
International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 145

LAMAIDS: A Lightweight Adaptive Mobile

Agent-based Intrusion Detection System

Mohamad Eid, Hassan Artail, Ayman Kayssi, and Ali Chehab

(Corresponding author: Hassan Artail)

Electrical and Computer Engineering Department, American University of Beirut

P.O.Box: 11-0236 Riad El-Solh, Beirut 1107 2020, Lebanon (Email: hartail@aub.edu.lb)

(Received May 11, 2006; revised and accepted Aug. 1, 2006)

Abstract

Intrusion detection system (IDS) has become an essential
component of a computer security scheme as the number
of security-breaking attempts originating inside organi-
zations is increasing steadily. The idea of filtering the
traffic at the “entrance door” (by firewalls, for instance)
is not completely successful since it does not allow mon-
itoring of local traffic. This paper presents a lightweight
and adaptive mobile agent-based intrusion detection sys-
tem (LAMAIDS) that detects intrusion from outside the
network as well as from inside. A main machine, being
a typical intrusion detection system residing at a secure
location, creates mobile IDS agents and dispatches them
into the network. The mobile IDS agents are equipped
with lightweight IDS capabilities and decision-making.
On each hop, the agents sniff the network traffic and look
for abnormal activities using a set of rules supplied by the
main machine. Simulation results based on real-world sce-
narios demonstrate significant improvements in terms of
detection rate, network overhead, and adaptability, scal-
ability, and fault tolerance.

Keywords: Defense systems, distributed systems, intru-
sion detection systems, mobile Agents

1 Introduction

The number of information warfare attacks has become
increasingly sophisticated. Annual reports from the Com-
puter Emergency Response Team (CERT) indicate a sig-
nificant increase in the number of computer security inci-
dents each year, with 137,529 in 2003 [5]. Added to this,
recent research has demonstrated that approximately 70%
of attacks originate inside organizations and are made by
inside users [9]. The field of Intrusion Detection has seen
a considerable amount of research and development in
response to the above challenges aimed at making Intru-
sion Detection Systems (IDSs) more effective in detect-
ing unauthorized and malicious access by computers or
computer users. Ideally, an IDS is characterized by the

following features [7]: 1) it runs continually with mini-
mal supervision and intervention from the end user, 2) is
able to operate in a hostile computing environment while
exhibiting a high degree of fault-tolerance, 3) can be con-
figured to adapt to changes in the system and to user be-
havior over time, 4) imposes a minimal overhead on the
system, 5) is able to perform data fusion and correlate
information from multiple sources.

This paper treats three main challenges that face an
IDS, namely the ability to monitor local traffic and de-
tect local intrusions, the dynamic evolvement of the detec-
tion rule-sets, and the immunity of the intrusion detection
system itself. In response to these issues, we propose the
Lightweight Adaptive Mobile Agent-based Intrusion De-
tection System (LAMAIDS) with the following features:
1) providing a highly distributed IDS, with mobile pro-
cessing units to capture and analyze relevant data asyn-
chronously and independently from the main machine, 2)
roaming the internal network, mobile agents are capable
of detecting attacks from within the network, 3) securing
against attacks targeting the IDS itself since attackers do
not know the exact locations of the mobile IDS agents, 4)
using dynamic and centrally-controlled rule-sets, meaning
that these sets can adapt to the state of the network, 5)
adapting to the severity level of the attack by increasing
the degree of monitoring traffic.

IDS systems are usually categorized according to mis-
use or anomaly detection models. With the first type, de-
tection is performed by exploiting known vulnerabilities
and attack signatures while with anomaly-based models,
detection is based on flagging when intrusive activities
lead to deviations from what is considered normal op-
erations. IDS systems are also classified as host-based,
network-based, hybrid, or distributed. Host-based sys-
tems base their decisions on information obtained from a
single host (usually audit trials). Network-based systems
deduce malicious behavior based on the format and con-
tent of data packets on the network. A hybrid system
combines both approaches while a distributed one con-
sists of multiple IDS units in the network and cooperate
to provide a global view of an attack.

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 146

The rest of the paper is organized as follows: Section
2 presents a review of related research to intrusion detec-
tion with a focus on mobile agent-based systems. Section
3 describes the various entities of LAMAIDS while Sec-
tion 4 provides a discussion of its design and implemen-
tation. Section 5 presents the performance evaluation of
the system while Section 6 presents a conclusion of the
performed work and ideas for future work.

2 Related Work

Current intrusion detection systems still face issues that
include centralization or partial distribution, static recon-
figuration, high false positive/negative rates, vulnerabil-
ity to direct attacks, limited flexibility, and lack of adapt-
ability and extensibility [27]. Given the characteristics
of mobile agents (e.g., autonomous execution, dynamic
adaptation, and scalability) and their potential to over-
come a number of limitations intrinsic to existing IDS
system [17], many mobile agent-based intrusion detection
mechanisms have been proposed. These systems focus on
distributed data collection [11, 12, 13, 14, 18], autonomous
behavior [2, 6, 8, 15, 24], and fully distributed solutions
[3, 4, 10, 22, 25, 26]. None of these efforts however shares
LAMAIDS’s abilities for dynamically updating the de-
tection mechanisms and adaptation to network security
states, nor do they include provisions to ensure their own
survivability in hostile environments.

Distributed data collection for intrusion detection sys-
tems were introduced to overcome the susceptibility of
single point data collection and detection. In [12], a
scheme is proposed where lightweight agents travel be-
tween monitored systems in a network of distributed sys-
tems, obtain information from data-processing agents,
classify and correlate information, and report the infor-
mation to both a user interface and a database, via medi-
ators. A new Mobile Agent Distributed Intrusion Detec-
tion System (MADIDS) was proposed to process the great
flow of intrusion detection data transfer in high-speed net-
works [11]. MADIDS comprises specialized agents: event
generation agents for collecting intrusion data, event anal-
ysis agents to do data analysis, event tracking agents that
track intrusions based on input from the analysis agents,
and agent server, which supervises and assigns tasks to
the agents. The NADIR system [13] performs distributed
data collection by employing the service nodes on the Los
Alamos National Laboratory’s Integrated Computer Net-
work (ICN) to collect audit information, which is then
analyzed by a central expert system. This work presents
many interesting results and considerations regarding the
collection, storage, reduction and processing of data in
large computer networks.

The approach of using autonomous agents introduced
the idea of lightweight, independent entities operating
in concert for detecting anomalous activities. The ap-
proaches described in [24] and [2] propose an architec-
ture for a distributed intrusion detection system based on

multiple independent entities. Agents are used mainly for
forming a set of lightweight software components, which
can be easily reconfigured. They look for interesting
events and report their findings to a single transceiver
that oversees their operations and reports their results to
one or more monitors that are responsible for the network.

The work in [3, 22, 25] presents a fully distributed ar-
chitecture where data collection and information analysis
are performed locally without referring to a central man-
agement unit. For instance, the architecture in [22] com-
prises two components: IDS agents and a stationary se-
cure database that supplies misuse signatures. The agents
are responsible for detecting intrusion based on local audit
data and by collaborating together to decide if the net-
work is being attacked. Each agent has a local database
that warehouses information such as signature files and
users patterns. This system requires that an agent resides
on every host, thus resulting in a potentially large num-
ber of IDS agents in the network. In a similar approach,
a large number of small-size mobile agents are deployed
in the network to do monitoring, decision-making, noti-
fication, and reaction to attempted intrusions [4]. When
an agent considers an activity suspicious, it advises the
other agents in order to activate agents with higher level
of specialization for the suspected intrusion type. Once
there is a consensus among agents about the existence of
an intrusion, a message is sent to an operator, who is sup-
posed to launch one or more reactive agents. Another ar-
chitecture that employs collaboration is proposed in [26].
Distributed intrusion detection is implemented by means
of Cooperative Security Managers (CSMs) that correlates
data collected from local IDSs and other CSMs. The se-
curity managers are implemented as stationary agents,
thus imposing a continuous overhead on the hosts they
reside on and presenting a challenge for configuring and
updating the system.

3 LAMAIDS Architecture

The system administrator initially starts the main intru-
sion detection processor (MIDP) stationary component
which in turn creates the user interface agent. The latter
prompts the user for the startup conditions of the sys-
tem (number of startup agents and their visit lists, rules
sets, severity lists, among others). The MIDP then cre-
ates agents, configures them through briefcases they carry
around, and dispatches them into the network. Once
launched, the agents perform intrusion detection and take
local measures as well as notifying the MIDP when attacks
are suspected. The MIDP may perform further analysis
of the received data and inform the user if an attack is
deemed real. Agents primarily respond to suspected at-
tacks by means of cloning to increase the level of moni-
toring in the network. When the suspicious activity sub-
sides, the cloned agents in the network become subject to
gradual disposal.

LAMAIDS comprises three primary components: the

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 147

Network Security

Administrator
 Main Intrusion Detection Processor (MIDP)

User

Interface

Detection

Engine

Database

Message Handler

Host 1
 Host 2

Mobile Agent Platform (MAP)
MAP

Interface

Mobile Agent

MAP

Interface

Mobile Agent Platform (MAP)

Sniffer

Mobile

agent

Host
N

Main machine

Message handler
Message handler

Aglet Context

Lightweigh
 Snort

(first round trip)

Briefcase

(permanent)

Figure 1: General architecture of LAMAIDS

MIDP, mobile agent platform, and distributed mobile IDS
agents. A high level view of the architecture is given in
Figure 1.

The MIDP acts as the manager of the proposed dis-
tributed framework and represents the central intrusion
detection processing and analysis unit. It cross-relates
and analyzes the multiple log files sent by the dispatched
agents, provides and updates the rule sets and severity
lists for them, and interfaces the IDS to the system admin-
istrator, among other things. The MIDP comprises four
components: detection engine, database, user interface,
and message handler. The major function of the detection
engine is the collection and correlation of IDS data from
the agents. The MIDP is mostly concerned with linking
events across the network and providing the organization
with a heuristic analysis of the status of the network. The
database contains a secure trusted repository for the mo-
bile agents to obtain latest information about attacks. It
contains attack traces or signatures (rule set) and severity
level associated with each attack (severity list). A severity
level defines the response mechanism that agents should
use when particular attacks are detected. The database
also contains credentials of existing agents in the system,
including the agent ID, its child and parent IDs (if they
exist), the agent visit list, the agent proxy, and the host
at which the agent is currently residing.

The Mobile Agent Platform (MAP) can create, inter-
pret, execute, transfer, and terminate/kill agents. The
platform is responsible for accepting requests made by
the MIDP, generating mobile IDS agents, and dispatch-
ing them into the network. The platform is a small server
program that listens for incoming agents and resides in
each host on which an agent is expected to run.

The mobile IDS agent has three primary functions:
sniffing the network traffic, performing intrusion detec-
tion, and executing cloning mechanisms. Sniffing is done
using a platform-specific library of functions while intru-

/myrule.rules

/Snort.conf

/Snortpp.c

/ddos.rules

/allLogs.txt

/alerts.txt

/allLogs.txt

Attack Name (keyword) Severity value

PORT SCAN 1

Large ICMP 2

Back Orifice 2

DNS zone transfer 3

FINGER root 3

WEB-IIS 1

DOS Bay/Nortel Nautica Marlin 1

Visit list (Vector)

atp://pc01r1:9000

atp://pc02r1:900

atp://pc03r1:9000

atp://pc04r1:9000

atp://pc05r1:9000

atp://pc06r1:9000

Figure 2: A sample briefcase

sion detection is performed by a mobile and lightweight
intrusion detection program that moves with the agent.
Cloning is the primary mechanism used by agents when
intrusion is suspected in order to increase the degree of
monitoring and hence, to increase the level of certainty
about a probable intrusion. Sniffing and detection work
in parallel, with the former continuously writing raw net-
work packets to a specific log file and the latter reading
from it. If the header or the contents of a decoded packet
matches one or more detection rules, the alerting subsys-
tem logs the alerting message to an alert text file.

As the agent moves from one host to another, it carries
with it a briefcase that contains data comprising the sever-
ity list, the visit list, the attack list, and the lightweight
IDS plus its rule set (A sample is shown in Figure 2).
The severity list identifies what the agent should do upon
detection of an attack, determines the type and volume
of logged data that the agent should send to the MIDP,
and more importantly, defines the cloning strategy. The
visit list includes the URLs of the hosts on the agent’s
itinerary and is usually updated when cloning and dis-
posal take place.

Agents communicate by message passing through prox-
ies. An agent message comprises two fields: name of
the message and optional arguments that are used for at-
taching data. Basically, messages are exchanged when an
agent is created, an agent’s briefcase is updated, an attack
is suspected, an agent is disposed, or when information is
requested by the MIDP.

Cloned or child agents are created temporarily, with a
limited lifetime, to aid in detecting intrusions. A child
agent is terminated when its life time expires but it has
to request permission from the main machine (MIDP).
If termination is granted, the agent is terminated after
handing over its network segment to its parent. A child
agent can become a parent when it clones itself, in which
case it cannot be terminated until all its children are ter-

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 148

Table 1: A cloning matrix example (n is the size of the original visit list and 1 means that cloning should definitely
occur)

n [n -1, ?n /2?] [?n /2? -1, ?n /4?] [?n /4?-1, ?n /8?] [?n /8?-1, 2] 1

1 1 >T/16 >T/8 >T/4 >T/2 -

2 >T/16 >T/8 >T/4 >T/2 >T -

3 >T/8 >T/4 >T/2 >T - -

4 >T/4 >T/2 >T - - -

5 >T/2 >T - - - -

6 >T - - - - -

Visit list size (original = n)
S

ev
er

it
y

le
v
el

minated successfully. Although requesting permission for
termination from the MIDP causes slight delays in the
termination process, it was deemed necessary to ensure
consistency in the system and to protect against miscom-
munications.

The agent uses a cloning strategy that mainly involves
three factors. These are the visit list size (a visit list size
of 1 means that the agent is stationary and cannot be
cloned), the severity level of the attack (a value between
1 (most severe) and 6 (least severe)), and the residence
time (the longer an agent has to stay at each host, the
more necessary it is to have more agents in the network).
The strategy is represented in the form of a matrix that
is shown in Table 1 for an example of 16 hosts. As shown
cloning decisions are mostly influenced by the determined
severity level, which is closely tied to the type of the at-
tack and its probability. This is however based on the
size of the visit list of the agent and its residence time, as
was justified above. The initial visit list and the residence
time (as set by a suitable threshold, T) were divided into
intervals with exponentially-increasing widths to give the
agent more freedom to clone in response to the severity
level. For example, for a severity level 1 and for a list of
n hosts, cloning is a must. For half the visit list, cloning
is to take place if the residence time is greater than T/16.

Given that the child agent inherits its capabilities from
its parent, the visit list is split in half between itself and
its parent. This will produce the effect of a binary search
when trying to localize an intrusion in the network upon
sensing that a potential one exists.

4 Implementation

The mobile agent platform that resides at each host was
implemented using the Aglets version 2.0 agent system,
chosen because of its availability, ease of use, reliable mes-
saging, dynamic routing, and support for mobile agents.
The runtime consists of a server process to handle in-
coming and outgoing aglets. The fundamental operations
in an Aglets system are creation, cloning, dispatching,

retraction, activation/deactivation, and disposal. The
Aglets system has three primary elements: the context,
the proxy, and the aglets [16]. The context is a stationary
object that provides a uniform execution environment for
aglets in an otherwise heterogeneous environment. One
node may run multiple server processes where each pro-
cess can host multiple contexts that are able to manage
multiple aglets. Incoming aglets are received and inserted
into the context by the server. Every context has a secu-
rity manager that protects the underlying host from ma-
licious aglets. The proxy interface, which is the mean by
which location transparency is achieved, provides a com-
mon way of accessing an aglet and also acts as a shield
object that protects an aglet from malicious aglets. The
aglet is an autonomous mobile Java object that has its
own thread of control. It is event driven and allows the
developer to add customized listeners into the aglet. Lis-
teners catch particular events in the life cycle of an aglet
and allow for taking corresponding actions. There are
three types of listeners, namely, clone listener, mobility
listener, and persistence listener.

4.1 MIDP Implementation

The MIDP was implemented as a java class that extends
the Aglets class. It runs snort version 2.0 [23] and in-
cludes a repository database with severity and rules in-
formation plus a helper class agents that keeps track of
running agents. One method in MIDP creates startup
agents and a second method processes incoming messages
from agents and takes corresponding actions. There are
seven basic messages that are employed to indicate agent
cloning, agent disposal requests, data requests by and
from the MIDP, attack detection, and configuration up-
dates.

4.2 Mobile IDS Agent Implementation

The mobile agent is implemented as a class whose data
members consist of two vectors for the severity list and the
attack list, a string to save the rule set file name, the proxy

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 149

Attacks

detected
? ? Agent

migrates to

next host

Child

?

YesNo
OnArrival()

Mobile IDS agent

arrives to a host

Start
Sniffer

Start Detection

Engine
Log

File

Alert
File

Cloning

? Move the URL of current
host to the end of visit list

Child

?

Yes No

Yes

No

Compute lifetime

Yes

NoYes

No Reset the lifetime
Yes

Killed

S=1 S=2 S>2
Inform the

MIDP

No

Severity level
S=? ?

Send alert
file

Lifetime
>timeout

Split the visit list

Create and
Dispatch clone

Disposal

request

Send log &

alert files

Config.

File

Record start time

Attacks

detected
? ? Agent

migrates to

next host

Child

?

YesNo
OnArrival()

Mobile IDS agent

arrives to a host

Start
Sniffer
Start

Sniffer

Start Detection

Engine
Log

File

Alert
File

Cloning

? Move the URL of current
host to the end of visit list

Child

?

Yes No

Yes

No

Compute lifetime

Yes

NoYes

No Reset the lifetime
Yes

Killed

S=1 S=2 S>2
Inform the

MIDP

No

Severity level
S=? ?

Send alert
file

Lifetime
>timeout

Split the visit list

Create and
Dispatch clone

Disposal

request

Send log &

alert files

Config.

File

Record start time

Figure 3: Life cycle of an agent on a host

of the MIDP, and an instance of the SeqItinerary.java

that implements the Itinerary.java class. The latter
defines a model for an itinerary with two abstract meth-
ods, go and hasMoreDestinations. The aglet uses the
go to dispatch itself while hasMoreDestinations is used
to check if the destinations vector contains more URLs.
SeqItinerary.java implements the abstract methods of
Itinerary and keeps track of the current destination of
the aglet. The class uses functions that return the visit
list, insert/delete a URL into/from the itinerary, and re-
turn the number of hosts on the agent’s itenerary. Con-
cerning function members, the agent’s class has six func-
tions (described in Table 2) used to catch and respond to
specific events during the lifecycle of the agent. Figure
3 represents a flow diagram for the agent lifecycle and
indicates the sequence of events it goes through.

4.2.1 Sniffing and Detection

Packet sniffing was implemented using the Jpcap Java
API, which is a set of Java classes that provide access to
low-level network data through packet capture and pro-
cessing. The sniffer may be started upon the agent’s first
visit to the host within a daemon process that runs contin-
uously. That is, the sniffer is invoked periodically, where
it runs and sleeps for a configurable time on a repeating
basis. When it runs, it writes the sniffed network packet
data to a specified log file, regardless of whether an agent

is currently running on the host or not. By controlling the
sleep time of the sniffer, agents can control the frequency
of the sniffer’s execution and hence allows for inspecting
the packets on the network more or less frequently.

Each agent carries with it a lightweight snort (LWS)
engine [20] that detects intrusions by inspecting the en-
tries in the log file that the sniffer writes to. LWS is a
scaled-down version of the full-fledged snort system that
runs against a limited rule set and dumps alerts into a text
file. It measures roughly 100 KB in its compressed source
distribution and takes around 0.5 second to be configured
and activated by an agent. During its first itinerary, the
agent installs and configures LWS on every host and thus
it can readily launch it on subsequent visits. LWS can
be easily configured and it can be instructed to deacti-
vate sniffing since it is performed by a native application
and to log alerts in ASCII format. The agent can attach
new rule files to LWS and detach others that are deemed
inapplicable since unnecessary rules lead to false positive
alerts. A rule consists of two parts: the rule header, which
comprises an action type field (log, alert, or pass), type of
packet field (TCP, UDP, etc.), and source and destination
IP addresses and ports.

4.2.2 Agent Cloning

When an agent determines that an intrusion is in progress,
it calls the onClone method. Using this method, the par-
ent retrieves the proxy of the clone and gives it a copy
of its own configuration. The parent keeps half of its
itinerary and encapsulates the other half in the UPDATE
message and sends it to the clone. Upon its creation, the
agent informs the MIDP about its existence and about
its ID, parent’s ID, and the URL of the host where it was
created. When the clone receives an acknowledgement
from the MIDP, it sets the expiration time and starts its
itinerary.

The aglet terminates after it has fulfilled its tasks and
after it has received permission from the MIDP. It does so
by invoking the dispose method which removes the agent
from its current context and kills all associated threads.
A diagram that shows the methods applicable to the clone
and its parent are shown in Figure 4.

5 Performance Evaluation

To study the feasibility of the LAMAIDS architecture, we
have conducted a series of experiments to evaluate its ef-
fectiveness. Our experiments have shown that the system
can rapidly reach an all-snort state when continuous at-
tacks are launched against the home network, and return
to the idle state when the attacks are terminated.

5.1 Simulation Setup and Procedure

The prototype network comprises a main station, 32 Win-
dows and 8 Linux workstations on which the Aglet server
was installed. The 40 computers are connected via 2

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 150

Table 2: Mobile IDS agent methods and descriptions

Method Description

Executed when the mobile IDS agent is initially created. The agent sends to
Oncreation() the MIDP a NEW AGENT message that contains the credentials of the

agent. The MIDP sends briefcase data as a reply.
OnArrival() If child, the agent saves the arrival time in a variable so it calculates the time

spent at this host before departure.
onClone() Used by the clone to set the boolean flags child and clone to true.
onCloned() After the clone is created, the parent sends half of its visit list via an

UPDATE message to its clone. The clone replies with an ack.
If child, the agent computes the residence time at the current host and
subtracts it from the timeout interval. If the result is less or equal to zero, the

onDispatch() agent sends the MIDP a DISPOSAL REQUEST. If an intrusion is detected
or if the MIDP replies with a negative ack., the remaining lifetime is reset to
the timeout.
After creation, the agent sends the MIDP a NEW AGENT message with its
credentials, sets the timeout interval, and resets the clone field if child. The
agent then creates and runs a thread for LWS. Meanwhile, it checks for alerts

Run() and sends an ATTACK DETECTED message to the MIDP with logged and
alert data if applicable. Using the cloning decision matrix, the agent decides
whether to clone or not. Upon the expiration of its residence timeout on the
host, the agent executes the go method if the visit list has more than one host.

run()

onCloning

onCloned

onClone()

run()

time

void run(CloneEvent e) {

if(!_clone) {

// the parent runs here}

else {

//sends the MIDP NEW_AGENT msg

// sets timeout interval

_clone = false; }

void onCloned (CloneEvent e) {

Message msg=new Message("UPDATE")

msg.setArg("v_list",v.getlist())

c_proxy.sendMessage(msg); }

void onClone(CloneEvent e) {

_clone = true;

_child = true; }

Pa

re

nt

Cl

on

e

run()

onCloning

onCloned

onClone()

run()

time

void run(CloneEvent e) {

if(!_clone) {

// the parent runs here}

else {

//sends the MIDP NEW_AGENT msg

// sets timeout interval

_clone = false; }

void onCloned (CloneEvent e) {

Message msg=new Message("UPDATE")

msg.setArg("v_list",v.getlist())

c_proxy.sendMessage(msg); }

void onClone(CloneEvent e) {

_clone = true;

_child = true; }

Pa

re

nt

Cl

on

e

Figure 4: Collaboration diagram for aglet cloning

switches, thus forming a switched network. All the exper-
iment results represent average values from 10 experiment
runs. For each run, all Aglet servers were restarted and
all log files were cleared.

For a realistic testing environment, attacks needed to
be interjected into a volume of background traffic. It was
prohibitively expensive to run an exhaustive test of all
known attacks, but instead, a representative attack subset
from each category was generated (equivalence partition-
ing [21]). The seven different attack types shown in Table
3 were used in the evaluation. The normal (background)
traffic is generated using the WINJET packet generator
[19] while attacks are simulated using the BLADE Soft-
ware [23]. The attack sessions that were simulated lasted
for 600 seconds.

In conducting the evaluation, the following procedure

was followed:

1) Configure the MIDP to specify the number of startup
agents and visit lists.

2) Start the MIDP and the main IDS (snort).

3) MIDP launches the specified number of agents into
the 40-host network.

4) Generation of background traffic and verification
with the network analyzer.

5) Launch specific attacks against target host(s).

6) Record and audit attack detection performance.

7) 600 seconds later, terminate the traffic generation.

8) Cleaning the alert files.

9) Repeat Steps 3 through 8 for a total of 10 trials.

10) Average and record the results.

5.2 Performance Metrics

We investigate the performance of our system along three
major dimensions, namely the ability of detection, sys-
tem adaptability, and workload capacity. Errors in de-
tection occur usually in two forms: false positives and
false negatives. System adaptability is the ability of the
system to change dynamically in response to the status
of the network by means of adjusting the agent popula-
tion to reach a compromise between detection capabilities

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 151

Table 3: Simulated attacks and their description

Attack Name Description

DoS Smurf ICMP echo reply flood, caused by an ICMP echo packet with spoofed
address (of victim) sent to a network broadcast address.

Backdoor A remote administration tool that allows almost complete control over a
Back Orifice computer by the remote attacker.
Nmap TCP Scans many ports to determine available services on a single host using
Scan. UDP packets
Finger User Allows an attacker to disrupt your network using the redirection capability

in the finger daemon.
RPC Linux Buffer overflow vulnerability exists making it possible for malformed
Statd requests by an attacker to be devised giving root privileges.
Overflow

DNS server provides information for all DNS resource records registered
DNS Zone with DNS server that can be used by attackers to better understand a
Transfer network

An attacker could send a specially crafted URL containing Unicode
HTTP IIS characters to access files and folders on the Web server with the privileges
Unicode of the IUSR account. Allow the attacker to add, delete, or modify files, or

execute commands on the server.

and workload. Finally concerning network load, we exam-
ine CPU time and network bandwidth consumption. The
CPU time depends mainly on the residence time of the
agent at a host and the number of agents. The network
bandwidth consumption is directly related to the number
of deployed agents.

5.3 Analytical Analysis

For the three performance metrics mentioned above, we
derive expressions for the probability of detection as a
function of agent population and residence time, for the
host and network resource consumption, and for the agent
population as a function of time under attack and no at-
tack situations. To start with, given a network of N hosts,
we let P be the probability that an agent and the attack
meet at a single host assuming that when they line up, the
agent will certainly detect the attack. Let L be the num-
ber of hosts assigned to each agent, Tr be the residence
time of the agent at every host, and α be the number of
agents in the network at any time. It follows that:

α =
N

L
.

5.3.1 Probability of Detection

Suppose a particular attack on one or more hosts lasts for
a period of T seconds, then a measure that indicates the
fraction of time in which the attack and the agent meet
at the same host can be expressed as:

min(T, Tr)

L × Tr

.

Now, if we designate by P i
LWS the probability that

lightweight snort can detect an attack of type i when run-
ning on a host for the duration of the attack, then the
probability of detection when the agent and the attack
meet at the same host is (assuming that T < Tr):

P i
ad = min[

P i
LWST

L × Tr

, 1].

We note that P i
LWS is a function of the rule set of

LWS and may be computed experimentally by subjecting
the host on which LWS is running to K instances of a
particular attack and then count the number of entries k
in the log file that correspond to detected attacks. In this
case, P i

LWS can simply be computed as k over K.

The probability of detection of an attack in the network
is a function of mainly two variables: L, the number of
hosts per agent (or equivalently, α, the agent population
for a given network) and the residence time Tr. More
specifically, the probability that an attack of type i is
detected at one of the L hosts is the probability that the
agent detects the attack after meeting at one host and
not meeting at all the remaining hosts. Therefore, the
probability that an attack is detected while the agent is
roaming the segment of L hosts is:

P i
d(L, Tr) = P i

ad(1 − P i
ad)

(L−1) = P i
ad(1 − P i

ad)
(N

α
−1).

Now we can compute the value of the residence time Tr

that renders the maximum probability of detection with
respect to residence time. We do this by taking the deriva-
tive of P i

d with respect to Tr and setting it to zero. After-
wards, we derive the corresponding expression for P i

d and

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 152

get

Tropt
= P i

LWS × T (1)

P i
dmax

(L) =
(L − 1)L−1

LL
. (2)

From the above, one can determine that the probabil-
ity of detection increases as function of Tr until it reaches
a maximum after which it starts to decrease. This behav-
ior reflects the fact that for small values of Tr the agent
does not have sufficient time to capture attack patterns,
thus yielding a lower Pd. After a period of Tropt the agent
would be residing at the host more than necessary, thus
missing potential attacks at other hosts, thus causing Pd

to decrease as well. On the other hand and as evident
from Equation (2), Pd(α) increases when the agent pop-
ulation α increases.

5.3.2 Resources Consumption

Resource consumption comprises two components: CPU
time consumption and network bandwidth consumption.
The host component H may be expressed as a linear func-
tion of α and Tr. It is safe to assume that the CPU
time increases linearly as the number of running agents
increases. If K1 is the average CPU time consumption
during the execution of a mobile IDS agent for a unit
time, then we can express H as

H(α, Tr) = K1αTr. (3)

On the other hand, the network component N(α) in-
volves several elements. Agents migrate from one host
to another; they send log files and alerts to the MIDP,
and exchange messages among them and with the MIDP.
Log and alert files are normally sent when attacks are
suspected and therefore can be tied to the probability of
detection Pd. Agent migration normally occurs after the
agent spends a period of Tr on the host. Lastly, an agent
will exchange M1 messages with other agents (including
its parent if it is a child) and M2 messages with the MIDP
during its stay at a host. If K2 is the average network load
consumed by the agent migration and a single connection
between two agents or between the agent and the MIDP,
we can then express N(α) by the following equation:

N(α) = 2 ∗ K2 ∗ α. (4)

If the average size of a log/alert file is SLAF , the av-
erage size of the agent including its briefcase is SAB, and
finally, the average size of the message is SM , then we can
express N as:

N(α, Tr) = (SLAF × Pd + SAB + (M1 + M2)

×SM) ×
α

Tr

Mbps.

The constant K1 is computed as follows: we run snort
and find out the memory it consumes (determined to
be 1.66 MB), then we divide by the total CPU mem-
ory (256 MB) to get K1 = 0.648%. On the other

hand, to calculate K2 we need to determine the migra-
tion bandwidth and the messaging bandwidth. The for-
mer is determined by dividing the bandwidth required
to transport the agent code (4.8 Kbps) to the over-
all network bandwidth (100 Mbps), thus agent migra-
tion consumes 4.8Kbps/100Mbps = 0.048%. The agent
communication part is the bandwidth consumed by a
typical message (along with its attachments) divided
by the network bandwidth. It was determined to be:
29.6Kbps/100Mbps = 0.0296%. Therefore, K2 becomes
the summation: 0.0296% + 0.048% = 0.0776%.

5.3.3 Adaptability - Agent Population

The adaptability of the system is defined as the change in
agent population in response to the conditions of the net-
work from an intrusion point of view. During attacks, the
number of agents must increase to provide better moni-
toring of the attacks and decrease during no-attack situa-
tions. We derive expressions for two scenarios: when the
attack is targeting one host and when it is targeting all
hosts.

In the first scenario, the agent population is assumed
to be constant at N

L
at startup time (t = 0). Immediately

after (t = ta), attacks are launched at one particular host
causing the number of agents to double roughly every resi-
dence time period (Tr). Consequently, the system reaches
the all-snort state after a short period of time (i.e., the
agent population becomes equal to the number of hosts
in the network: Na(t) = N). Therefore the transient
interval starts at t = 0 and ends at t = (L

2 − 1) ∗ Tr dur-
ing which the agent population is doubled every Tr. This
behavior can be expressed in the following equation:

Na(t) =







N
L

, t = 0
2b t

Tr
c − 1 + N

L
, 0 < t ≤ dlog2(L)e × Tr

N
L

+ L − 1, t > dlog2(L)e × Tr.

When targeting all hosts, it is assumed that continu-
ous attacks are launched against all hosts. The time t = 0
corresponds to the instant when the attacks start. After-
ward, the agent population increases linearly with time
(every residence time interval Tr) till the point where an
agent resides all the time on the victim host, after which
the agent population remains constant. Mathematically,
this can be represented by the following equation (Here,
we assume that L ≤ 2n, such that: 2n−1 ≤ L ≤ 2n):

P (t) =







N
L

, t ≤ 0
N
L
× b2

1

Tr c, 0 < t ≤ dlog2(L)e × Tr

N, t > dlog2(L)e × Tr.

For every attack type in Table 3, 50 experiments were
run. Each experiment corresponded to one value of Tr

starting from 1 second and finished with Tr = 50 seconds,
and in which attacks were launched continuously using
BLADE while subjecting all hosts to simulated traffic us-
ing WINJET.

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 153

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Agent population

P
ro

b
a

b
ili

ty
 o

f
d

e
te

ct
io

n

Mathematical model Backdoor Back Orifice
DNS Zone Transfer Finger User S.
RPC Linux Statd Overflow. DOS SMURF
HTTP IIS Unicode NMAP TCP SCAN

Figure 5: Probability of detection vs. agent population
(po = 0.986, T r = 50s, N = 40)

5.4 Experimental Results

5.4.1 Probability of Detection

The detection rate is determined as follows: every attack
type in Table 3 is launched continuously while targeting
one host per segment, and the total number of alarms re-
porting the launched attack from the alert files is collected
and then associated with the number of deployed agents
and the residence time. This number of detected attacks
is then divided by the number of actual attacks that were
launched. Finally, the average detection rate is computed
by summing the detection rates across all hosts and di-
viding by the number of hosts. For every value of α, a
value of Tr is computed in accordance with Equation (1).
This computed value is then used to configure the time
that each agent should spend on each host under no at-
tack situations. We produced a set of curves as shown in
Figure 5, which also includes the probability of detection
as calculated in Equation (2). Notice that the ideal curve
produced from the mathematical model derived above is
also plotted.

The residence time increases as the number of missed
attacks decreases since agents will spend enough time at
a host to capture attacks, thus the probability of detec-
tion increases. When the residence time increases more
than necessary (after Tr = 14 sec. in our case), the agent
will be wasting time on some hosts while attacks are on
others. For this reason, the number of missed attacks
starts to increase again, thus causing the probability of
detection to decrease. This behavior was obtained from
the performance data presented in Figure 6. The opti-
mum Tr ranges from 6 to 13 seconds while ideally Tr was
computed to be 12.755 seconds.

5.4.2 Resources Consumption

The computed average CPU time is based on the following
calculations: we determine the total CPU percentage re-
quired to run threads of all existing mobile agents. Then

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46

Residence Time (sec)

P
ro

b
a
b
ili

ty
 o

f
d

e
te

c
ti
o
n

Mathematical model Backdoor Back Orif ice
DNS Zone Transf er Finger User S.
RPC Linux Statd Ov erf low. DOS SMURF
HTTP IIS Unicode NMAP TCP SCAN

Figure 6: Probability of detection vs residence time (α =
10, N = 40, and po = 0.0196)

0

5

10

15

20

25

1 5 9 13 17 21 25 29 33 37
Number of Start-up Agents.

H
o
s
t
R

e
s
o
u
rc

e
s
 C

o
n
s
u
m

p
tio

n
 (

%
)

Host Resources Mathematical Model

Figure 7: Host resources consumption versus number of
start-up agents

we add up and divide by the total number of hosts in the
network (If we have 5 agents running and each consumes
12% of the CPU time, then the average CPU time will
be: (5 ∗ 12%)/40+20%, where 20% is the CPU time con-
sumed by running the MIDP at the central machine. The
results are shown in Figure 7 where, on the same figure,
Equation (3) is plotted.

The network resources are computed as follows: we
determine the bandwidth required to transmit a single
typical message from an agent to the MIDP, then divide
by the bandwidth of the network and multiply by 100.
The results and Equation (4) are plotted in Figure 8.

5.4.3 Adaptability - Agent Population

Targeting All Hosts: This experiment tests the hypothesis
that the agent population increases linearly as a function
of log2(t). At t = 0 we launch continuous attacks that
target all hosts. Whenever an agent clones, we record the
time and the resulting number of agents; this continues
until we reach the all-snort state after which the agent
population remains constant (at 20). Two startup cases
were tested: the first case is when every agent was initially
assigned 20 hosts (α = 2 and N = 40) and in the second
case every agent was initially assigned 6 hosts (α = 7 and

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 154

0

1

2

3

4

5

6

7

1 5 9 13 17 21 25 29 33 37

Number of Start-up Agents.

N
e
tw

o
rk

 B
a
n
d
w

id
th

 C
o
n
s
u
m

p
tio

n

(%
)

Mathematical Model Experimental Results

Figure 8: Network resources consumption versus number
of start-up agents

0

5

10

15

20

25

5 25 45 65 85 105 125 145 165 185
Time (mseconds)

A
g

e
n

t
p

o
p

u
la

ti
o

n
 p

e
r

s
e

g
m

e
n

t

Backdoor Back Orif ice DNS Zone Transfer
DOS Smurf Finger User
NMAP TCP SCAN RPC Linux statd overf low
HTTP IIS Unicode 1 S Mathematical model

Figure 9: Agent populations vs. time (targeting all hosts):
N = 40, L = 10

N = 40). The plots for the two cases are shown in Figure
9 and include the ideal pattern of agent population versus
time in each case.

Targeting One Host: Initially, an attack was launched
against one host where N = 40. The residence interval
Tr was 30 seconds. Whenever cloning takes place, we
record the time and plot the number of agents versus time
when the agent roams a segment of 20 hosts (illustrated
in Figure 10).

5.4.4 False Positive Rates

The false positive rate is defined as the percentage of de-
cisions in which normal data are flagged as anomalous. It
is calculated as follows: we determine the total number
of false alarms stored in the alert files collected by dis-
patched agents and divide by the total number of alerts
recorded in the alert file. Finally, we compute the average
false positive rate by summing such false positive rates at
every host in the segment and divide by the number of

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 25 45 65 85 105 125 145 165 185 205

Time (msec)

A
g

e
n

t
p

o
p

u
la

ti
o

n
p

e
r

s
e

g
m

e
n

t

Backdoor Back Orifice DNS Zone Transfer
DOS Smurf Finger User
NMAP TCP SCAN RPC Linux statd overflow
HTTP IIS Unicode 1 S Mathematical model

Figure 10: Agent population when one host was targeted

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of start-up agents

F
a
ls

e
 p

o
s
iti

v
e
 r

a
te

Backdoor Back Orifice DNS Zone Transfer
Finger User S. RPC Linux Statd Overflow.
DOS SMURF HTTP IIS Unicode
NMAP TCP SCAN

Figure 11: False positive rate versus the number of start-
up agents (Tr = 20sec.)

hosts in the network. We obtain the curves in Figure 11.
We notice that all the tested attacks produced negli-

gible false positive rates. However, the detection of DNS
Zone Transfer attack results in high false positive rate.
This event indicates that an outside host requested a zone
transfer from an internal DNS server, which can be legit-
imate traffic from a secondary DNS server, or an attacker
gathering information about your domain, thus making
the detection rules false positive prone.

False positive rates were also plotted against the res-
idence time. The attacks were launched manually and
randomly, and the averages of 10 runs were recorded. The
results are shown in Figure 12. We noticed that almost all
the tested attacks produced constant false positive rates
versus residence time (the exception is the Backdoor Back
Orifice attack).

5.4.5 LAMAIDS versus All-snort Configuration

In this section, the performance of LAMAIDS has been
compared with that of all-snort configuration. All-snort

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 155

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 6 11 16 21 26 31 36 41 46
Residence time (seconds)

F
a
ls

e
 p

o
s
it
iv

e
 r
a
te

Backdoor Back Orif ice DNS Zone Transfer
Finger User S. RPC Linux Statd Overf low .
DOS Smurf HTTP IIS Unicode
NMAP TCP SCAN

Figure 12: False positive rate versus residence time (α =
4, N = 40)

0.038

0.13

0.38

0.138

0.188

0.71

0.005
 0.005

0.075

0.15

0.095
0.108

0.6

0.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Backdoor

Back

Orifice

DNS Zone

Transfer

Finger

User

RPC Linux

Statd

Overflow

DoS

Smurf

HTTP IIS

Unicode

Nmap

TCP Scan

Attack type

F
a

ls
e

 p
o

s
it
iv

e
 r

a
te

All-Snort State
 LAMAIDS

Figure 13: False positive rates: LAMAIDS vs. all-snort
state (α = 2, N = 20, T r = 50sec)

configuration means that snort exists on every host in
the network and is running at all times. We focus our
comparison on three criteria: the detection ratio, the false
positive ratio, and the CPU time consumption.

From Figure 13, we can see that the false positive ratio
of our adaptive system is significantly lower compared to
that of the all-snort system. Adaptive mechanisms used
by the agents can change normal profiles correspondingly,
enabling our IDS to suit the environment better. False
positives can be reduced correspondingly. If an agent de-
tects an attack, it will report it to the MIDP, which in
turn informs neighbor agents about the specific attack.
Therefore, agents will be focused on specific patterns and
can expect the type of attacks taking place in real time.

We observe from Figure 14 that the detection ratio of
LAMAIDS is slightly less than that of the all-snort con-
figuration. This is due to the fact that while agents are
snorting some hosts, other hosts are being susceptible to

0.998
0.973
0.988
0.977
0.998
 1
 0.965

0.926

0.86

0.91

0.7896

0.93
0.94
 0.956

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Backdoor

Back

Orifice

DNS Zone

Transfer

Finger

User

RPC Linux

Statd

Overflow

DoS Smurf
 HTTP IIS

Unicode

Nmap

TCP Scan

Attack Name

D
e
te

c
ti
o
n
 r

a
ti
o

All-Snort State
 LAMAIDS

Figure 14: Detection rates: LAMAIDS vs. all-snort (α =
2, N = 20, T r = 50sec)

attacks and left unprotected. Therefore, LAMAIDS will
miss some of the launched attacks. We observe that at-
tacks requiring shorter running time are more likely to be
detected by LAMAIDS than attacks with longer running
time. This is due to the effect of the residence time of the
agent at any host.

From the two graphs in figures 13 and 14, we get the
detection-to-false-positive ratio as a function of the attack
types. We realize that this ratio is higher in LAMAIDS
than the all-snort configuration for almost all the attacks.
Therefore, it is clear that the gain we obtained from false
positive improvements is much larger than the loss due to
detection ratios.

Concerning the network resources consumption,
LAMAIDS outperforms the all-snort configuration since
it does not necessitate running snort all the times but
on a need basis. Knowing that a main challenge of ex-
isting intrusion detection systems is to decrease the false
positive rates, the main benefit of our adaptive system
is to lower the false positive ratio and network resources
consumption, while maintaining a good detection rate.

6 Conclusion

We presented an architecture for distributed intrusion de-
tection and defense system based on mobile agents that
detects intrusions from outside and inside a network seg-
ment. The system is shown to be efficient, robust, and
flexible. The system potentially reduces the massive
amount of distributed log data moved among the inner
nodes of a conventional IDS. Having mobile IDS agents
visit hosts and doing intrusion detection locally is well
suited to the ability of mobile agents to move the com-
putation to the data, thus reducing network load. Fur-

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 156

thermore, the developed architecture implements robust
and attack-resistant IDS (inherited from agent mobility).
There is no single vulnerable point of failure. As agents
are less susceptible to direct attacks, can clone for redun-
dancy or replacement, and operate independently and au-
tonomously from where created.

References

[1] J. S. Balasubramaniyan, J. O. G. Fernandez, D.
Isaco, E. Spafford, and D. Zamboni, “An architecture
for intrusion detection using autonomous agents,” in
Proceedings of the 14th IEEE Computer Security Ap-
plications Conference (ACSAC ’98), pp. 13-24, Dec.
1998.

[2] J. Balasubramaniyan, J. G. Fernandez, D. Isacoff, E.
Spafford, and D. Zamboniy, “An architecture for in-
trusion detection using autonomous agents,” in Pro-
ceedings of the 14th Annual Computer Security Ap-
plications Conference, pp. 13-24, 1998.

[3] J. Barrus and N. Rowe, “A distributed autonomous-
agent network-intrusion detection and response sys-
tem,” in Proceedings of the 1998 Command and Con-
trol Research and Technology Symposium, pp. 577-
586, 1998.

[4] M. Bernardes and E. Moreira, “Implementation of an
intrusion detection system based on mobile agents,”
in Proceedings of the International Symposium on
Software Engineering for Parallel and Distributed
Systems, pp. 158-164, 2000.

[5] CERT Coordination Center, CERT/CC
Statistics for 1988 through 2004.
(http://www.cert.org/stats/cert stats.html#incidents)

[6] M. Crosbie and G. Spafford, Active Defense of a
Computer System Using Autonomous Agents, Tech-
nical Report 95-008, pp. 47907-1398, COAST Group,
Department of Computer Sciences, Purdue Univer-
sity, West Lafayette, Feb. 1995.

[7] M. Crosbie and G. Spafford, Active Defense of a
Computer System Using Autonomous Agents, Tech-
nical Report 95-008, pp. 47907-1398, COAST Group,
Department of Computer Sciences, Purdue Univer-
sity, West Lafayette, Feb. 1995.

[8] M. Crosbie and E. Spafford, “Defending a computer
system using autonomous agents,” in Proceedings of
the 18th National Information Systems Security Con-
ference, Oct. 1995.

[9] CSI/FBI, Issues and Trends: 1999 CSI/FBI Com-
puter Crime and Security Survey, 1999, Aug. 30
2004. (http://www.gocsi.com)

[10] S. Fenet and S. Hassas, “A distributed intrusion de-
tection and response system based on mobile au-
tonomous agents using social insects communication
paradigm,” Electronic Notes in Theoretical Com-
puter Science, vol. 63, pp. 43-60, 2001.

[11] L. Guangchun, L. Xianliang, L. Jiong, and Z. Jun,
“MADIDS: A novel distributed IDS based on mo-

bile agent,”ACM SIGOPS Operating Systems Re-
view, vol. 37, no. 1, pp. 46-53, Jan. 2003.

[12] G. Helmer, J. Wong, V. Honavar, L. Miller, and Y.
Wang, “Lightweight agents for intrusion detection,”
Journal of Systems and Software, vol 67, no 2, pp.
109-122, Aug. 15, 2003.

[13] J. Hochberg, K. Jackson, C. Stallings, J. F. McClary,
D. DuBois, and J. Ford, “NADIR: An automated
system for detecting network intrusion and misuse,”
Computers & Security, vol. 12, no. 3, pp. 235-248,
May 1993.

[14] W. Hunteman, “Automated information system-
(AIS) alarm system,” in Proceedings of the 20th
NIST-NCSC National Information Systems Security
Conference, pp. 394-405, 1997.

[15] J. Koza, Genetic Programming: On the Program-
ming of Computer by means of Natural Selection,
MIT Press, 1992.

[16] D. Lange and M. Oshima, Programming and De-
ploying Java Mobile: Agents with Aglets, Addison-
Wesley, 1998.

[17] Objectspace Voyager Core Package Ver-
sion 1.0 Technical Overview, 1997.
(http://www.objectspace.com/voyager/whitepapers/
VoyagerTechOview.pdf)

[18] P. A. Porras and P. Neumann, “EMERALD: Event
monitoring enabling responses to anomalous live dis-
turbances,” in Proceedings of the 20th National In-
formation System Security Conference, pp. 353-365,
1997.

[19] M. Roesch, “Snort - lightweight intrusion detection
for networks,” in Proceedings of the 13th Systems
Administration Conference-LISA ’99, pp. 229-238,
USENIX, Nov. 1999.

[20] M. Roesch, Snort - Lightweight Intrusion Detection
for Networks, A white paper on the design features of
Snort 2.0, 2004. (http://www.sourcefire.com /tech-
nology/whitepapers.html)

[21] Smashing the Stack for Fun and Profit, Aleph1,
Phrack #49, 2004. (http://www.phrack.com)

[22] A. Smith, “An examination of an intrusion detec-
tion architecture for wireless ad hoc networks,” in
Proceedings of the 5th National Colloquium for In-
formation System Security Education, May 2001.

[23] The Snort Intrusion Detection System, Mar.15 2004.
(http://www.snort.org)

[24] E. Spafford and D. Zamboniy, “Intrusion detection
using autonomous agents,” Computer Networks, vol.
34, no. 4, pp, 547-570, Oct. 2000.

[25] G. White, E. Fisch, and U. Pooch, “Cooperating se-
curity managers: A peer-based intrusion detection
system,” IEEE Network Magazine, vol. 10, no. 1, pp.
20-23, 1996.

[26] G. White, E. Fisch, and U. Pooch, “Cooperative se-
curity managers: A peer-based intrusion detection
system,” IEEE Network Magazine, vol. 10, no. 1, pp.
20-23, Jan. 1996.

International Journal of Network Security, Vol.6, No.2, PP.145–157, Mar. 2008 157

[27] R. Zhang, D. Qian, C. Ba, W. Wu, and X. Guo,
“Multi-agent based intrusion detection architecture,”
in Proceedings of the IEEE International Conference
on Computer Networks and Mobile Computing, pp.
494-504, 2001.

Mohamad Eid is currently a PhD
student in the Multimedia and Com-
munication Research Lab (MCRLab)
at the University of Ottawa, where he
is doing research in the field of haptic
technologies and applications. He re-
ceived his Bachelor of Engineering in
Electronics and Communications from

Beirut Arab University (BAU) in 2002. He received and
the Master of Engineering in Computer and Communica-
tion Engineering from the American University of Beirut
(AUB) in 2005.

Hassan Artail Worked as a system
development supervisor at the Scien-
tific Labs of DaimlerChrysler, Michi-
gan before joining AUB in 2001. At
DaimlerChrysler, he worked for 11
years in the field of software and sys-
tem development for vehicle testing
applications, covering the areas of in-

strument control, computer networking, distributed com-
puting, data acquisition, and data processing. He ob-
tained a B.S. and M.S. in Electrical Engineering from the
University of Detroit in 1985 and 1986 respectively and
a Ph.D. from Wayne State University in 1999. His re-
search is in the areas of Internet and mobile computing,
distributed computing and systems, and computer plus
network security.

Ayman I. Kayssi was born in
Lebanon in 1967. He received his
BE with distinction in 1987 from
the American University of Beirut,
Lebanon and the MSE in 1989 and
PhD in 1993 from the University of
Michigan, Ann Arbor, USA, all in elec-
trical engineering. He is currently pro-

fessor and chairman of electrical and computer engineer-
ing at the American University of Beirut, where he has
been working since 1993. His research and teaching in-
terests are in the areas of internet engineering, wireless
networking, CAD for VLSI, modeling and simulation.

Ali Chehab received his Bachelor de-
gree in EE from the American Univer-
sity of Beirut (AUB) in 1987, the Mas-
ter’s degree in EE from Syracuse Uni-
versity, and the PhD degree in ECE
from the University of North Carolina
at Charlotte, in 2002. From 1989 to
1998, he was a lecturer in the ECE De-

partment at AUB. He rejoined the ECE Department at
AUB as an assistant professor in 2002. His research inter-
ests are VLSI design and test, mobile agents, and wireless
security.

