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Abstract

In this paper we propose an authenticated key agreement,
which works in a braid group. We prove that our protocol
meet the security attributes under the assumption that
the Conjugacy Search Problem (CSP) is hard in braid
group.
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1 Introduction

Recent years in cryptological research have witnessed
several proposals for secure cryptographic schemes us-
ing noncommutative groups; in particular Artin’s braid
groups [1, 2, 10, 9, 14]. The idea of applying braid group
as a platform for cryptosystems was introduced by An-
shel et al [2]. Braid groups, on the one hand, are more
complicated than Abelian groups and, on the other hand,
are not too complicated to work with. These two charac-
teristics make braid group a convenient and useful choice
to attract the attention of researchers.

In [10], Ko et al. proposed a braid group version of
Diffie-Hellman key agreement [6]. Man-in-the-middle at-
tack works on this protocol, which sets ground for our
work, presented in this paper. We improve the above
scheme by proposing a new authenticated key agreement
protocol based on CSP in braid groups. We make use
of Conjugacy Search Problem (CSP) to suggest a new
key agreement scheme. The CSP in braid groups is al-
gorithmically difficult and consequently provides one-way
functions. We use this characteristic of CSP to propose a
key agreement protocol which is resistant to Man-in-the-
middle attack.

The rest of the paper is organized as follows: We
present a brief introduction of braid groups in Section
2. In Section 3, we give Ko’s key agreement protocol. In
Section 4, we define authenticated key agreement proto-
col. In Section 5, we present our protocol, and we give
a proof of security for our scheme. The paper ends with

conclusion.

2 Braid Groups

Emil Artin [3] in 1925 defined Bn, the braid group of index
n, using following generators and relations: Consider the
generators σ1, σ2, . . . , σn−1, where σi represents the braid
in which the (i+1)st string crosses over the ith string while
all other strings remain uncrossed. The defining relations
are 1.σiσj = σjσifor|i− j| > 1, 2.σiσjσi = σjσiσjfor|i−
j| = 1.

The reader may consult any textbook on braids for a
geometrical interpretation of elements of the group Bn by
an n-strand braid in the usual sense [5]. The braid ∆ =
(σ1σ2 . . . . . . σn−1)(σ1σ2 . . . . . . σn−2) . . . . . . (σ1σ2)(σ1)
is called the fundamental braid. ∆ nearly com-
mutes with any braid b. In fact ∆b = τ(b)∆, where
τ : Bn −→ Bn : τ(σi) = σn−1 is an automorphism.
Since τ2 is the identity map, ∆2 truly commutes with
any braid. A subword of the fundamental braid ∆ is
called a permutation braid and the set of all permutation
braids is in one-to-one correspondence with the set Σn

of permutations on{0, 1, . . . , n − 1}. For example, ∆ is
the permutation sending i to n− i. The word length of a

permutation n-braid is≤ n(n−1)
2 .The descant set D(π) of

a permutation π is defined by D(π) = {i|π(i) > π(i+1)}.
Any braid b can be written uniquely as b = ∆uπ1π2 . . . πj

where u is an integer, πj are permutation braids different
from ∆ and D(πj+1) ⊂ D(π−1

J ). This unique decompo-
sition of a braid b is called a left canonical form. For
example, for a, b ∈ Bn, ab means the left-canonical form
of ab and so it is hard to guess its factors a in Bn and
we write x ∼ y. Here a or a−1 is called a conjugator and
the pair (x, y) is said to be conjugate. The Conjugacy
Decision Problem (CDP) asks to determine whether
x ∼ y for a given (x, y). Equivalently, we can ask that
given two group words x and y in Bn, can we decide
in a finite number of steps whether or not x and y are
conjugate in Bn such that y = axa−1? In [7], Garside
proves that the CDP for braid groups is solvable, but
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the algorithm he proposed, as well as all improvements
proposed thereafter, has a high cost that is exponential
in the length of the considered words and the number
of strands. The Conjugacy Search Problem (CSP) asks
to find a in Bn satisfying y = ax a−1 for some a in
Bn, CSP asks to find at least one particular element a
like that. It is considered infeasible to solve CSP for
sufficiently large braids. The probability for a random
conjugate of x to be equal to y is negligible. For Bn, a
pair (x, y) ∈ Bn det×Bn is said to be CSP-hard if x ∼ y
and CSP is infeasible for the instance (x, y).If (x, y) is
CSP-hard, so is clearly (y, x).

3 Diffie-Hellman Key Agreement

(DHKA)

3.1 DHKA for Finite Field

Suppose that A and B want to agree on a shared secret
key using the Diffie-Hellman key agreement protocol [6].
They proceed as follows: First, A generates a random
private value a and B generates a random private value
b. Then they derive their public values using parameters p
and g and their private values. A’s public value is ga mod
p and B’s public value is gb mod p. They then exchange
their public values. Finally, A computes kab = (gb)a mod
p, and B computes kba = (ga)b mod p. Since kab = kba =
k, A and B now have a shared secret key k.

3.2 Braid Group Version of DHKA Using
Conjugacy Problem

Ko et al. [10] proposed a braid group version of Diffie-
Hellman key agreement protocol. Let Bn be a braid
group where CSP is infeasible. As mentioned earlier,
all the braids in Bn are assumed to be in the left
canonical form. Thus for a, b in Bn, it is hard to guess
a or b from ab. We assume that n is even, and denote
by LBn (resp.UBn) the subgroup of Bn generated by
σ1, . . . , σn

2
−1, i.e., braids where the n/2 lower strands

only are braided (resp. in the subgroup generated by
σn

2
−1, . . . , σn−1). We know that every element in LBn

commutes with every element in UBn.

Initial set up: A sufficiently complicated n-braid
x ∈ Bn for a large n is selected and is known to both the
parties A and B.

Key agreement: (a) A chooses a random secret braid
a ∈ LBn computes axa−1 and sends it to B. (b) B
chooses b ∈ UBn computes bxb−1 and sends to A. (c)
A receives bxb−1 and computes a(bxb−1)a−1. (d) B re-
ceives axa−1 and computes b(axa−1)b−1.

3.3 Man-in-the Middle Attack

Above protocol 3.2 is vulnerable to a middle-person at-
tack. In this attack, an opponent, C, does the following

1) C intercepts A, s public value axa−1 and sends cxc−1

to B.

2) When B transmits his public value bxb−1, C substi-
tutes it with cxc−1 and sends it to A.

3) C and A thus agree on one shared key KAC =
acxc−1a−1 and C and B agree on another shared
key KBC = bcxc−1b−1A.

4) After this exchange, C simply decrypts any mes-
sages sent out by A or B, and then reads and pos-
sibly modifies them before re-encrypting with the
appropriate key and transmitting them to the cor-
rect party. This vulnerability is due to the fact that
Diffie-Hellman key agreement does not authenticate
the participants.

To remove this attack we propose a new authenticated
key agreement protocol.

4 Authenticated Key Agreement
Protocol (AKAP)

In a key agreement protocol two or more distributed en-
tities need to share some key in secret, called session key.
This secret key can then be used to create a confiden-
tial communication channel amongst the entities. Since
the path breaking work of Diffie-Hellman [6] in 1976, sev-
eral key agreement protocols have been proposed over the
years [10, 11, 12, 13, 16]. A number of desirable attributes
of such key agreement protocols have been identified in
[16]. Nowadays most protocols are analyzed with such
attributes. These are listed as under:

• Known-key security. Each run of a key agree-
ment protocol between two entities A and B should
produce a unique secret key. Independent of previ-
ous session keys, if any. Thus a protocol should still
achieve its goal even if an adversary has learned some
other session keys.

• Perfect forward secrecy. If long-term private keys
of one or more entities are compromised, the secrecy
of previous session keys established by honest entities
should not be affected.

• Key-compromise impersonation. Suppose A’s
long-term private key is disclosed. Clearly an ad-
versary that knows this value can now impersonate
A, since it is precisely this value that identifies A.
However, it may be desirable in some circumstances
that this loss does not enable the adversary to im-
personate other entities to A.
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• Unknown key-share. Entity B cannot be coerced
into sharing a key with entity A without B’s knowl-
edge, i.e., when B believes the key is shared with
some entity C 6= A, and A (correctly) believes the
key is shared with B.

• Key control. Neither entity should be able to force
the session key to be a pre-selected value.

5 The Proposed Scheme

In this section we describe our two-pass Authenticated
Key Agreement Protocol (AKAP) between two enti-
ties A and B, and consider its security. For our
scheme, the initial setup known to both A and B is
same as in the previous Scheme 3.2: We denote by

x : Sufficiently complicated n-braid;
r ∈ LBn : A’s long term private key;

Xa = rxr−1 : A’s long term public key;
s ∈ UBn : B’s long term private key;

Xb = sxs−1 : B’s long term public key.

5.1 Key Agreement

Following the above mentioned notations, we describe the
AKAP below. The protocol works in the following steps.

A B
Ya

Ya = cxc−1

−→
Yb

Compute Kb = sXas−1

←− Yb = KbdYad−1K−1
b

Figure 1: Two-pass AKA protocol

1) A choose c ∈ LBn, computes Ya = cxc−1. If Ya =
I (Identity braid),terminates the protocol run with
failure. Otherwise A sends it to B.

2) Upon receiving Ya, B choose d ∈ UBn, computes
Kb = sXas

−1, and Y b = KbdYad−1K−1
b .

3) If Kb or Yb = I, B terminates the protocol run with
failure. Otherwise B sends it to A.

4) Upon receiving Yb, A computes Ka(= Kb) = rXbr
−1,

and the shared key KEYa = cK−1
a YbKac

−1.

5) B also computes the shared key KEYb = dYad−1.

6) In each step 4 and 5, if KEYa or KEYb is I, then
the protocol run is terminated with failure.

7) After regular protocol running, A and B share the
secret K = KEYa = KEYb.

5.2 Security Consideration

Here we prove our protocol meets the following desirable
attributes under the assumption that the root problem is
hard.

Known-Key Security: If A and B execute the regular
protocol run, they clearly share their unique session key
K as above.

(Perfect) Forward Secrecy: During the computation
of the session key K for each entity, the random braids
c and d still act on it. An adversary who may have
captured their private keys r or s should extract Ka

or Kb from the information Ya and Yb to know the
previous or next session keys between them. However,
this contradicts that CSP is hard. Hence, under the
assumption that the CSP is secure, AKAP meets the
forward secrecy.

Key-Compromise Impersonation: Suppose A’s
long-term private key, r, is disclosed. Now an adversary
who knows this value can clearly impersonate A. Is
it possible for the adversary to impersonate B to A
without knowing B’s long-term private key, s? For the
success of the impersonation, the adversary must know
A’s ephemeral key c at least. So, also in this case, the
adversary should extract c from A’s ephemeral public
value Ya = cxc−1. This also contradicts that CSP is hard.

Unknown Key-share: Suppose an adversary E now
try to make A believe that the session key is shared with
B, while B believes that the session key is shared with E.
To launch the unknown key-share attack, the adversary
E should set his public key to be certified even though he
does not know his correct private key. For this, E makes
it by utility the public values Xa, Xb and x. With some
simple calculations, we see that the unknown key-share
attack fails.

Key Control: As the same argument in the above, the
key-control is clearly impossible for the third party. The
only possibility of key-control attack may be brought out
by the participant of the protocol, B. But for participant
B, in order to make him a party, A generate the session
key K(KEYb) which is pre-selected value by B. For ex-
ample B should solve the following K = dYad−1. But
this again falls into the problem of CSP.

6 Conclusion

In this paper we proposed a new authenticated key agree-
ment protocol, called AKAP. Our protocol makes use of
the fact that the CSP is hard in the braid group. We
prove that our scheme is secure against many well know
attacks on protocols.
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