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Abstract

In this paper, we suggest solutions to the key exposure
problem in ring signature. In particular, we propose the
first forward secure ring signature scheme and the first
key-insulated ring signature scheme. Both constructions
allow a (t, n)-threshold setting. That is, even t secret keys
are compromised, the validity of all forward secure ring
signatures generated in the past is still preserved. In the
other way, the compromise of up to all secret keys does
not allow any adversary to generate a valid key-insulated
ring signature for the remaining time periods. All our
proposed schemes are proven secure in the random oracle
model.
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1 Introduction

A ring signature scheme [4, 8, 9, 14, 18, 21, 24] allows
members of a group to sign messages on behalf of the
group without revealing their identities. Different from
a group signature scheme [6, 10, 11], the formation of
a group is spontaneous and there is no group manager
to revoke the identity of the signer. The anonymity of
the actual signer is protected unconditionally or compu-
tationally. Under the assumption that each user is already
associated with a public key of some standard signature
scheme, a user can form a group by simply collecting the
public keys of all the group members including his own.
These diversion group members can be totally unaware of
being conscripted into the group.

Ring signatures could be used for whistle blowing
[21], anonymous membership authentication for ad hoc
groups [9] and many other applications which do not want
complicated group formation stage but require signer
anonymity. For example, in the whistle blowing scenario,
a whistleblower gives out a secret as well as a ring signa-
ture of the secret to the public. From the signature, the
public can be sure that the secret is indeed given out by

a group member while cannot figure out who the whistle-
blower is. At the same time, the whistleblower does not
need any collaboration of other users who have been con-
scripted by him into the group of members associated with
the ring signature. Hence the anonymity of the whistle-
blower is ensured and the public is also certain that the
secret is indeed leaked by one of the group members as-
sociated with the ring signature.

In 2002, Bresson et al. [9] extended the notion of ring
signature schemes to a threshold setting and proposed
the first threshold ring signature scheme. Later on, some
other threshold ring signature schemes [18, 23] have
been proposed. A t-out-of-n threshold ring signature
scheme is defined as a ring signature scheme of which at
least t corresponding private keys of n public keys are
needed to produce a signature. The setup-free and signer
anonymity properties of a conventional ring signature
scheme are preserved in the threshold setting.

Ordinary digital signatures have a fundamental limi-
tation: If the secret key of a signer is compromised, all
signatures generated by that signer are going to be worth-
less. This may become quite a realistic threat since if the
secret key is compromised, any message can be forged.
All future signatures are invalidated as a result of such a
compromise, and more importantly, no previously issued
signatures can be trusted. Once a leakage has been iden-
tified, there may exist some key revocation mechanism to
be involved immediately in order to prevent the genera-
tion of any signature using the compromised secret key.
However, this does not solve the problem of forgeability
for past signatures. It is not possible to ask the signer to
re-issue all previous signatures due to many physical and
practical limitations.

The problem of key exposure in a ring signature
scheme is more serious. In ring signature schemes, if a
user’s secret key is exposed to an adversary, the adversary
can generate not only ordinary digital signature for any
document, but he can also sign any document on behalf
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of the group. More badly, the group can be defined by
the adversary due to the spontaneity property of ring
signature schemes. The exposure of one user’s secret
key not only requires changing the public key pairs
for the whole group, but also renders all previously
obtained ring signatures invalid, because one cannot
distinguish whether a signature is generated by an ad-
versary after it has obtained one of the secret keys or by
the legitimate user before the adversary got the secret key.

Solutions:

1) Forward Secure Signature:
Forward-secure signature schemes are designed to re-
solve the key exposure fundamental limitation of dig-
ital signature. The goal of a forward-secure signature
scheme is to preserve the validity of past signatures
even if the current secret key has been compromised.
The concept was first suggested by Anderson [5], and
solutions were designed by Bellare and Miner [7]. The
idea is that even a compromise of the present secret
key does not enable an adversary to forge signatures
pertaining to the past. This can be achieved by the
key evolution paradigm: by dividing the total time of
the validity of the public key into T time periods, and
using a different secret key in each time period while
the public key remains the same. Each subsequent
secret key is computed from the current secret key via
an update algorithm, while any past secret key can-
not be computed by the current one. The time period
during which a message is signed becomes part of the
signature as well. Forward security property means
that even if the current secret key is compromised, a
forger cannot forge signatures for past time periods.
In other words, the forger can only forge signatures
for documents pertaining to time periods after the
exposure but not before. The integrity of documents
signed before the exposure remains intact.

2) Forward Secure Ring Signature:
We propose to use the concept of forward security
to reduce the damage of exposure of any secret key
of users in ring signature. That is, even when a se-
cret key is compromised, previously generated ring
signatures remain valid and do not need to be re-
generated. We are the first in the literature to pro-
pose the concept of forward secure ring signature.

3) Key-Insulated Signature:
The notion of key-insulated cryptosystems, which
was first introduced in [12], generalizes the concept
of forward-secure cryptography. Similar to forward
security, in key-insulated cryptosystems, lifetime of
secret keys is also divided into discrete periods. In
the case of signature, they are supposed to be gen-
erated under an insecure environment. In the model
of key-insulated signature, the secret associated with
a public key is shared between the user and a phys-
ically secure device. At the beginning of each time

period, the user obtains a partial secret key from the
device. By combining this partial secret key with the
secret key for the previous period, the user renews
the secret key for the current time period. Exposure
of the secret key at a given period will not enable any
adversary to derive the secret key for the remaining
period, since the adversary is not able to break into
the physically secure device. Thus he cannot renew
the secret key for the next period.

4) Key-Insulated Ring Signature:
In addition to forward secure ring signature, we also
propose the concept of key-insulated in ring signa-
ture. It reduces the risk of key exposure in ring sig-
nature. That is, even a secret key is compromised,
the adversary cannot generate any valid ring signa-
ture in all future time period using the compromised
secret key. Thus it is not necessary to renew public
key pairs of all users even some of the corresponding
secret key is compromised. We are also the first in
the literature to propose this concept in ring signa-
ture.

1.1 Our Contributions

We suggest solutions to the key exposure problem in ring
signature. We propose two new concepts, namely for-
ward secure ring signature and key-insulated ring signa-
ture. We give rigorous security model and concrete imple-
mentations on these two concepts respectively. Both our
constructions allow a threshold setting. That is, a valid
signature is generated by t-out-of-n users of a sponta-
neously formed group while the anonymity of the t actual
signers is preserved. Both schemes are proven secure in
the random oracle model. We are also the first in the lit-
erature to propose forward secure ring signature scheme
and key-insulated ring signature scheme.

1.2 Organization

The paper is organized as follows: Some related works
will be given in Section 2. We define our security mode
in Section 3. A construction of forward secure ring sig-
nature scheme is presented in Section 4. It is followed
by another construction of key-insulated ring signature
scheme in Section 5. We conclude the paper in Section 6.

2 Related Works

The concept of forward secure signatures was first pro-
posed by Anderson [5] for traditional signatures. It was
formalized by Bellare and Miner [7]. The basic idea is to
extend a standard digital signature algorithm with a key
update algorithm, so that the secret key can be changed
frequently while the public key stays the same. The re-
sulting scheme is forward secure if the knowledge of the
secret key at some point in time does not help forge signa-
tures relative to some previous time period. The challenge
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is to design an efficient scheme of this concept. In partic-
ular the size of the secret key, public key and signature
should not be dependent on the number of time period
during the lifetime of the public key. Several schemes
[1, 2, 16, 17, 19] have been proposed by traditional signa-
tures and threshold signatures that satisfy this efficiency
property. In addition, a forward secure group signature
scheme is proposed in [22].

The notion of key-insulated cryptosystems was first in-
troduced by Dodis et al. [12], in the context of public key
encryption. Later they proposed a key-insulated signa-
ture scheme in [13]. A more efficient scheme was proposed
in [15]. In their scheme, the key length is constant and
independent of the number of insulated time periods.

3 Security Model

We give our security model and define relevant security
notions.

3.1 Definition of Forward Secure Thresh-

old Ring Signature Scheme

Syntax: A forward secure (threshold) ring signature,
(FSRS) scheme, is a tuple of five algorithms (Key-Gen,
Init, Sign, Verify and Update).

• (ski,0, pki) ← Key-Gen(1λi) is a PPT algorithm
which, on input a security parameter λi ∈ N, out-
puts a private/public key pair (ski,0, pki) such that
the private key is valid for time t = 0. 1 We denote
by SK and PK the domains of possible secret keys
and public keys, respectively. When we say that a
public key corresponds to a secret key or vice versa,
we mean that the secret/public key pair is an output
of Key-Gen.

• param← Init(λ) is a PPT algorithm which, on input
a security parameter λ, outputs the set of security
parameters param which includes λ.

• ski,t+1 ← Update(ski,t, t) is a deterministic algorithm
which, on input a private key for a certain time period
t, outputs a new private key for the time period t+1.

• σ′
t=(n,d,Y,σ)← Sign(t, n, d,Y ,X ,M) is a PPT algo-

rithm which, on input a certain time period t, group
size n, threshold d ∈ {1, · · · , n}, a set Y of n public
keys in PK, a set X of d private keys whose corre-
sponding public keys are all contained in Y, and a
message M , produces a signature σ′

t.

• 1/0 ← Verify(M,σ′
t, t) is a deterministic algorithm

which, on input a message-signature pair (M, σ′
t) and

a time t returns 1 or 0 for accept or reject, resp. If
accept, the message-signature pair is valid.

1We denote ski,t to be the secret key of user i at time t.

Notions of Security: Security of FSRS schemes
has three aspects: correctness, forward security and
anonymity. Before giving their definition, we consider the
following oracles which together model the ability of the
adversaries in breaking the security of the schemes.

• pki ← JO(⊥). The Joining Oracle, on request, adds
a new user to the system. It returns the public key
pk ∈ PK of the new user.

• ski,t ← CO(pki, t). The Corruption Oracle, on input
a public key pki ∈ PK that is a query output of JO
and a time t, returns the corresponding secret key
ski,t ∈ SK for the time t.

• σ′
t ← SO(t, n, d,Y,V ,M). The Signing Oracle, on

input a time t, a group size n, a threshold d ∈
{1, · · · , n}, a set Y of n public keys, a subset V of
Y with |V| = d, and a message M , returns a valid
signature σ′

t for time t.

Remark: An alternative approach to specify the SO is
to exclude the signer set V from the input and have SO
select it according to suitable random distribution. We
do not pursue that alternative further.

Correctness: Signatures signed according to specifica-
tion are accepted during verification.

Forward-Security: Forward-security for FSRS schemes
is defined in the following game between the Simulator S
and the Adversary A in which A is given access to oracles
JO, CO and SO:

1) S generates and gives A the system parameters
param.

2) A chooses a time t, a group size n ∈ N, a threshold
d ∈ {1, · · · , n}, a set Y of n public keys in PK and a
message M .

3) A may query the oracles according to any adaptive
strategy.

4) A outputs a signature σt.

A wins the game if: (1) Verify(M ,σt,t)=1, (2) all of
the public keys in Y are query outputs of JO, (3) at
most (d − 1) of the public keys in Y have been input to
CO with time t′ < t to be the time input parameter, (4)
unlimited query to CO with time t′′ ≥ t to be the time
input parameter, and (5) σt is not a query output of SO

on any input containing M . We denote by Advfs
A (λ) the

probability of A winning the game.
Remarks. In this game, we do not limit the number of

queries made to CO that are corresponding to the public
keys in Y. We only require the number of queries to CO
of the public keys in Y with time input parameter less
than t, should be at most (d− 1).

Definition 1 (forward-secure). An FSRS scheme is

forward-secure if for all PPT adversary A, Advfs
A (λ) is

negligible.



International Journal of Network Security, Vol.6, No.2, PP.170–180, Mar. 2008 173

Anonymity: Anonymity for FSRS schemes is defined in
the following game between the Simulator S and the Ad-
versary A in which A is given access to oracles JO, CO
and SO.

1) S generates and gives A the system parameters
param.

2) A may query the oracles according to any adaptive
strategy.

3) A gives S a time t, group size n, threshold d ∈
{1, · · · , n}, message M , a set Y of n public keys all of
which are query outputs of JO, and none of which
has been queried to CO.

S randomly selects a subset V ⊂ Y, |V| = d, to obtain
the d corresponding secret keys by querying CO. S
signs with these secret keys and gives the signature
to A.

4) A queries the oracles adaptively, except that any
member public key of Y cannot be queried to CO.

5) A gives S a public key p̃k ∈ V .

A wins the game if p̃k ∈ Y . Define the advantage of A
as

AdvFS−Anon
A (λ) = Pr[A wins]− d/n.

for security parameter λ.

Definition 2 (FS-Anonymity). A FSRS scheme is
anonymous if for any PPT adversary A, AdvFS−Anon

A (λ)
is zero.

Remarks. For anonymity, we require unconditional
anonymous.

3.2 Definition of Key-Insulated Thresh-

old Ring Signature Scheme

Syntax. A Key-Insulated secure (threshold) ring signa-
ture, (KIRS) scheme, is a tuple of six algorithms (Key-Gen,
Init, Sign, Verify, Device-Update and User-Update).

• (mski, uski,0, pki) ← Key-Gen(1λi) is a PPT algo-
rithm which, on input a security parameter λi ∈ N,
outputs a public key pki, a master secret key mski,
and a user’s initial secret key uski,0 such that this key
is valid for time t = 0.2 We denote by PK, MSK
and USK the domains of possible public keys, master
secret keys and user secret keys, respectively.

• param← Init(λ) is a PPT algorithm which, on input
a security parameter λ, outputs the set of security
parameters param which includes λ.

• pski,t ← Device-Update(mski, t) is a deterministic al-
gorithm which, on input the master secret key mski

and the index of the current time period t, outputs
the partial secret key pski,t for the time period t.

2We denote uski,t to be the user secret key of user i at time t.

• (uski,t, ski,t) ← User-Update(uski,t−1, t) is a deter-
ministic algorithm which, on input the user secret
key uski,t−1 and the partial secret key pski,t−1 for a
certain time period t−1 and the index of the current
time period t, outputs the user secret key uski,t and
the secret key ski,t for the time period t.

• σ′
t=(n,d,Y,σ)← Sign(t, n, d,Y,X ,M) which, on in-

put a certain time period t, group size n, threshold
d ∈ {1, · · · , n}, a set Y of n public keys in PK, a set
X of d private keys whose corresponding public keys
are all contained in Y, and a message M , produces a
signature σ′

t.

• 1/0 ← Verify(M,σ′
t, t) is an algorithm which, on in-

put a message-signature pair (M ,σ′
t) and a time t

returns 1 or 0 for accept or reject, resp. If accept, the
message-signature pair is valid.

Notions of Security. Security of KIRS schemes has
three aspects: correctness, key-insulated and anonymity.
Before giving their definition, we consider the following
oracles which together model the ability of the adversaries
in breaking the security of the schemes.

• pki ← JO(⊥). The Joining Oracle, on request, adds
a new user to the system. It returns the public key
pk ∈ PK of the new user.

• ski,t ← KEO(pki, t). The Key Exposure Oracle, on
input a public key pki ∈ PK that is a query output
of JO and a time t, returns the corresponding user
secret key uski,t ∈ USK and the secret key ski,t ∈
SK for the time t.

• σ′
t ← SO(t, n, d,Y,V ,M). The Signing Oracle, on

input a time t, a group size n, a threshold d ∈
{1, · · · , n}, a set Y of n public keys, a subset V of
Y with |V| = d, and a message M , returns a valid
signature σ′

t for time t.

Correctness: Signatures signed according to specifica-
tion are accepted during verification.

Key-Insulated: Key-Insulated for KIRS schemes is de-
fined in the following game between the Simulator S and
the AdversaryA in whichA is given access to oracles JO,
KEO and SO:

1) S generates and gives A the system parameters
param.

2) A chooses a time t, a group size n ∈ N, a threshold
d ∈ {1, · · · , n}, a set Y of n public keys in PK and a
message M .

3) A may query the oracles according to any adaptive
strategy.

4) A outputs a signature σt.
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A wins the game if: (1) Verify(M ,σt,t)=1, (2) all of the
public keys in Y are query outputs of JO, (3) at most
(d − 1) of the public keys in Y have been input to KEO
with time t to be the time input parameter, and (4) σt

is not a query output of SO on any input containing M .
We denote by AdvKI

A,τ (λ) the probability of A winning
the game, for security parameter λ, if A is allowed to
submit at most τ key exposure requests.

Definition 3 (Key-Insulated). An KIRS scheme is key-
insulated if for all PPT adversary A, AdvKI

A,τ (λ) is neg-
ligible.

Strong Key-Insulated: It is also possible for an adver-
sary to compromise the physical secure device completely.
In this case, the adversary does not query the key expo-
sure oracle here in our model, but the adversary master
is allowed to choose at most d− 1 master secret keys, de-
noted byMSKd−1 which is simply given to him instead.
We denote by AdvSKI

A,τ (λ,MSKd−1) the probability of A
winning the game.

Definition 4 (Strong Key-Insulated). An KIRS

scheme is strong key-insulated if for all PPT adversary
A, AdvSKI

A,τ (λ,MSKd−1) is negligible.

Anonymity: Anonymity for KIRS schemes is defined in
the following game between the Simulator S and the Ad-
versary A in which A is given access to oracles JO, KEO
and SO.

1) S generates and gives A the system parameters
param.

2) A may query the oracles according to any adaptive
strategy.

3) A gives S a time t, group size n, threshold d ∈
{1, · · · , n}, message M , a set Y of n public keys all of
which are query outputs of JO, and none of which
has been queried to KEO.

S randomly selects a subset V ⊂ Y, |V| = d, to obtain
the d corresponding secret keys by querying KEO. S
signs with these secret keys and gives the signature
to A.

4) A queries the oracles adaptively, except that any
member public key of Y cannot be queried to CO.

5) A gives S a public key p̃k ∈ V .

A wins the game if p̃k ∈ Y . Define the advantage of
A as AdvKI−Anon

A (λ) = Pr[A wins] − d/n for security
parameter λ.

Definition 5 (KI-Anonymity). A KIRS scheme is
anonymous if for any PPT adversary A, AdvKI−Anon

A (λ)
is zero.

Remarks. For anonymity, we require unconditional
anonymous.

4 A Forward Secure Threshold

Ring Signature Scheme

In this section, we give a concrete construction of an FSRS

scheme. We then show that such a construction is secure
under the security model defined in the previous section.

• Key-Gen: First, we assume that the public key pairs
are valid into T time periods and makes the time
intervals public. For user i, where i = 1, · · · , n,
on input a security parameter ki, `i, the algorithm
randomly picks two distinct primes pi, qi such that
pi = 3 mod 4, qi = 3 mod 4, 2ki−1 ≤ (pi − 1)(qi − 1)
and piqi < 2ki . Sets Ni ← piqi. Let Qi denote the
set of non-zero quadratic residues modulo Ni.

It then picks random generators si,0 ∈R Z
∗
Ni

and

computes ui ← 1/s2
`i(T +1)

i,0 mod Ni. It sets the pub-
lic key to pki ← (Ni, ui, T ), and the secret key to
ski,0 ← (Ni, T, 0, si,0). Finally it outputs (ski,0, pki).

Let ρ be twice the bit length of the largest Ni, for
1 ≤ i ≤ n and let G : {0, 1}∗ → {0, 1}ρ and Hi :
{0, 1}∗ → {0, 1}`i, for i = 1, · · · , n, be some hash
functions which behave like a random oracle. 3

• Update: On input a secret key ski,j = (Ni, T, j, si,j)
for time period j, output the secret key for time pe-

riod j + 1 as ski,j+1 ← (Ni, T, j + 1, s2
`i

i,j mod Ni) if
j < T , otherwise output ⊥ meaning the secret key
has expired.

• Sign: On input a group size n ∈ N, security
parameters (k1, `1, · · · , kn, `n), a time period j, a
threshold d ∈ {1, · · · , n}, a public key set L =
{pk1, · · · , pkn}, where each pki = (Ni, ui, T ), a pri-
vate key set X = {skπ1,j , · · · , skπd,j}, where each
skπi,j = (Nπi

, T, j, sπi,j) (for time period j) corre-
sponds to pkπi

∈ L, 1 ≤ π1, · · · , πd ≤ n, and a
message m ∈ {0, 1}∗. Define N = {1, · · · , n} and
I = {π1, · · · , πd} ⊆ N , the algorithm does the fol-
lowing:

1) For i ∈ N \I, pick ci ∈R {0, 1}ρ and zi ∈R Z
∗
Ni

.

Compute yi = z2`i(T+1−j)

i u
Hi(ci)
i mod Ni.

2) For i ∈ I, pick ri ∈R Z
∗
Ni

and compute yi =

r2
`i(T+1−j)

i mod Ni.

3) Compute c0 = G(L, d, j,m, y1, · · · , yn) and con-
struct a polynomial f over GF (2ρ) such that
deg(f) = n − d, f(0) = c0 and f(i) = ci, for
i ∈ N \I.

4) For i ∈ I, compute ci = f(i) and zi =

ris
Hi(ci)
i,j mod Ni.

3By modelling a hash function as a random oracle, this already

implies that the hash function is collision resistent. So the random

oracle assumption alone is sufficient for practical purposes. How-

ever, we should also notice that it is unknown whether we can build

such a function in practice.
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5) Output the d-out-of-n forward secure threshold
ring signature for message m, time period j and
a public key list L as σ = (z1, · · · , zn, f, j).

• Verify: On input a message m, a list of public key L,
a signature σ, the algorithm runs as follow:

1) Check if deg(f) = n−d. If yes, proceed. Other-
wise, reject.

2) For i = 1, · · · , n, compute ci = f(i) and y′i =

z2`i(T+1−j)

i u
Hi(ci)
i mod Ni.

3) Check whether f(0)
?
= G(L, d, j, m, y′1, · · · ,

y′n). If yes, accept. Otherwise, reject.

Security Analysis:

Theorem 1. The scheme proposed in this section is un-
conditional anonymous under the assumption that the
hash functions Hi, G are modelled as random oracles.

Proof. The polynomial f , with degree n−d, is determined
by cd+1, · · · , cn and c0. cd+1, · · · , cn are randomly gener-
ated and c0 is the output of the random oracle G. Thus
f can be considered as a function chosen randomly from
the collection of all polynomials over GF (2ρ) with degree
n−d. Then the distributions of c1, · · · , cd are also uniform
over the underlying range.

For i = d + 1, · · · , n, zi are chosen independently and
distributed uniformly over ZNi

. For i = 1, · · · , d, ri are
chosen independently and distributed uniformly over ZNi

.
Since ri are independent of ci and the private keys, zi,
1 ≤ i ≤ d, are also uniformly distributed.

In addition, for any fixed message m and fixed set of
public keys L, we can see that (z1, · · · , zn) has exactly

∏

1≤i≤n

Ni

possible solutions. Since the distribution of these possi-
ble solutions are independent and uniformly distributed
no matter which t participating signers are, an adversary,
even has all the private keys and unbound computing re-
sources, has no advantage in identifying any one of the
participating signers over random guessing.

Theorem 2. Let A be a PPT forger. For some message
m and a set of n public keys L corresponding to n sign-
ers, suppose A on inputs the security parameter ki, `i, for
1 ≤ i ≤ n, the private keys of any d−1 signers among the
n signers, queries a signing oracle SO for qS times, ran-
dom oracle G for qG times and random oracles {Hi}1≤i≤n

for qH times combined, and outputs a forged signature σ
(i.e. 1 ← Vd,n(L,m, σ)), with non-negligible probability
ε. Then we can factorize Blum integer with probability at
least ε′ in polynomial time, where

ε′ =

(
ε − qS(qH23−k + qG/2ρ)

)2

2nT 2qG

−

ε − qS(qH23−k + qG/2ρ)

2`+1nT

where k = min{k1, · · · , kn}, ρ = 2max{k1, · · · , kn}, ` =
max{`1, · · · , `n}.

Proof. Let A be a PPT adversary who can forge signa-
tures with non-negligible probability at least ε when given
n public keys and strictly less than d of the corresponding
private key. Assume A makes qG queries to G, qS queries
to the signing oracle SO, and a total of qH queries to H1,
· · · , Hn combined. We construct another PPT M from
A to factorize a given a Blum integer N .

In order to factor its input N , M randomly selects
x ∈ Z

∗
η, computes v = x2 mod N , and attempt to use

A to find a square root y of v. Because v has four
square roots and x is random, with probability 1/2 we
have x 6= ±y mod N , then M is able to find a factor of
N by computing the gcd of x− y and N .

We define T to be the breakin period such that A is
allowed to query CO to obtain at most d− 1 private keys
with time input parameter t′ < T while there is no limi-
tation for time input parameter t′′ ≥ T . A is also allowed
to choose any T ≤ T . M provides the corresponding
private key as a reply to the query to the SO made by A.
M needs to guess the breakin period T chosen by A.

M randomly chooses t, 1 < t ≤ T , hoping that the breakin

period falls at t or later, so that the forgery will be for a
time period earlier than t.
M also needs to assign N to be the public key of

one of the n users and provide all public key to A. M
just randomly chooses π ∈R {1, · · · , n} and sets uπ ←

1/v2`π(T+1−t)

, Nπ ← N . The other n − 1 public keys are
generated in the normal way. M provides these n public
keys to A.

Besides, M also simulates A’s point of view by con-
structing the random oracle G and the signing oracle SO.
We first describe the construction of the signing oracle
SO. On input a time b, a group size n, a threshold
d ∈ {1, · · · , n}, a set Y of n public keys, a subset V of
Y with |V| = d, and a message M , the answer is simu-
lated as follow:

1) Randomly generate c0, cd+1, · · · , cn ∈R {0, 1}ρ.

2) Construct f over GF (2ρ) such that deg(f) = n − d
and f(0) = c0, f(i) = ci, for i = d+ 1, · · · , n.

3) Compute c1 = f(1), · · · , cd = f(d).

4) Randomly generate zi ∈R Z
∗
Ni

for i = 1, · · · , n.

5) Compute yi = z2`i(T+1−j)

i u
Hi(ci)
i mod Ni for i =

1, · · · , n.

6) Assign c0 as the value of G(L, d, j,m, y1, · · · , yn).

7) Output (z1, · · · , zn, f, b).

The simulation fails if Step 6 causes collision, that is, the
value of c0 has been assigned before. This happens with
probability at most qG/2

ρ where qG is the number of times
that the random oracle G is queried by A.

Let Θ, Ω be the random tapes given to the signing ora-
cle and A such that A outputs a forged signature. Notice
that the success probability of A is taken over the space
defined by Θ, Ω and the random oracle G.
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Assume A chooses a breakin period T ≥ t. That is, the
forged signature σj is valid for time period j < t. The
forged signature σj = (z1, · · · , zn, f, j) contains a poly-
nomial f where f(0) = G(L, d, j, m, y1, · · · , yn) for yi =

z2`i(T +1−j)

i u
Hi(ci)
i mod Ni, 1 ≤ i ≤ n. With probability at

least 1−2−ρ, there exists a query G(L, d, j,m, y1, · · · , yn)
due to the assumption of ideal randomness of G. Split
G as (G−, c0) where G− corresponds to the answers to
all G-queries except for c0. Rewind A to this particular
point and by invoking A with (Θ,Ω, G−) and randomly
chosen another value c′0 (6= c0) as the reply to the ran-
dom oracle query, A outputs at least one forged signa-
ture σ′

j = (z′1, · · · , z
′
n, f

′, j) with non-negligible probabil-
ity, due to the heavy-row lemma [20].

Since the random tape is the same for both forged sig-
nature, we have yπ in σj should be equal to y′π in σ′

j . That
is,

z2`i(T+1−j)

π uHπ(f(π))
π

≡ z′
2`i(T+1−j)

π uHπ(f ′(π))
π (mod Nπ)

⇒

(
v−2`π(T+1−t)

)Hπ(f(π))−Hπ(f ′(π))

≡ (z′π/zπ)2
`π(T+1−j)

(mod Nπ)

⇒ vHπ(f(π))−Hπ(f ′(π))

≡ (zπ/z
′
π)2

`π(t−j)

(mod Nπ).

By applying Lemma A.1 in [3],M can easily compute
a square root of v, by setting α = Hπ(f(π))−Hπ(f ′(π)),
X = zπ/z

′
π and λ = `π(t− j). We stay the lemma below,

without proof.

Lemma 1. Given α 6= 0, λ > 0, v ∈ Qπ and X ∈ Z
∗
Nπ

such that vα = X2λ

mod Nπ and α < 2λ, one can easily
compute y such that v = y2 mod Nπ.

Next we are going to analysis the successful probability.
First we consider the probability that collision to the

hash query occurs. Let Q = min{|Q1|, · · · , |Qn|}. The
probability of collision occur in the same execution of
A is at most qH/Q + qG/2

ρ. Thus, the probability
of M failure to simulate the signing oracle is at most
qS(qH/Q + qG/2

ρ) ≤ qS(qH23−k + qG/2
ρ), where k =

min{k1, · · · , kn}. Let

δ = ε− qS(qH23−k + qG/2
ρ).

Let εt be the probability that A produces a successful
forgery such that the break-in query occurs in time period
t. Observe that δ =

∑T
t=1 εt. AssumeM picked a specific

t as the time period for v. The probability is 1/T .
Let ph,t be the probability that, in one run, A produces

a valid forgery based on hash query number h after break-
in query in time period t. We have

εt =

qG∑

h=1

ph,t.

The probability that A produces a valid forgery based
on the hash query number h after break-in query in time
period t in both runs is p2

h,t. This is reduced to ph,t(ph,t−

2−`) due to the collision probability.
At this stage, we have to apply another lemma, lemma

A.2 from [3]:

Lemma 2. Let a1, · · · , aλ be real numbers. Let a =∑λ
µ=1 aµ. Let s =

∑λ
µ=1 a

2
µ. Then s ≤ a2/λ.

Now we have the probability that A outputs a valid
forgery based on the same hash query both times and that
the hash query was answered differently in the second run
and the break-in query occurred in time period t to be

qG∑

h=1

p2
h,t −

qG∑

h=1

2−`ph,t ≥
ε2t
qG
−

qG∑

h=1

2−`ph,t =
ε2t
qG
− 2−`εt.

(by using Lemma 2.)
Then, we sum up all time period t to obtain

ε′ ≥
1

T

T∑

t=1

(
ε2t
qG
− 2−`εt

)
≥

δ2

T 2qG
−

δ

2`T
.

(by using Lemma 2.)
Finally we divide the result by 2 because only half of

the choice for x that can be used to factorize N and also
divide by n since M has to guess which of the user that
A is going to participate for the forgery.

5 A Key-Insulated Threshold

Ring Signature Scheme

In this section, we are going to propose a Key-Insulated
Threshold Ring Signature scheme, in which a user is as-
sociated with a tamper-resistance device such that key
updating process can be only taken place inside this de-
vice together with the secret input from the owner of this
device.

• Key-Gen: For i = 1, · · · , n, on input security param-
eters ki, `i, the algorithm randomly picks two distinct
safe primes p′i, q

′
i and compute pi = 2p′i + 1, qi =

2q′i + 1, Ni = piqi such that Ni is a ki-bit modulus.
Choose another (`i + 1)-bit prime number vi. Let
κ = min{k1, · · · , kn}. We assume that the public key
pairs are valid into T time periods, where T = ξ(κ)
for some polynomial ξ, and makes the time intervals
public.

Device i randomly chooses si, ti, ui ∈R Z
∗
Ni

, such

that s2i 6= s2
8+1

i mod Ni, t
2
i 6= t2

8+1

i mod Ni, u
2
i 6=

u28+1

i mod Ni. Compute αi = s−vi

i mod Ni, βi =
t−vi

i mod Ni and γi = u−vi

i mod Ni, sets and out-
puts the public key to pki ← (αi, βi, γi, vi, Ni). It
computes δi = s2i mod Ni, µi = t2i mod Ni and sets
the master secret key to mski ← (δi, µi). It also

computes ψi,0 = u20+1

i mod Ni, sets and outputs the
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user’s secret key uski,0 ← ψi,0. Then it deletes ψi

from its memory.

Let ρ be twice the bit length of the largest Ni, for
1 ≤ i ≤ n and let G : {0, 1}∗ → {0, 1}ρ and
Hi : {0, 1}∗ → {0, 1}`i be some hash functions that
behave like a random oracle.

• Device-Update: Device i, on input master secret key
mski = (δi, µi), computes the partial secret key for
the j-th time period as follow:

pski,j = δ2
j

i ·µ
2T−j

i mod Ni = s2
j+1

i · t2
T+1−j

i mod Ni.

• User-Update: User i, on input user’s secret key
uski,j−1 for time period j−1, he computes the user’s
secret key for time period j as follow:

uski,j = ψ2
i,j−1 mod Ni = u2j+1

i mod Ni

and the corresponding secret key ski,j to be

ψ′
i,j = pski,j · uski,j mod Ni

= s2
j+1

i · t2
T+1−j

i · u2j+1

i mod Ni.

• Sign: On input a group size n ∈ N, security parame-
ters (k1, `1, · · · , kn, `n), a time period j, a threshold
d ∈ {1, · · · , n}, a public key set L = {pk1, · · · , pkn},
where pki = (αi, βi, γi, vi), a private key set X =
{skπ1,j , · · · , skπd,j} (for time period j) corresponds
to pkπi

∈ L, 1 ≤ π1, · · · , πd ≤ n, where ski,j = ψ′
i,

and a message m ∈ {0, 1}∗, define N = {1, · · · , n}
and I = {π1, · · · , πd} ⊆ N . The algorithm does the
following:

1) For i ∈ N \I, pick ci ∈R {0, 1}ρ and zi ∈R Z
∗
Ni

.
Compute

yi = zvi

i (α2j+1

i β2T+1−j

i γ2j+1

i )Hi(ci) mod Ni.

2) For i ∈ I, pick ri ∈R Z
∗
Ni

and compute

yi = rvi

i mod Ni.

3) Compute c0 = G(L, d, j,m, y1, · · · , yn) and con-
struct a polynomial f over GF (2ρ) such that
deg(f) = n − d, f(0) = c0 and f(i) = ci, for
i ∈ N \I.

4) For i ∈ I, compute ci = f(i) and zi =
ri(ψ

′
i,j)

Hi(ci) mod Ni.

5) Output the d-out-of-n forward secure threshold
ring signature for message m, time period j and
a public key list L as σ = (z1, · · · , zn, f, j).

• Verify: On input a message m, a list of public key L,
a signature σ, the algorithm runs as follow:

1) Check if deg(f) = n−d. If yes, proceed. Other-
wise, reject.

2) For i = 1, · · · , n, compute ci = f(i) and y′i =

zvi

i (α2j+1

i β2T +1−j

i γ2j+1

i )Hi(ci) mod Ni.

3) Check whether f(0)
?
= G(L, d, j,m, y′1, · · · , y

′
n).

If yes, accept. Otherwise, reject.

Security Analysis:

Theorem 3. The scheme proposed in this section is un-
conditional anonymous under the assumption that the
hash functions Hi, G are modelled as random oracles.

The proof is similar to the proof of Theorem 1 and we
skip it.

Theorem 4. Let A be a PPT forger. For some mes-
sage m and a set of n public keys L corresponding to n
signers, suppose A on inputs the security parameter k,
all n master secret keys and any d−1 user secret keys
among the n signers, queries a signing oracle SO for qS
times, random oracle G for qG times and random oracles
{Hi}1≤i≤n for qH times combined, and outputs a forged
signature σ (i.e. 1 ← Vt,n(L,m, σ)), with non-negligible
probability ε. Then we can solve the strong RSA problem
with probability at least ε′ in polynomial time, where

ε′ =

(
ε− qS(qH23−k + qG/2

ρ)

)2

2nT 2qG

−
ε− qS(qH23−k + qG/2

ρ)

2`+1nT
,

where k = min{k1, · · · , kn}, ρ = 2max{k1, · · · , kn}, ` =
max{`1, · · · , `n}.

Proof. Let A be a PPT adversary who can forge signa-
tures with non-negligible probability at least ε when given,
n public keys, n corresponding master secret keys and
strictly less than d of the corresponding user private keys.
AssumeAmakes qG queries toG, qS queries to the signing
oracle SO, and a total of qH queries to H1, · · · , Hn com-
bined. We constrct another PPTM from A to solve the
strong RSA problem. That is, given a number N , which is
the product of two primes, and a number λ ∈ Z

∗
N , outputs

φ ∈ Z
∗
N and ω > 1 such that φω = λ mod N .

M needs to assign N to be the public key of one of the
n users and provide all public keys toA. M just randomly
chooses π ∈R {1, · · · , n} and does the following:

1) Choose απ, βπ, γπ such that λ = απ · βπ · γπ.

2) Randomly choose j ∈R {1, T }.

3) Choose vπ such that gcd(vπ, 2
j+1 − 1, 2T+1−j − 1) =

vπ. That is, 2j+1−1 = vπK1 and 2T+1−j−1 = vπK2

for some integers K1,K2.

4) If no such vπ exists, repeat Step 3.

The total running time should be in polynomial of κ, the
system security parameter, since T = ξ(κ) for some poly-
nomial ξ.
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The other n − 1 public keys and n master secret keys
are generated in the normal way. M provides these n
public keys to A.

Besides, M also simulates A’s point of view by con-
structing the random oracle G and the signing oracle SO.
We first describe the construction of the signing oracle
SO. On input a time b, a group size n, a threshold
d ∈ {1, · · · , n}, a set Y of n public keys, a subset V of
Y with |V| = d, and a message M , the answer is simu-
lated as follow:

1) Randomly generate c0, cd+1, · · · , cn ∈R {0, 1}ρ.

2) Construct f over GF (2ρ) such that deg(f) = n − d
and f(0) = c0, f(i) = ci, for i = d+ 1, · · · , n.

3) Compute c1 = f(1), · · · , cd = f(d).

4) Randomly generate zi ∈R Z
∗
Ni

for i = 1, · · · , n.

5) Compute y′i = zvi

i (α2j+1

i β2T+1−j

i γ2j+1

i )Hi(ci) mod Ni.

6) Assign c0 as the value of G(L, b, j,m, y1, · · · , yn).

7) Output (z1, · · · , zn, f, b).

The simulation fails if Step 6 causes collision, that is,
the value of c0 has been assigned before. This happens
with probability at most qG/2

ρ where qG is the number
of times that the random oracle G is queried by A.

Let Θ, Ω be the random tapes given to the signing ora-
cle and A such that A outputs a forged signature. Notice
that the success probability of A is taken over the space
defined by Θ, Ω and the random oracle G.

Assume A chooses a period j. That is, the forged
signature σj is valid for time j. The forged sig-
nature σj = (z1, · · · , zn, f, j) contains a polynomial
f where f(0) = G(L, d, j,m, y1, · · · , yn) for yi =

zvi

i (α2j+1

i β2T+1−j

i γ2j+1

i )Hi(ci) mod Ni, 1 ≤ i ≤ n. With
probability at least 1−2−ρ, there exists a query G(L, d, j,
m, y1, · · · , yn) due to the assumption of ideal randomness
of G. Split G as (G−, c0) where G− corresponds to the an-
swers to all G-queries except for c0. Rewind A to this par-
ticular point and by invoking A with (Θ,Ω, G−) and ran-
domly chosen another value c′0 (6= c0) as the reply to the
random oracle query, A outputs at least one forged sig-
nature σ′

j = (z′1, · · · , z
′
n, f

′, j) with non-negligible proba-
bility, due to the heavy-row lemma [20].

Since the random tape is the same for both forged sig-
nature, we have yπ in σj should be equal to y′π in σ′

j . That
is,

zvπ
π (α2j+1

π β2T+1−j

π γ2j+1

π )Hπ(f(π))

= z′
vπ

π (α2j+1

π β2T+1−j

π γ2j+1

π )Hπ(f ′(π)) (mod Nπ)

⇒

(
zπ

z′π

)vπ

= (α2j+1

π β2T+1−j

π γ2j+1

π )Hπ(f ′(π))−Hπ(f(π)) (mod Nπ).

Since vπ is a prime number, we have gcd(vπ , Hπ(f ′(π))
− Hπ(f(π))) = 1. Thus we can find two integers a and b
such that

avπ + b

(
Hπ(f ′(π))−Hπ(f(π))

)
= 1,

and compute

α2j+1

π β2T+1−j

π γ2j+1

π

= (α2j+1

π β2T +1−j

π γ2j+1

π )avπ

·(α2j+1

π β2T+1−j

π γ2j+1

π )b(Hπ(f ′(π))−Hπ(f(π))) (mod Nπ)

= (α2j+1

π β2T +1−j

π γ2j+1

π )avπ

·

(
zπ

z′π

)b(Hπ(f ′(π))−Hπ(f(π)))

(mod Nπ)

=

(
(α2j+1

π β2T +1−j

π γ2j+1

π )a ·

(
zπ

z′π

)b)vπ

(mod Nπ). (1)

Let
λ′ = α2j+1

π β2T +1−j

π γ2j+1

π . (2)

From Equation (2), Equation (1) becomes

λ′ =

(
λ′a ·

(
zπ

z′π

)b)vπ

(mod Nπ). (3)

From Equation (2), we also have

λ′ = (απα
2j+1−1
π )(βπβ

2T+1−j−1
π )(γπγ

2j+1−1
π )

= (απβπγπ)(α2j+1−1
π β2T+1−j−1

π γ2j+1−1
π )

= λ(α2j+1−1
π β2T+1−j−1

π γ2j+1−1
π ).

∴ λ =
λ′

α2j+1−1
π β2T+1−j−1

π γ2j+1−1
π

.

We multiply 1

α
2j+1

−1
π β

2T+1−j
−1

π γ
2j+1

−1
π

to both sides of

Equation (3), to get

λ =

(
λ′a ·

(
zπ

z′

π

)b
)vπ

α2j+1−1
π β2T+1−j−1

π γ2j+1−1
π

(mod Nπ)

=

(
λ′a ·

(
zπ

z′

π

)b
)vπ

αK1vπ
π βK2vπ

π γK1vπ
π

(mod Nπ)

=

(
λ′a ·

(
zπ

z′

π

)b
)vπ

(αK1
π βK2

π γK1
π )vπ

(mod Nπ)

=

( λ′a ·
(

zπ

z′

π

)b

αK1
π βK2

π γK1
π

)vπ

(mod Nπ). (4)

From Equation (4), by letting φ =
λ′a·

(
zπ
z′

π

)b

α
K1
π β

K2
π γ

K1
π

and ω =

vπ, M can solve the strong RSA problem for λ.
For the probability analysis, it is similar to Theorem 2

and we omit here.
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6 Conclusion

In this paper, we have suggested some solutions to the
key exposure problem in ring signature. We propose the
first forward secure ring signature scheme and the first
key-insulated ring signature scheme. Both of them allow
a (t, n) threshold setting. We have proven their security
in the random oracle model.

However, the size of the signature in both schemes
grow linear with the number of users. It is an interesting
open problem to construct a forward secure ring signa-
ture scheme or key-insulated ring signature scheme with
a constant size to the number of users.
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