversary can have a chance to compromise
the anonymity. But, it is worth pointing out that the ad-
versary attack on the second case is very limited. This is
because, first and most importantly, the adversary does
not know if the first hop is really the first hop, which im-
plies he cannot determine who the initiator is. Secondly,
the network connection heterogeneity of P2P networks
complicates the task of timing analysis attacks. As a re-
sult, in Section 6 we mainly focus on the first case.

Note that the primary motivation of SurePath is to
strike a balance between functionality and anonymity in
very dynamic P2P networks. The adversary may occa-
sionally break the anonymity of a user by using the RSAs
he has accumulated, but a user can form another tunnel
anyway to protect its future anonymity once its current
tunnel is found to be compromised.

6 Experimental Results

We have implemented SurePath in Java on FreePas-
try 1.3 [8]. FreePastry 1.3 is a modular, open source im-
plementation of the Pastry P2P routing and location sub-
strate. It also includes an implementation of the PAST
storage system and the replication manager, which pro-
vides application-independent management of replicas by
replicating data on the set of k nodes closest to a given
key. To be able to perform experiments with large net-
works of nodes, we implemented SurePath on a network
emulation environment, through which the instances of
the node software communicate. In all experiments re-
ported in this paper, the peer nodes were configured to
run in a single Java VM.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

Fa
ile

d
tu

nn
el

s
(fr

ac
tio

n
of

 to
ta

l)

Failed nodes (fraction of total)

current
SurePath(k=3)
SurePath(k=5)

Figure 2: Fraction of tunnels that fail as a function of the
fraction of nodes that fail.

6.1 Resilience to Simultaneous Node
Failures/Leaves

In the set of experiments, we evaluated the ability of
SurePath to function after a fraction of nodes fail/leave
simultaneously. We considered a 104 node network that
forms 5, 000 tunnels, and randomly choose a fraction p of
nodes that fail/leave simultaneously. After node failures,
we measure the fraction of tunnels that could not func-
tion. We define the number of relay sets per tunnel as the
tunnel length. In this experiment, the tunnel length is 5.

Figure 2 plots the mean tunnel failure rate as a function
of p for the current tunnelling techniques, SurePath with
the replicator factor k = 3, and SurePath with k = 5,
respectively. Note that in SurePath, there is no signifi-
cant tunnel failures. A higher replication factor k makes
tunnels more robust against node failures. However, in
current tunnelling techniques, the tunnel failure rate in-
creases dramatically as the node failure fraction increases.

6.2 Anonymity upon Colluding Malicious
Nodes

This set of experiments measured anonymity of SurePath
against colluding malicious nodes. The main metric used
to evaluate anonymity is the compromised tunnel rate as

International Journal of Network Security, Vol.6, No.2, PP.201–210, Mar. 2008 208

a fraction of total tunnels in the system. We considered a
104 node network where some of them are malicious and
in the same colluding set. We assumed the system with
5, 000 tunnels and randomly chose a fraction p of nodes
that are malicious. The tunnel length is 5 by default,
unless otherwise specified.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
om

pr
om

is
ed

 tu
nn

el
s

(fr
ac

tio
n

of
 to

ta
l)

Malicious nodes (fraction of total)

Figure 3: The fraction of tunnels that are compromised
as a function of the fraction of nodes that are malicious.
The replication factor k is 3.

We first measured the fraction of tunnels that were
compromised by malicious nodes. Figure 3 plots the mean
compromised tunnel rate as a function of p. As p in-
creases, the corrupt tunnel rate increases. However, there
is no significant tunnels compromised even if p is large
enough (e.g., 0.3).

In the following experiments, the value of p was fixed
to be 0.1. We then evaluated the impact of the replica-
tion factor and the tunnel length on anonymity. Figure 4
shows the fraction of tunnels that are compromised as a
function of the replication factor. As the replication factor
increases, the fraction of tunnels that are compromised in-
creases. This is because a higher replication factor allows
malicious nodes to be able to learn more RSAs, increasing
the probability of compromising other users’ anonymity.
Figure 5 shows the fraction of tunnels that are compro-
mised as a function of the tunnel length. Note that the
fraction decreases with the increasing tunnel length, and
the tunnel length of 5 catches the knee of the curve.

So far our experiments have not considered the dy-
namism of P2P systems that nodes enter and leave the
system at will. Instead of leaving the system, malicious
nodes are trying to stay in system as long as possible so
that they can accumulate more RSAs to break others’
anonymity. For example, if a benign node leaves, its re-
sponsible RSAs are taken by another node, which might
happen to be a malicious node. Moreover, the DHT’s data
replication mechanism might happen to make malicious
nodes to become the members of some RSAs’ replica sets
as nodes leave. Therefore, malicious nodes can take ad-
vantage of the leaves of other nodes to learn more RSAs.
We started a system initially with 5, 000 tunnels. During
each time unit, we simulated that a number of 100 benign
nodes leaves and then another set of 100 benign nodes

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 1 2 3 4 5 6 7 8 9 10 11

C
om

pr
om

is
ed

 tu
nn

el
s

(fr
ac

tio
n

of
 to

ta
l)

Replication factor k

Figure 4: The fraction of tunnels that are compromised
as a function of the replication factor.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 1 2 3 4 5 6 7 8 9 10 11

C
om

pr
om

is
ed

 tu
nn

el
s

(fr
ac

tio
n

of
 to

ta
l)

Tunnel length

Figure 5: The fraction of tunnels that are compromised
as a function of the tunnel length.

join the system, keeping the fraction of malicious nodes
p on 0.1 after each time unit. Then, we measured the
fraction of tunnels that are compromised after each time
unit. Figure 6 plots the mean compromised tunnel rate.
“un-refreshed” means that the original 5, 000 tunnels were
used throughout the experiment, while “refreshed” means
that a new set of 5, 000 tunnels were created to replace
the old tunnels after each time unit. Note that the com-
promised rate of “un-refreshed” increases steadily as time
goes, while that of “refreshed” keeps almost constant. We
conclude that in such dynamic P2P systems, users must
refresh their tunnels periodically to reduce the risk of hav-
ing their anonymity compromised.

6.3 Performance

In this set of experiments, we evaluated the performance
of SurePath in terms of transfer latency between peer
nodes. Our performance analysis focused on the over-
head introduced by SurePath. We simulated the size of a
P2P network from 100 to 10, 000 nodes. Each link in the
network had a random latency from 10 ms to 2300 ms,
randomly selected in a fashion that approximates an In-
ternet network [17]. All links had a simulated bandwidth
of 1.5 Mb/s. A randomly chosen initiator transferred a
2Mb file with a random fileId to a node whose nodeId

International Journal of Network Security, Vol.6, No.2, PP.201–210, Mar. 2008 209

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0 2 4 6 8 10 12 14 16 18 20

C
om

pr
om

is
ed

 tu
nn

el
s

(fr
ac

tio
n

of
 to

ta
l)

Time units

un-refreshed
refreshed

Figure 6: The fraction of tunnels that are compromised.
The replication factor k is 5.

is numerically closest to the fileId in the following three
ways: (1) overt transfer relying on DHT routing infras-
tructure that does not provide anonymity; (2) anonymous
transfer using SurePath; (3) anonymous transfer using
performance optimized SurePath, denoted by SurePath+
(as discussed in Section 4.8). We ran 30 simulations for
each network size, and each of the simulations involved
100, 000 file transfers.

 0

 10

 20

 30

 40

 50

102 103 104

Tr
an

sf
er

 la
te

nc
y

(s
)

Network size

overt
SurePath(l=5)

SurePath+(l=5)
SurePath(l=3)

SurePath+(l=3)

Figure 7: Transfer latencies. l is the tunnel length.

Figure 7 shows transfer latencies as a function of net-
work sizes. Note that SurePath’s basic tunnelling mecha-
nism introduces a significant latency penalty in file trans-
fer. A longer tunnel incurs bigger performance over-
head, though it provides better anonymity. However,
SurePath+ can dramatically reduce the latency penalty,
improving tunnelling performance. It is worth pointing
out that the overhead introduced by symmetric encryp-
tion/decryption in tunnelling is negligible in the experi-
ments.

7 Conclusions and Future Work

In this paper, we present SurePath to improve resilience of
anonymous routing in dynamic P2P systems. Via detailed
simulations, we have arrived at the following conclusions:
(1) Leveraging the DHT routing infrastructure and data

replication mechanism, SurePath is fault-tolerant to node
failures. (2) By carefully choosing the replication fac-
tor and tunnel length, SurePath can strike a balance be-
tween functionality and anonymity. (3) SurePath’s per-
formance optimized tunnelling mechanism can greatly im-
prove routing performance. (4) Users seeking anonymity
must reform their tunnels periodically against colluding
malicious nodes in dynamic P2P networks to reduce the
risk of having their anonymity compromised.

SurePath currently has some limitations. First, unlike
MorphMix [13] and Tarzan [7], SurePath lacks the abil-
ity to control future hops along a tunnel. It trades this
ability for functionality. Second, we have not addressed
the admission control problem in SurePath. In securing
routing, the certified nodeIds could control the admis-
sion of peers, and we believe trust management could be
used to control the admission and exclude malicious peers
from the system. In addition, other incentive mechanisms
could possibly be introduced to encourage nodes to pro-
tect others’ anonymity. Third, SurePath does not have
a mechanism to detect compromised tunnels. It requires
users to reform their tunnels periodically against colluding
malicious nodes. Nevertheless, we believe that SurePath
is a first step towards understanding the construction of
anonymous tunnels from peers in dynamic P2P systems,
and it provides a balance point between functionality and
anonymity.

References

[1] Anonymous remailer, http://www.lcs.mit.
edu/research/.

[2] M. Castro, A. Ganesh, A. Rowstron, and D. S.
Wallach, “Security for structured peer-to-peer over-
lay networks,” in Proceedings of the 5th Symposium
on Operating Systems Design and Implementation
(OSDI’02), pp. 299-314, Dec. 2002.

[3] D. L. Chaum, “Untraceable electronic mail, return
addresses, and digital pseudonyms,” Communica-
tions of the ACM, vol. 24, pp. 422-426, Feb. 1981.

[4] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong,
“Freenet: A distributed anonymous information
storage and retrieval system,” in Workshop on De-
sign Issues in Anonymity and Unobservability, pp.
331-320, July 2000.

[5] R. Dingledine, M. J. Freedman, and D. Molnar,
“The free haven project: Distributed anonymous
storage service,” in Workshop on Design Issues
in Anonymity and Unobservability, pp. 67-95, July
2000.

[6] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:
The second-generation onion router,” in Proceedings
of the 13th USENIX Security Symposium, pp. 303-
320, Aug. 2004.

[7] M. J. Freedman and R. Morris, “Tarzan: A peer-to-
peer anonymizing network layer,” in Proceedings of
the 9th ACM Conference on Computer and Commu-
nications Security (CCS’02), pp. 121-129, Nov. 2002.

International Journal of Network Security, Vol.6, No.2, PP.201–210, Mar. 2008 210

[8] Freepastry, http://www.cs.rice.edu/CS/Systems/
Pastry/FreePastry/.

[9] M. Kinateder, R. Terdic, and K. Rothermel, “Strong
pseudonymous communication for peer-to-peer rep-
utation systems,” in Proceedings of the 2005 ACM
symposium on Applied computing, pp. 1570-1576,
2005.

[10] W. Ogata, K. Kurosawa, K. Sako, and K. Takatani,
“Fault tolerant anonymous channel,” in First Inter-
national Conference on Information and Communi-
cations Security, vol. 1334, pp. 440-444, Springer-
Verlag, 1997.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker, “A scalable content-addressable net-
work,” in Proceedings of ACM SIGCOMM, pp. 161-
172, Aug. 2001.

[12] M. K. Reiter and A. D. Rubin, “Crowds: anonymity
for Web transactions,” ACM Transactions on Infor-
mation and System Security, vol. 1, pp. 66-92, Nov.
1998.

[13] M. Rennhard and B. Plattner, “Introducing mor-
phmix: Peer-to-peer based anonymous internet us-
age with collusion detection,” in Proceedings of the
Workshop on Privacy in the Electronic Society, pp.
91-102, Nov. 2002.

[14] M. Rennhard and B. Plattner, “Practical anonymity
for the masses with mix-networks,” in Proceedings
of the twelfth International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enter-
prises, pp. 255-260, June 2003.

[15] A. Rowstron, and P. Druschel, “Pastry: Scalable,
decentralized object location, and routing for large-
scale peer-to-peer systems,” in Proceedings of the
18th IFIP/ACM International Conference on Dis-
tributed System Platforms (Middleware), pp. 329-
350, Nov. 2001.

[16] A. Rowstron and P. Druschel, “Storage management
and caching in PAST, a large-scale, persistent peer-
to-peer storage utility,” in Proceedings of the 18th
ACM Symposium on Operating Systems Principles
(SOSP’01), pp. 188-201, Oct. 2001.

[17] V. Scarlata, B. N. Levine, and C. Shields, “Respon-
der anonymity and anonymous peer-to-peer file shar-
ing,” in Proceedings of IEEE International Confer-
ence on Network Protocols (ICNP’01), pp. 272-281,
Nov. 2001.

[18] R. Sherwood, B. Bhattacharjee, and A. Srinivasan,
“P5: A protocol for scalable anonymous communi-
cation,” in Proceedings of 2002 IEEE Symposium on
Security and Privacy, pp. 58-70, May 2002.

[19] C. Shields, and B. N. Levine, “A protocol for anony-
mous communication over the internet,” in ACM
Conference on Computer and Communications Se-
curity, pp. 33-42, Nov. 2000.

[20] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup service for internet applications,” Proceedings
of ACM SIGCOMM, pp. 149-160, Aug. 2001.

[21] P. F. Syverson, D. M. Goldschlag, and M. G. Reed,
“Anonymous connections and onion routing,” in
IEEE Symposium on Security and Privacy, pp. 44-
54, May 1997.

[22] The anonymizer, http://www.anonymizer.com/.
[23] L. Xiao, Z. Xu, and X. Zhang, “Mutual anonymity

protocols for hybrid peer-to-peer systems,” in Pro-
ceedings of the 23rd International Conference on Dis-
tributed Computing Systems, pp. 68-75, May 2003.

[24] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph,
Tapestry: An Infrastructure for Fault-Tolerance
Wide-area Location and Routing, Technical Re-
port UCB/CSD-01-1141, Computer Science Divi-
sion, University of California, Berkeley, Apr. 2001.

[25] Y. Zhu and Y. Hu, “Tap: A novel tunnelling ap-
proach for anonymity in structured P2P systems,”
in Proceedings of the 2004 International Conference
on Parallel Processing (ICPP’04), pp. 21-28, Aug.
2004.

Yingwu Zhu received his PhD de-
gree in Computer Science & Engineer-
ing from the University of Cincinnati
in 2005. He obtained his BS and MS
degrees in Computer Science from the
Huazhong University of Science and
Technology, China, in 1994 and 1997,
respectively. He is an assistant profes-

sor of Computer Science and Software Engineering at the
Seattle University. His research interests include operat-
ing systems, file and storage systems, peer-to-peer sys-
tems, distributed systems, and sensor networks.

Yiming Hu received his PhD degree
in Electrical Engineering from the Uni-
versity of Rhode Island in 1998. He
obtained a BE degree in Computer En-
gineering from the Huazhong Univer-
sity of Science and Technology, China.
He is an associate professor of com-
puter science and engineering at the

University of Cincinnati. His research interests include
computer architecture, storage systems, peer-to-peer sys-
tems, operating systems and performance evaluation. He
is a recipient of a US National Science Foundation CA-
REER Award. He is a senior member of IEEE.

