
International Journal of Network Security, Vol.6, No.2, PP.190–200, Mar. 2008 190

Countermeasures for Hardware Fault Attack in

Multi-Prime RSA Cryptosystems

Zine-Eddine Abid1 and Wei Wang2

(Corresponding author: Z. Abid)

Department of Electrical and Computer Engineering, The University of Western Ontario1

1151 Richmond St, London, Ontario, Canada, N6A 5B9 (Email: zeabid@eng.uwo.ca)

Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, USA2

(Received Apr. 4, 2006; revised and accepted July 31, 2006)

Abstract

The study of countermeasures for hardware fault attack
in multi-prime RSA cryptosystems is very important for
applications such as computer network and smart cards.
In this paper, an efficient countermeasure method is pro-
posed for the FPGA-based multi-prime RSA systems.
The proposed method can survive the attacks [27, 30] that
broke the previous methods [5, 33]. Furthermore, by us-
ing a simple operation and small wordlength parameters,
the proposed method is very efficient in terms of hardware
resources and speed. In order to verify the effectiveness
of the proposed method, the FPGA implementation and
testing in attacking environment are carried out for sev-
eral two-prime and three-prime design examples.

Keywords: Chinese remainder theorem, countermeasure,
FPGA, hardware fault attack, immunity, RSA cryptosys-
tem

1 Introduction

With the rapid growth of the Internet and telecommuni-
cation systems, the security of cryptosystems is becoming
more and more important [9, 22]. The study of various
attacks and their corresponding countermeasures for the
cryptosystems has drawn a lot of attentions. The most
popular ones are power, timing and fault attacks, which
can be classified into side channel attacks [1, 2, 3, 5, 6, 8, 9,
12, 13, 14, 19, 20, 22, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35].
Amongst different side channel attacks, hardware fault
attack [2, 6, 8, 19] seems to be the easiest to realize
and is proved to be effective in breaking the implemen-
tation of Chinese Remainder Theorem (CRT)-based RSA
systems, namely, multi-prime RSA or CRT-RSA. Since
a multi-prime RSA can speed up large modular opera-
tions of RSA and is very useful for applications such as
smart cards, the cryptanalysis and countermeasure study
on hardware fault attack for a multi-prime RSA is of high
importance. When a fault attack occurs, the public mod-

ulus of the cryptosystem may be factored due to some
faulty computation values purposely induced by the at-
tacker. There has been extensive study in the literature
[2, 3, 5, 6, 8, 12, 19, 25, 27, 29, 30, 31, 32, 33, 34, 35]
to explore securing multi-prime RSA against hardware
fault attacks, so that the CRT’s speed advantage is re-
tained without its susceptibility to fault attacks. One
countermeasure prevents the attacker from accessing the
message by using hash function [12]. Another one is
Shamir’s checking method, which contains checking the
interim calculation results to guarantee the correctness of
the signature [25]. To counteract hardware fault attack,
Shamir’s checking method is sometimes not very effec-
tive, since countermeasures without checking procedure
are desirable for RSA cryptosystems [32, 34, 35]. Yen
et. al. [33] proposed non-checking protocols (CRT-1 and
CRT-2) based on an appealing notion of infective compu-
tation. This is a method where any error introduced by a
fault propagates throughout the computation, ultimately
ensuring the final result to be randomized and not to be
used to break the system. Consequently, with an infective
algorithm, there is no need to check the output for errors.
However, these protocols proposed by Yen, et. al. were
later shown to be insecure in a new fault attack [30]. At
ACM CCS 2003, Blomer et. al, proposed another scheme,
namely, BOS algorithm, also based on the ideas of infec-
tive computation [5]. However, it was demonstrated in
[27] that the BOS algorithm can also be broken. There-
fore, it remains a challenging open problem to find an
infective implementation of multi-prime RSA. To ensure
security in practice, one must consider the properties of
different implementations of cryptosystems. In this work,
we focus the countermeasure study against hardware fault
attack for the FPGA implementation of the multi-prime
RSA. One advantage of the FPGA implementation of such
a system is that logic cells and interconnects can be eas-
ily scattered, which limits the ability of the attacker to
control the timing and location of the computation [8].
Therefore, an infective multi-prime RSA can be achieved

International Journal of Network Security, Vol.6, No.2, PP.190–200, Mar. 2008 191

for FPGA implementation. In this paper, a new counter-
measure method is proposed for FPGA-based multi-prime
RSA cryptosystems, which can resist hardware fault at-
tack. The calculation expression of the standard RSA
signature is revised by including an additive term to en-
sure that no useful information can be obtained from the
faulty output signature. The proposed method can sur-
vive the attacks [27, 30] that broke the previous methods
[5, 33]. By using a simpler operation and smaller size
parameters, the proposed method is also very efficient
in terms of hardware resources and speed. In order to
prove the functions of the proposed method, the FPGA
implementation and testing in attacking environment are
carried out for several two-prime and three-prime design
examples.

2 Multi-prime RSA and Hard-

ware Fault Attack

RSA [22], as a popular public key cryptography, is widely
used to provide the essential security over the network
[9]. RSA can be used for both encryption/decryption and
signing process. In this paper, our study concentrates
on the signing process of RSA systems, which computes
digital signatures.

2.1 Basics of Multi-prime RSA

The basic RSA cryptosystem has two public quantities
referred to as n (modulus) and e, and two private quan-
tities d and λ(n). λ(n) is defined as the Least Common
Multiple (LCM) of the factors of n. The public expo-
nent e is an integer smaller than λ(n), which satisfies
gcd (e, λ(n)) = 1. The private key d is calculated as
d = e−1 mod λ(n). During the signing and signature-
verification process, the secret key d is used to obtain the
signature of message m as s = md mod n and the public
key is to verify the signature by checking whether se mod
n equals to the message m.

The main computation of RSA is based on a modular
exponentiation of large integers, which involves long de-
lay and many hardware resources. In order to speed up
RSA cryptosystem, a multi-prime RSA is generally used
based on Chinese Remainder Theorem, in which an RSA
operation is replaced by several parallel operations with
smaller bases and exponents [7, 4, 10, 23, 28]. This speed
gain is very useful for applications such as smart cards.

A multi-prime RSA cryptosystem is shown in Figure
1. The modulus n has multiple prime factors i1, · · · , ij,

such that n =
∏j

k−1 ik. The quantities {n, e} are made
public while {i1, · · · , ij , λ(n), d} are kept private. Then,
the signing process can be accelerated by using a general
j-prime RSA as follows. For k = 1, · · · , j, we have

mi = m mod ik

sik
= mdik

ik
mod ik where dik

= d mod (ik − 1)

s = CRT (si1 , · · · , sij
), (1)

modm p modm q mod jm i

d

p

p

p
m

(, , ,)
jrp q iCRT s s s s

s

.

.

.

m

d

q

q

q
m j

j
j

d

i
i

i
m

p
m

qm
jimpd qd

jid

ps qs
ji

s

q i
j

p

modm r

d

r
r

r
m

rm

rs

r

rd

Figure 1: The block diagram of the signing process for a
multi-prime RSA

where j is the number of prime factors in the RSA system.
The CRT equation is denoted as follows [6]. An in-

teger p is defined as p =
∏j

k=1 pk, where pk’s are posi-
tive integers and relatively prime in pairs (here, pi 6= pj ,
and if i 6= j, all p1, p2, · · · , pj are primes). Also,
we have xk = x mod pk. Then, x can be calculated
by x = (

∑j

k=1 xkrksk) mod p = CRT (s1, · · · , sj) where
k = 1, · · · , j, rk = p

pk
and sk = r−1

k mod pk.
It is clear that a large public modulus n is split into j

small wordlength prime numbers in the CRT algorithm.
Thus, the modular exponentiation operation of the basic
RSA is calculated in parallel using smaller numbers, thus
achieving high speed. If the modulus is a product of j
primes of equal length, the multi-prime RSA has a speed
up of j2.

It is also noted that the multi-prime RSA with more
channels or a large value of j provides higher operating
speed than the one with less channels or a small j. For ex-
ample, a three-prime RSA gives a theoretical speedup by
a factor of 9/4 compared to the corresponding two-prime
case [6]. However, due to the implementation efficiency,
the most popular used ones are generally two-prime or
three-prime RSAs.

2.2 Hardware Fault Attack

For a multi-prime RSA cryptosystem, the attacker is able
to purposely introduce some types of hardware fault into
the system. Then, the affected computation values may
be used to factor the public modulus of the system [1,
20]. This is called hardware fault attack. A hardware
fault attack example is given here for a two-prime RSA.
s′p is denoted as the faulty value of sp, induced by some
errors due to the interference of the attacker. Then, a
faulty signature s′ will be computed based on the fault-
free values of sq and s′p. After the attacker intercepts the
faulty signature s′, he will be able to factor the modulus of
the two-prime RSA system by computing q = gcd((s′e −

International Journal of Network Security, Vol.6, No.2, PP.190–200, Mar. 2008 192

m) mod n, n) and p = n/q [1].

Various methods of fault injections and their effects
are reviewed in [8]. These techniques include: variations
in supply voltage and external clocks, temperature, white
light, laser, X-ray and ion beam, which can be categorized
into four models of attacks [5]. We list the summary of
these four models from [27].

• Fault Model #1: The attacker can cause a fault in
a single bit. The attacker has full control over the
timing and location of the fault.

• Fault Model #2: The attacker can cause a fault in
a single byte. The attacker has full control over the
timing, but may have only partial control over the
location of the fault (e.g., which byte or bit is af-
fected), and cannot predict the new faulty value that
is introduced.

• Fault Model #3: The attacker can cause a fault in
a single byte of a variable. The attacker has only
partial control over the timing and location of the
fault, and cannot predict the new faulty value.

• Fault Model #4: The attacker can cause a fault in a
single variable. The attacker has only partial control
over the timing and no control over the location; the
targeted variable will be replaced by an entirely new
random value not known to the attacker.

Note that these models are listed in order of decreasing
attacker power, so a scheme that is secure against one
fault model will be secure against all higher-numbered
models as well. Also, the models 3 and 4 are the most
common practical attacks.

2.3 Countermeasure Study

There has been extensive study in the literature to search
for some way to secure multi-prime RSA against hard-
ware fault attacks [2, 3, 5, 6, 8, 12, 19, 25, 27, 29, 30, 31,
32, 33, 34, 35]. Countermeasures without checking pro-
cedure are desirable for RSA cryptosystems [33]. Typical
non-checking methods are the CRT-1 and CRT-2 proto-
cols proposed by Yen et. al. [33] and the BOS algorithm
[5] based on a notion of infective computation. These
techniques revise the calculation expression of the signa-
ture so that the public modulus will not be factored even
if faulty signatures are sent out of the system. It has
been proven that the complexity to factor the modulus
is O(n) for both CRT-1 and CRT-2 protocols when the
attacker intercepts a faulty signature. CRT-1 requires a
serial operation, which operates in a low computational
speed. In CRT-2, the calculations can be performed in
parallel. Therefore, CRT-2 provides higher speed than
CRT-1. The computation steps in CRT-2 for a two-prime
RSA are as follows.

In a two-prime RSA, j = 2 and the modulus n is a
large number with two prime factors i1 and i2. These two

prime numbers are often denoted as i1 = p and i2 = q
such that n = p · q. Also, we have

kp = bm/pc

kq = bm/qc.

Definition 1. t is chosen to be a small integer and a key
pair (et, dt) is selected, where

dt = d − t

et ≡ d−1
t (modλ(n)).

The CRT-2 protocol calculates the signature s as fol-
lows:

Step 1. Compute Spt and Sqt as follows:

Spt = (m mod p)dtmod(p−1) mod p

Sqt = (m mod q)dtmod(q−1) mod q.

Step 2. The signature s is calculated by including a
product term to the CRT expression as

s = (CRT (spt, sqt) · m̃
t) mod n where (2)

m̃ = b
(set

pt mod p + kp · p + set

qt mod q + kq · q)

2
c.

The Equation (2) will provide the correct result when
there is no hardware fault attack. When there is an at-
tack, the result will be randomized to prevent the attacker
from doing the factorization. The CRT-2 algorithm given
above is for a two-prime case and can be easily extended
to the general multi-prime case. However, it is discovered
in [30] that if the attacker will inject an error in kp or kq,
the system will be broken. The attack is as follows.

Provided that kp, sp and sq are correct and kq becomes
incorrect, we get s′ = (md + R × q) mod n, where R is a
random number due to the incorrect kq. This will lead to

q = gcd((s′e − m), n). (3)

Similarly,a fault on kp leads to

p = gcd((s′e − m), n). (4)

In order to improve the CRT-2 in view of the attack
of [30], the BOS algorithm [5] was proposed by using two
parallel structures and a more involved algorithm. How-
ever, it is then later discovered that another attack in [27]
can break the BOS algorithm.

3 Proposed Countermeasure

Method

In this section, we propose a new countermeasure method
without using kp and kq variables. Then, based on the
properties of the FPGA implementation, we carry out a
cryptanalysis and comparison study.

International Journal of Network Security, Vol.6, No.2, PP.190–200, Mar. 2008 193

1
modm i mod

k
m i

sd

1i ts
ki ts

1

1
1

1d

i
i

s im 1k

k
k

d

i
i

s im

1
(, , , ,)

jki i iCRT s s s

1
m

km

1

1

(/ min() 1), , , ,
j

k k j

k

m n i i i

CRT m

() modCRT m n

s

1i
s

ki
s

1,i m

1i
m ki

m

1 1 1

()
i i i

te
s X m

1i
X

ki
X

1 1mod
t

im i mod
k

t

i km i

1i
m

ki
m

()
k k k

i i i

te
s X m

1 1 1
| |

i t i i
s X | |

k k ki t i is X

1i
s

ki
s

sd

1i
X

ki
X

mod jm i

ji ts

1j

j
j

d

i
i

s im

jim

| |
j j ji t i i

s X

ji
s

sd

ji
X

,ki m ,
j

i m

j
m

jis
jiX

mod
j

t

i jm i

ji
m

()
j j j

i i i

te
s X m

1i ki ki

Figure 2: The block diagram of the proposed multi-prime
RSA

3.1 Proposed Countermeasure Method

Definition 2. We use a new key pair of (et, dt), where t
is an integer smaller than d, and

dt = d + t

et ≡ d−1
t (modλ(n))

ds = d − t.

Proposed countermeasure: Based on Definition 2, the
signature of the proposed j-prime RSA is calculated by the
following steps. Let k = 1, · · · , j, we have

• Step 1: Compute mik
= m mod ik.

• Step 2: Compute Xik
= mt

ik
mod ik and sikt =

m
ds mod (ik−1)
ik

mod ik.

• Step 3: Compute sik
= (sikt · Xik

) mod ik, then
the signature s is computed by adding a perturb-
ing summing term to the standard CRT operation
as s = (CRT (si1 , · · · , sij

) + m̃) mod n, where m̃ =

(
∑j

k=1((sik
·Xik

)et mod ik−mik
)) ·(n

min(i1,··· ,ij)
+1).

Based on the above algorithm, the block diagram of the
proposed multi-prime RSA is shown in Figure 2. This
system will give the correct signature when there is no
hardware fault attack as explained next.

Proposition 1. When there is no hardware fault attack,
s = (CRT (si1 , · · · , sij

) + m̃) mod n = CRT (si1 , ..., sij
).

Proof. If there is no hardware fault attack and let k =
1, · · · , j:

sikt = m
ds mod (ik−1)
ik

mod ik

= (m mod ik)ds mod (ik−1)modik = mds mod ik.

sik
= sikt · Xik

= mds mod ik · mt
ik

mod ik

= (mds · mt) mod ik = md mod ik.

(sik
· Xik

)et mod ik − mik

= (md mod ik · mt mod ik)et mod ik − m mod ik

= (mdt mod ik)et mod ik − m mod ik

= m1+kλ(n) mod ik − m mod ik = 0.

Thus,

m̃ = (

j∑

k=1

((sik
· Xik

)et mod ik − mik
))

·(
n

min(i1, · · · , ij)
+ 1)

=

j∑

k=1

0 · (
n

min(i1, · · · , ij)
+ 1) = 0.

Therefore, s = (CRT (si1 , · · · , sij
) + m̃) mod n =

CRT (si1 , · · · , sij
),which is the same as the correct result

Equation (1).

When there is hardware fault attack, the proposed
countermeasure can ensure security. In the following
paragraphs, we discuss two typical attacks. The attacker
can keep sik

correct and insert byte error or random error
to make m̃ faulty. Based on a faulty m̃, the complexity for
the attacker to obtain any factor of the proposed multi-
prime RSA is O(n).

Proposition 2. Given a j-prime RSA, a faulty signature
s′k is obtained by an attacker from a faulty value m̃′. The
complexity of obtaining one factor ik is O(n), by using
ik = n/gcd((((s′k − ∆) mod n)e − m) mod n, n), where ∆
and k are integers, ∆ ∈ [0, n), and k ∈ [1, j].

Proof. When calculating the signature, we assume all the
other parts are correct except m̃. The faulty value of m̃′

will be a random number. This means a random value
is added to the signature. If the attacker tries to use the
wrong signature to factor n, he has to eliminate the value
of m̃′, by using ik = gcd((((s′k − ∆) mod n)e − m) mod
n, n) where ∆ is an integer and ∆ ∈ [0, n). The only
possible way for him to do so is to guess ∆ in the range
of n. Thus, the complexity for the attacker to obtain ik
from this faulty signature s′k is O(n).

The attacker can also inject byte error or random error
to make sik

faulty. Based on a faulty sik
, the complex-

ity for the attacker to obtain any factor of the proposed
multi-prime RSA is still O(n). We will need the following
Lemma to derive Proposition 3.

Lemma 1. Given that p is a prime number, a, b, c
are three integers smaller than p, and b 6= c, we have
abmodp 6= acmodp.

Proposition 3. Given a j-prime RSA, a faulty signature
s′k is obtained by an attacker from a faulty value s′ik

. The
complexity of obtaining one factor ik is O(n), by using
ik = n/gcd((((s′k − ∆) mod n)e − m) mod n, n), where ∆
and k are integers, ∆ ∈ [0, n), and k ∈ [1, j].

International Journal of Network Security, Vol.6, No.2, PP.190–200, Mar. 2008 194

Proof. Based on the above Lemma 1 and Lemma 4 in
[33], each erroneous value s′ik

will produce a wrong result
of m̃. Totally, there are p−1 possible values of s′ik

, which
will produce p − 1 possible erroneous values of m̃ in the
range of [0, n). When the signature s is calculated using
(5) with the wrong result of m̃, a value in the range of
[0, n) will be added as an interfering factor.

When the attacker uses s′k to factor n, he has to
eliminate the influence of m̃ from s′k, by using ik =
gcd((((s′k − ∆) mod n)e − m) mod n, n) where ∆ is an
integer and ∆ ∈ [0, n). The only possible way for him to
do so is to guess the value of ∆. Thus, the complexity for
the attacker to obtain ik from the faulty signature s′k is
O(n).

It is noted that the complexity of obtaining one factor
from a faulty signature in CRT-2 protocol is also proven
to be O(n) in [33]. Thus, based on Propositions 2 and 3,
the proposed method provides a similar immunity against
the two typical hardware fault attacks.

3.2 Comparison with CRT-2

The proposed method can be considered as a revised ver-
sion of CRT-2. It removes kp and kq variables in the
CRT-2 so that it can survive the attack of [30] that broke
CRT-2. We use the following two-prime case with the
modulus {p, q} for illustration. If the attacker keeps the
rest of the system correct and inserts errors in m̃ik

= p,
the result m̃ will not be ’0’ but a m̃′ = R · (q + 1) where
R is a random number. Then, we got

s′ = (CRT (si1 , · · · , sij
) − R · (q + 1)) mod n.

Thus, gcd((s′e −m, n) (see Equations (3) and (4)) will
not generate q to factor n.

The proposed method not only can survive the attack
of [30] but also is efficient for the FPGA implementation.
We compare the implementation aspects of the proposed
method with those of the CRT-2 protocol in Table 1. It
is clear that the operations of the proposed multi-prime
RSA use smaller numbers than those of the CRT-2 proto-
col. Moreover, extra dividers are needed to perform the
division computations of Kik

and m̃/j in CRT-2 protocol,
while no divider is needed in the proposed multi-prime
RSA.

3.3 FPGA

In order to further discuss the effectiveness of the pro-
posed countermeasure, we focus on the proposed counter-
measure from the perspective of FPGA implementation of
multi-prime RSA. To ensure security in real practice, one
must consider the properties of different implementations
of cryptosystems. FPGA implementation is very useful
for RSA cryptosystems [4, 7, 10, 11, 15, 16, 18, 23, 28] and
can have some advantages against various hardware fault
attacks. Introduced in 1985 by Xilinx, FPGA is a high
capacity programmable logic device consisting of an array
of programmable logic cells surrounded by programmable

interconnects. Its logic cells and interconnects can be pro-
grammed by end-user to implement specific circuitry. It
has many applications in prototyping, FPGA-based com-
puters, on-site hardware reconfiguration, DSP, logic emu-
lation, network components, and cryptography. One ad-
vantage of using FPGA for multi-prime RSA is that the
logic cells and interconnects used for one variable can be
easily scattered. This will somehow limit the attacker’s
control of the timing and location of the variable. In the
logic synthesis step of FPGA design, one can use synthe-
sis file (for example, UCF file in Xilinx FPGA design) to
let the logic cells and interconnects spread all over the
whole FPGA chip. Different bits of one variable will not
be in adjacent locations but scattered in different loca-
tions. Therefore, for the FPGA-based multi-prime RSA,
the hardware fault attacks will be similar to the model 3
and model 4 [5] with the limitation that the attack can
not locate the data bus. In the microprocessor and data
bus structure, the attacker can find the data bus location
and change the value of a variable to some parts of the
design, but keep the original value of the variable to other
parts of the design. However, due to the programmabil-
ity, and place and routing specialty of the interconnect
network in the FPGA, the data bus or interconnects of
the variable is scattered all over the chip and difficult to
find its direction. Therefore, the attack can inject error
in the logic cell or interconnect used for one variable and
this change will goes to every part of the design.

The importance of using FPGA to design the proposed
countermeasure is that FPGA utilizes the advantages of
the proposed structure, in which the CRT part and m̃
part are scrambled together. As shown in Figure 2, sev-
eral variables are shared between the CRT part and m̃
part such as sik

, ik, Xik
, and mik

. We use the following
example to illustrate the advantage. The attacker can in-
ject errors in the common variable such as mik

to make
both sik

and m̃ faulty. Due to the scattered interconnects
of FPGA, the attacker cannot find the specific location of
the data bus of mik

for sik
to inject errors without chang-

ing mik
in the m̃ part. In another word, the faulty m̃ and

faulty sik
will be based on the same wrong input mik

.
Thus, it is similar to the input being another number and
the attacker can not find the different effects of the faulty
m̃ and the faulty sik

and can not use this information to
break the system.

3.4 Various Attacks

In [27], in order to break the BOS algorithm, the attacker
needs to inject errors when the system reads m and keep
the correct value of m in the memory. This assumption
is correct for the structure of microprocessor and data
bus. However, based on the discussion of Section 3.3, the
attacker can not have this ability for the FPGA imple-
mentation.

In the literature, the countermeasure study of multi-
prime RSA is generally based on the microprocessor and
data bus structure. This leads to several attacks to eas-

International Journal of Network Security, Vol.6, No.2, PP.190–200, Mar. 2008 195

Table 1: Performance comparison

Division Base Modular Modular
exponentiation exponentiation

CRT-2 protocol [20] Kk = bm/ikc m mdt mod ik m̃t mod n
and m̃/j (m ∈ [1, n)) (m ∈ [1, n))

The proposed mik
= m mod ik mdt

ik
mod ik mt

ik
mod ik

multi-prime RSA (mik
∈ [1, ik)) (mik

∈ [1, ik))

Modular

exponentiation

component

E_in

X_in

N_in

Exp_start

Z_out

Exp_finish

p

Estart1

te

subtractor

Efinish1

Montgomery

component

B_in

A_in

N_in

Mon_start

R_out

Mon_finish

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish

p

Start1

q

Start2
Mon_start

Finish1

Finish2

ps

pX

qs

qX

Montgomery

component

B_in

A_in

N_in

Mon_start

R_out

Mon_finish

p

Start1

Finish1

2
| 2 |

k

p

Montgomery

component

B_in

A_in

N_in

Mon_start

R_out

Mon_finish

q

Start2

2
| 2 |

k

q Modular

exponentiation

component

E_in

X_in

N_in

Exp_start

Z_out

Exp_finish

q

te

Finish2

Estart2

Efinish2

subtractor

pm

qm

adder Multiplier
m

1
min(,)

n

p q

temp1

temp2

temp3

Figure 3: The implementation of m̃ for the proposed two-prime immune RSA

ily break these countermeasure methods. We propose to
study the countermeasure method for FPGA-based multi-
prime RSA. The FPGA structure limits the control of
the attacker of the location and timing of the data bus.
Therefore, FPGA might be an efficient solution for secure
cryptosystem designs.

Also, it is worthy to notice that the BOS algorithm
[5] might also be effective for the FPGA implementation,
since the attack to break BOS algorithm in [27] is not
valid for FPGA implementation. However, the BOS al-
gorithm uses a more complicated algorithm than the pro-
posed method. Therefore, the proposed method is more
practical for the actual RSA cryptosystem designs.

4 FPGA Implementation And

Testing

In this section, we carry out the FPGA implementation
and testing for two-prime and three- prime cases. The
implementation diagrams are shown in Figures 3, 4, 5,
and 6.

4.1 FPGA Implementation

The FPGA design approach includes the following steps:
design entry, logic verification (simulation), synthesis, im-
plementation design (translating, mapping, placing and

routing). The software used is Xilinx Integrated Synthesis
Environment (ISE) 6.1i version. Its Graphic User Inter-
face (GUI) consists of push-button flows where a design
can be specified either in Hardware Description Language
(HDL) form or in schematic form. It also includes all in-
tegrated tools for all the above steps and the interface
with the third party software. In our design, the VHDL
format is adopted as the design entry. The Modelsim XE
5.7 version software is used for Boolean logic function ver-
ification. The synthesis step of the VHDL code is accom-
plished by the Xilinx Synthesis Technology (XST) tool. In
the synthesis step, the design is scattered all over the chip
to reduce the attacker’s ability. Then, the implementation
design step is executed to compile the synthesized design
with the translating, mapping and placing & routing tools
available from Xilinx. This is the step to generate the lay-
out of the design on the selected chip. The ISE software
also provides an integrated tool ”core generator”, which
includes some Intellectual Property (IP) cores. The core
generator tool generates the needed dividers in the imple-
mentations. The xcv2000-bg560 device is chosen for the
implementation.

It is worthy to notice that in [4, 7], multi-prime RSA
systems with immunity have been implemented using
FPGA. The design in [7] implemented a system consisting
of the CRT-2 and other immunity algorithms for a two-
prime case. Therefore, we use the same RSA parameters
such as the modulus n, the secret key d and the message

International Journal of Network Security, Vol.6, No.2, PP.190–200, Mar. 2008 196

Montgomery

component

B_in

A_in

N_in

Mon_start

R_out

Mon_finish

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish

E_in

X_in

N_in

Exp_start

Z_out

Exp_finish

E_in

X_in

N_in

Z_out

Exp_finish

M

p

Start1

M

q

Start2

p

q

Estart1

Estart2

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish
E_finish1

E_finish2

Start1

p

p
m

q
m

Exp_startMon_start

Mon_start

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish

Start2

q

Mon_start

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish
Start1

N

Mon_start

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish
Start2

N

Mon_start

Adder

subtractor

N

S
MUX

CRT_1

CRT_2

CRT_2

CRT_1

Finish1

Finish2 Finish2

Finish1

Finish1

Finish2

stemp1

stemp2

temp2>0?

temp1

temp2

2
2 mod

k
N

2
2 mod

k N

1
| |

q
p p

1
| |

p
q q

2 mod
k q

2 mod
k p

Modular

exponentiation

component

Modular

exponentiation

component

p
d

p
s

q
sq

d

Figure 4: The implementation of the CRT part of the proposed two-prime immune RSA

International Journal of Network Security, Vol.6, No.2, PP.190–200, Mar. 2008 197

Modular

exponentiation

component

E_in

X_in

N_in

Exp_start

Z_out

Exp_finish

p

Estart1

t
e

subtractor

Efinish1

Montgomery

component

B_in

A_in

N_in

Mon_start

R_out

Mon_finish

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish

p

Start1

q

Start2
Mon_start

Finish1

Finish2

p
s

pX

qs

qX

Montgomery

component

B_in

A_in

N_in

Mon_start

R_out

Mon_finish

p

Start1

Finish1

2
| 2 |

k

p

Montgomery

component

B_in

A_in

N_in

Mon_start

R_out

Mon_finish

q

Start2

2
| 2 |

k

q Modular

exponentiation

component

E_in

X_in

N_in

Exp_start

Z_out

Exp_finish

q

te

Finish2

Estart2

Efinish2

subtractor

pm

q
m

adder Multiplier
m

1
min(, ,)

n

p q r

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish

r

Start3
Mon_start Finish3

r
s

rX

Montgomery

component

B_in

A_in

N_in

Mon_start

R_out

Mon_finish

r

Start3

2
| 2 |

k

r Modular

exponentiation

component

E_in

X_in

N_in

Exp_start

Z_out

Exp_finish

r

te

Finish3

Estart3

rm

subtractor

addend

addend

temp1

temp2

temp3

Efinish3

temp4

Figure 5: The implementation of m̃ for the proposed three-prime immune RSA

m as in [7]. The key length is also 512-bit. In our design,
in order to save hardware resources, modular exponenti-
ation calculations [17, 21, 26] for sp and sq are reused for
the calculation of m̃.

The implementation results of the proposed two-prime
and three-prime RSAs, including the configurable logic
block (CLB) usage, the look up table (LUT) usage, the
equivalent gates and the data rate, are shown in Table 2.
For the purpose of comparison, the implementation data
of the standard two-prime and three-prime, CRT-2-based
two-prime and three-prime RSA cryptosystems, and the
two-prime design in [7] are also shown in Table 2.

It is seen from Table 2 that for two-prime and three-
prime RSAs, the proposed method requires only 66% and
75% of hardware resources respectively (the percentage
of equivalent gate count) while providing higher operat-
ing speed, compared with the CRT-2 protocol or the one
in [7]. The reason is as follows. For the proposed multi-
prime RSA, the operations of the summing term m̃ to
increase the immunity are performed mainly by reusing
the hardware resources for the previous modular expo-
nentiation and modular multiplication operations. This
assures that the summing term does not require a lot of
resources usage.

It is also noted that the proposed design uses a scat-
tered structure, which can be more efficient in view of
hardware fault attacks. However, based on CRT-2, the
design [7] still used a microprocessor and data bus struc-
ture inside the FPGA. Therefore, it might not survive the
attacks proposed in [27] and [30].

4.2 Testing

In order to verify the effectiveness of the proposed coun-
termeasure, we carried out a number of testing for the
three-prime design in view of different hardware fault at-
tacks. The testing setup is shown in Figure 7. We first
carried out the testing of the attacks such as variations
in supply voltage and external clocks, and temperature.
These attacks can inject random errors for all the compo-
nents of the FPGA chip. The proposed system will not
provide useful information for the attacker to break the
system. Then, we carried out the testing for the laser
fault attack for specific locations of the FPGA chip. The
laser fault injection equipment is similar to the one used
in [8] and shown in Figure 8. The attack can inject byte
or random errors in variables of the system. But due to
the scattering of the FPGA logic cell and interconnects,
the attack can not locate specific data bus. It has been
verified that the proposed systems can handle such an at-
tack. Due to the limitation of our lab, other attacks such
as white light, X-ray and ion beam have not been tested.

5 Conclusion

In this paper, a study of the immunity algorithm,
structure and implementation of the Chinese remainder
theorem-based multi-prime RSA has been carried out.
Based on the FPGA implementation concepts, a novel
countermeasure method is proposed, which can survive
the attacks [27, 30] that broke the previous methods
[5, 33]. By using a simple operation and small wordlength

International Journal of Network Security, Vol.6, No.2, PP.190–200, Mar. 2008 198

Montgomery

component

B_in

A_in

N_in

Mon_start

R_out

Mon_finish

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish

 Modular

exponentiation

component

E_in

X_in

N_in

Exp_start

Z_out

Exp_finish

E_in

X_in

N_in

Z_out

Exp_finish

M

p

Start1

2 mod
k

p

M

q

Start2

2 mod
k

q

p

q

1

p
qr qr

1

q
pr pr

Estart1

Estart2

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish
E_finish1

E_finish2

Start1

p

pm

qm

pd

qd

Exp_startMon_start

Mon_start

ps

qs

Modular

exponentiation

component

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish

Start2

q

Mon_start

2
2 mod

k N Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish
Start1

N

Mon_start

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish
Start2

N

Mon_start

2
2 mod

k
N

Adder
S

MUX

CRT_1

CRT_2

CRT_2

CRT_1

Finish1

Finish2 Finish2

Finish1

Finish1

Finish2

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish

E_in

X_in

N_in

Z_out

Exp_finish

M

r

Start3

2 mod
k

r

r

1

r
pq pq

Estart3 E_finish3

rm

rd

Exp_startMon_start

rs

Modular

exponentiation

component

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish

Start3

r

Mon_start

CRT_3

Finish3 Finish3

Montgomery

component

B_in

A_in

N_in

R_out

Mon_finish
Start3

N

Mon_start

2
2 mod

k
N

CRT_3

Finish3

temp1

temp2

temp3

subtractor

N

stemp1>0?

subtractor

2N

stemp1

stemp2

stemp3

else stemp3>0?

Figure 6: The implementation of the CRT part of the proposed three-prime immune RSA

Table 2: FPGA implementation results using xcv1000-5bg560 device

CLB usage LUT usage Equivalent gates Data rate
Two-prime RSA based on standard CRT 1226 4775 46324 1.13Mbits.s
Two-prime RSA based on CRT-2 protocol [33] 1997 6577 85229 0.59Mbits/s
Two-prime RSA based on method in [7] 2788 8185 >90,000 0.03Mbits/s
Proposed two-prime RSA 1,431 5,615 55,913 0.68Mbits/s
Three-prime RSA based on standard CRT 1,759 6,939 68,144 1.74 Mbits/s
Three-prime RSA based on CRT-2 protocol [33] 2,646 9,121 109,756 0.75 Mbits/s
Proposed three-prime RSA 2,130 8,252 82,233 0.98 Mbits/s

International Journal of Network Security, Vol.6, No.2, PP.190–200, Mar. 2008 199

FPGA Attack equipment Data acquisition

Figure 7: The block diagram of the testing setup

Figure 8: Laser fault injection equipment

parameters, the proposed method is also efficient in terms
of hardware resources and speed. For a two-prime RSA
and a three-prime RSA, the proposed method requires
only 66% and 75% hardware resources respectively while
providing higher operating speed, compared with the ex-
isting method. In order to prove the functionality of the
proposed countermeasure, the FPGA implementation and
testing in attacking environment are carried out for sev-
eral two-prime and three-prime design examples. Utiliz-
ing the properties of FPGA implementations in the design
of multi-prime RSA cryptosystems can limit the ability
of the attacker to control the timing and location of the
cryptosystem. This should be useful in the design of many
other secure cryptosystems. It is expected that the pro-
posed techniques will have a positive impact on the hard-
ware implementation of cryptosystems and will be used
in the applications of computer networking, telecommu-
nications, and smart card.

References

[1] R. J. Anderson and M. G. Kuhn, “Tamper
resistance—a cautionary note,” in The 2nd USENIX
Workshop on Electronic Commerce, pp. 1-11, 1996.

[2] R. J. Anderson and M. G. Kuhn, “Low cost attacks
on tamper resistant devices,” in Proceedings of the
5th International Workshop on Security Protocols,
pp. 125-136, 1997.

[3] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and
J.-P. Seifert, “Fault attacks on RSA with CRT: Con-
crete results and practical countermeasures,” in the
4th International Workshop on Cryptographic Hard-
ware and Embedded Systems, pp. 260-275, 2002.

[4] J. C. Bajard and l. Imbert, “A full RNS implemen-
tation of RSA,” IEEE Transactions on Computers,
vol. 53, no. 6, pp. 769-774, Jun. 2004.

[5] J. Blomer, M. Otto, J. P. Seifert, “A new CRT-RSA
algorithm secure against bellcore attacks,” in 10th
ACM conference on Computer and Communications
Security, pp. 311-320, 2003.

[6] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On
the importance of checking cryptographic protocols
for fault,” in Eurocrypt’97, LNCS 1233, pp. 37-51,
Springer-Verlag, 1997.

[7] M. Ciet, M. Neve, E. Peeters, and J. J. Quisquater,
“Parallel FPGA implementation of RSA with residue
number systems - can side-channel threats be
avoided?,” in Proceedings of the 46th IEEE Midwest
Symposium on Circuits and Systems, Dec. 2003.

[8] H. B.-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan, “The sorcerer’s apprentice guide to fault
attacks,” in Workshop on Fault Detection and Tol-
erance in Cryptography, pp. 370-383, June 2004.

[9] E. English and S. Hamilton, “Network security under
siege: The timing attack,” IEEE Transaction Com-
puter, vol. 29, pp. 95-97, 1996.

[10] J. Grossschadl, “The chinese remainder theorem and
its application in a high-speed RSA crypto chip,” in
The 16th Annual Conference on Computer Security
Applications, pp. 384-393, Dec. 2000.

[11] M. K. Hani, T. S. Lin, and S. H. Nasir, “FPGA im-
plementation of RSA public-key cryptographic co-
processor,” in Proceedings on TENCON’00, vol. 3,
pp. 6-11, Sep. 2000.

[12] M. Joye, A. K. Lenstra, and J.-J. Quisquater, “Chi-
nese remaindering based cryptosystems in the pres-
ence of faults,” Journal of Cryptology, vol. 12, no. 4,
pp. 241-245, 1999.

[13] P. Kocher, “Timing attacks on implementations of
Die-Hellman, RSA, DSS, and other systems,” in Pro-
ceedings of Crypto’96, pp. 104-113, Springer-Verlag,
1996.

[14] P. Kocher, J. Jaffe, and B. Jun, “Differential power
analysis,” in Proceedings of Crypto’99, pp. 388-397,
Aug. 1999.

[15] C. K. Koc, High-speed RSA Implementations, Tech-
nical notes TR 201, RSA Security Inc., Nov. 1994.

[16] C. K. Koc, RSA hardware implementation, Technical
notes TR 801, RSA Security Inc., Aug. 1995.

[17] P. Kornerup, “A systolic, linear-array multiplier for
a class of right-shift algorithms,” IEEE Transactions
on Computer Arithmetic, vol. 43, pp. 892-898, Aug.
1994.

[18] Krishnamurthy, Y. Tang, C. Xu, and Y. Wang, “An
efficient implementation of multi-prime RSA on DSP
processor,” in IEEE International Conference on
Acoustics, Speech, & Signal Processing, vol. 2, pp.
413-416, Apr. 2003.

[19] A. K. Lenstra, “Memo on RSA signature generation
in the presence of faults,” pp. 1-4, Sep. 1996.

[20] T. S. Messerges, Power Analysis Attack Countermea-
sures and their Weaknesses, Security Technology Re-
search Laboratory, 2000.

International Journal of Network Security, Vol.6, No.2, PP.190–200, Mar. 2008 200

[21] P. L. Montgomery, “Modular multiplication without
trial division,” Mathematics of Computation, vol. 44,
pp. 519-521, 1985.

[22] R. Rivest, A. Shamir, and L. Adleman, “A method
for obtaining digital signatures and public-key cryp-
tosystems,” Communications of the ACM, vol. 21,
pp. 120-126, Feb. 1978.

[23] RSA Laboratories, PKCS #1 v2.0 Amend-
ment 1: Multi-Prime RSA, Jul. 2000.
(ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-
1v2-0a1.pdf)

[24] W. Schindler, “A timing attack against RSA with
the chinese remainder theorem,” in Proceedings of
Cryptographic Hardware and Embedded Systems, pp.
109-124, 2000.

[25] A. Shamir, “How to check modular exponentiation,”
in Proceedings of Eurocrypt’97, pp. 123, May 1997.

[26] C. Su, S. Hwang, P. Chen, and C. Wu, “An im-
proved montgomery’s algorithm for high-speed RSA
public-key cryptosystem,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol.
7, pp 280-284, June 1999.

[27] D. Wagner, “Cryptanalysis of a provably secure
CRT-RSA algorithm,” in Proceedings of the 11th
ACM conference on Computer and communications
security, pp. 92-97, 2004.

[28] C. H. Wu, J. H. Hong, and C. W. Wu, “RSA cryp-
tosystem design based on the chinese remainder theo-
rem,” in Proceedings of the ASP-DAC’01, pp. 391-95,
2001.

[29] S. M. Yen and M. Joye, “Checking before output
may not be enough against fault-based cryptanaly-
sis,” IEEE Transactions on Computers, vol.49, no.
9, pp. 967-970, Sep. 2000.

[30] S. M. Yen and D. Kim, “Cryptanalysis of two proto-
cols for RSA with CRT based on fault infection,” in
Proceedings of the Workshop on Fault Diagnosis and
Tolerance in Cryptography, pp. 381-385, June 2004.

[31] S. M. Yen, S. Kim, S. Lim, and S. J. Moon, “A coun-
termeasure against one physical cryptanalysis may
benefit another attack,” in Proceedings of the 4th In-
ternational Conference Seoul on Information Secu-
rity and Cryptology, pp. 414-427, Dec. 2001.

[32] S. M. Yen, S. Kim, S. Lim, and S. J. Moon, “RSA
speedup with residue number system immune against
hardware fault cryptanalysis,” in Proceedings of the
4th International Conference Seoul on Information
Security and Cryptology, pp. 397-413, Dec. 2001.

[33] S. M. Yen, S. Kim, S. Lim, and S. J. Moon, “RSA
Speedup with chinese remainder theorem immune
against hardware fault cryptanalysis,” IEEE Trans-
actions on computers, vol. 52, pp. 461-472, Apr.
2003.

[34] S. M. Yen, S. J. Moon, and J. C. Ha, “Hardware fault
attack on RSA with CRT Revisited,” in Proceedings
of the ICISC’02, LNCS 2587, pp. 374-388, Springer-
Verlag, 2003.

[35] S. M. Yen, S. J. Moon, and J. C. Ha, “Permanent
fault attack on RSA with CRT,” in Proceedings of
the ACISP’03, LNCS 2727, pp. 285-296, Springer-
Verlag, 2003.

Zine-Eddine Abid received the
M.Sc. and Ph.D. degrees from the
University of Minnesota, Minneapolis,
USA, in 1987 and 1991 respectively.
He received the B.Sc. degree in 1983
from University of Setif, Algeria. He
was a Research Associate and Lecturer
at the University of Minnesota dur-

ing 1991/1992. He worked at National Research Council
(NRC), Ottawa, on the fabrication, design, and charac-
terization of high frequency III-V Heterostructure Bipolar
Transistors (HBTs). He joined Nortel networks in 1995,
to work on GaAs HBTs processing for high frequency in-
tegrated circuits. He was an Assistant Professor with the
Department of Electrical Engineering, King Saud Uni-
versity, Riyadh, KSA. He has been a faculty member at
the Department of Electrical and Computer Engineering,
University of Western Ontario, Canada, since September
2002, working on CRT-based RSA Cryptosystems and
CMOS VLSI Circuits, targeting low power, high speed
and defect tolerant designs. He is the author and co-
author of more than 40 conference and journal papers.

Wei Wang received his B. Sc. de-
gree in 1992 from the Beijing Univer-
sity of Aeronautics, China, and his Ph.
D degree in 2002 from Concordia Uni-
versity, Montreal, QC, Canada, both
in Electrical and Computer Engineer-
ing. From 2000 to 2002, he served as
an ASIC and FPGA design engineer

in EMS technologies, Montreal, QC, Canada. From 2002
to 2004, he was a faculty member in the Department of
Electrical and Computer Engineering, the University of
Western Ontario, London, ON, Canada. From 2004, he
has been a professor in the Department of Electrical and
Computer Engineering, Indiana University-Purdue Uni-
versity at Indianapolis (IUPUI).

His main research interests are VLSI, nanoelectronics,
DSP, cryptography, digital design, ASIC and FPGA de-
sign, and computer arithmetic. He has over 60 journal and
conference publications in these areas. He has published
over 80 journal and conference papers. He has one US
patent and another patent pending. He received Cana-
dian Foundation of Innovation Award (nanoelectronics)
in 2004, Indiana Purdue University Research Initiative
Award (nanoelectronics) in 2005 and Best Paper Award
from IEEE CCECE conference in 2005.

