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Abstract

Network attacks are commonplace in the Internet. One
of the defense mechanisms against the network attacks is
using a baseline profile established during normal opera-
tion to detect the traffic that deviates from the baseline
profile. However, this approach works only if there is
a stable base profile representing the legitimate network
traffic. Although there has been some preliminary re-
search, the details of profiling, such as the profile format,
its size and the traffic stability by site or time, have not
been widely available. In this study, we analyze actual
traffic traces from two Internet traffic archives and verify
the traffic stability by various aspects. The analysis shows
that there are significant differences in the traffic patterns
among different sites. In addition, there are some differ-
ences between different time of day or different days, even
within a site, suggesting that different profiles are needed
for different times. The result of this study can be used
practically to anomaly-based IDS for determining the sta-
bility of the traffic for a particular site, and the number
of required traffic profiles based on the traffic patterns.

Keywords: Denial-of-Service Attack, Internet traffic pro-
file, network security

1 Introduction

Network attacks are commonplace in the Internet nowa-
days. Especially the Distributed Denial-of-Service
(DDoS) became a great threat [16]. In DDoS attack, a
large number of attack packets are sent to the victim net-
work to exhaust the victim network resources. One of
the defense mechanisms against such attacks is filtering
the packets that deviate from the normal traffic [1, 4, 13].
The baseline traffic profile is collected during the nor-
mal operation. This method has been used for anomaly-

∗A preliminary version of this work appeared in proceedings of
international conference on Information Technology: New Genera-
tions (ITNG 2006).

based IDS [12, 13] and DDoS attack filtering schemes
[5, 6, 8, 9, 10, 15]. The Intrusion Prevention Systems
(IPS) based on the traffic anomaly detection are called
rate-based IPSs and some commercial devices have been
developed [2, 3, 18, 19].

One may argue that it is relatively straightforward for
a sophisticated attacker to learn the approximated dis-
tribution of some attributes, e.g. protocol-type, TCP-
flag pattern and packet-size, based on publicly available
data on Internet traffic characteristics. Thus the attacker
may be able to generate the traffic pattern accordingly to
circumvent the baseline profile-based detection schemes.
However, distributions of the other attributes, such as
TTL, source IP-prefixes, or server-port distribution, are
expected to be site-dependent and thus more difficult for
an outside attacker to learn such information. For in-
stance, it is quite difficult for an outsider to determine the
joint-distribution of source-IP-prefix and the TTL value
for a given site. As long as there exists profiling infor-
mation which is known only to the site/network-operator
but not to the attacker, our scheme can use this infor-
mation as the basis to differentiate among attacking and
legitimate packets.

The greatest challenge in the baseline profile-based
schemes is the validity of the traffic stability. It has been
known that there is a distinct traffic pattern in terms of
packet attribute value distribution for a particular time
and/or day for a given subnet [7, 11]. In general, the nom-
inal traffic profile is believed to be a function of time which
exhibits periodic, time-of-day, day-of-the-week variations
as well as long-term trend changes. However, the base-
line profiling mechanisms, the stability of periodic traffic
patterns and per-site traffic pattern differences have not
been adequately studied yet. In this research, we study
whether there are unique traffic characteristics for dif-
ferent sites and different times using recent packet trace
data.
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Table 1: An example of a base profile

TTL Period Period Period Period Profile

Value 1 2 3 4

1 0.5% 0.8% 1.1% 0.3% 1.1%

2 0.7% 0.5% 0.6% 0.8% 0.8%

2 3.0% 3.5% 2.4% 2.9% 3.5%

. . . . . . . . . . . . . . . . . .

255 1.3% 1.2% 0.9% 1.2% 1.3%

2 Collecting Baseline Profile

For different application or products, different set of base
profiles can be collected and the profile format may also
vary. In this research, we consider a set of marginal and
joint distributions of various packet attributes. Candi-
date packet attributes considered to be useful for traffic
profiling include: marginal distributions of the fractions
of packets having various (1) IP protocol-type values, (2)
packet size, (3) server port numbers, i.e., the smaller of
the source port number and the destination port num-
ber, (4) source/ destination IP prefixes, (5) Time-to-Live
(TTL) values, (6) IP/TCP header lengths, and (7) TCP
flag patterns. It is worthwhile to employ the joint distri-
bution of the fraction of packets having various combina-
tions, such as (8) packet-size and protocol-type, (9) server
port number and protocol-type, as well as (10) source IP
prefix and TTL values, etc. Other useful candidates are
the fractions of packets which (11) use IP fragmentation
and (12) bear incorrect IP/TCP/UDP checksums.

During the baseline profiling period, the number of
packets with each attribute value is counted and the cor-
responding ratio is calculated. However, if the profile is
created only once from the entire traffic, temporally lo-
calized traffic characteristics may be misrepresented. To
avoid this situation, the ratios of attribute values are mea-
sured over multiple periods, and one value representing all
the periods is selected. Specifically, to accommodate an
occasional surge of particular attribute values in legiti-
mate traffic, the highest ratio among the periodic ratios
is selected. Table 1 illustrates this process with an exam-
ple of TTL values. The boldface values are the highest
ratios observed among the periodic values, which are then
stored in the profile.

Due to the number of attributes to be incorporated
in the profile and the large number of possible values of
each attribute, especially for the joint attributes, an ef-
ficient data structure is required to implement the pro-
file. Towards this end we propose to use iceberg-style pro-
files where only the most frequently occurring items are
stored. Two approaches are possible for selecting iceberg
items, i.e., by static threshold and by adaptive thresh-
old. In the static threshold approach, the profile only
includes those entries which appear more frequently than
a preset percentage threshold, say x%. For entries which
are absent from the iceberg-style profiles, we use the up-
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Figure 1: Adaptive thresholding

Table 2: Profile storage requirements for different iceberg
selection methods

Threshold Storage Relative Storage
Type Requirements Requirements

(Kbytes) (Kbytes)

Static threshold 13.6 1.0

Adaptive 90% threshold 76.0 5.6

Adaptive 95% threshold 127.8 9.4

Adaptive 99% threshold 288.3 21.2

per bound, i.e., x% as their relative frequency. In the
adaptive threshold approach, as described in Figure 1,
the most frequently appearing attribute values that con-
stitute a preset coverage of the traffic, e.g., 95%, are se-
lected first. The corresponding iceberg threshold value
x% is determined separately for each marginal/ joint dis-
tribution so that y% of the overall entries observed in the
baseline trace are covered by the iceberg histograms. The
adaptive threshold is also used for the threshold of the
absent items.

With such iceberg-style profiles, the nominal profile
can be kept to a manageable size. Typical storage require-
ments for storing six single attributes and two joint at-
tributes are summarized in Table 2 for different threshold
methods. For the static threshold, we used 0.01, 0.001 and
0.0001 respectively for single attribute, two-dimensional
and three-dimensional joint attributes.

3 Traffic Profile Stability

3.1 Stability within a Trace

To validate our claim of the relatively “invariant” na-
ture of the distribution of the above packet attributes,
we have conducted extensive statistical analysis on real-
life Internet traces collected from the traffic archive of
the WIDE-project [14]. Figure 2 (a)-(d) show the time
variation of the distribution of various packet attributes
values observed from a moderately loaded wide area net-
work link. For each attribute, the relative frequency of
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its values is computed every 10 minutes for the period
between May 10, 1999 8:00pm and May 11, 2:00pm for a
total of 108 non-overlapping periods. Figure 2 (a) shows
the time-variation of the distribution of TTL values. In
particular, the ends of the error-bar correspond to the
maximum and minimum fraction observed for the given
TTL value over the aforementioned 18-hour interval and
the black-dot represents the average. The correspond-
ing time-varying distributions for protocol-type, packet-
size, TCP-flag pattern, server port number (smaller of the
source port number and the destination port number) and
16-bit source IP prefix are shown in Figure 2 (b)-(f) re-
spectively.

Notice from Figure 2 that while the ratio of an at-
tribute value does vary over the 18-hour period, it varies
usually within a relatively small range. As the ratio is con-
centrated in a smaller range, the more stable the attribute
value is. To measure the stability within one profile, we
use the following metric.

SP =
Σµi>fσi/µi

N

where σi is the standard deviation and µi is the average
for each attribute value over t periods (i is for attribute
value), and N is number of attribute values where µi > f
(f is the threshold value for choosing the iceberg values)

For example, if SP is 0.5, most of the attribute values
vary within 50% of the average (i.e. σ = 0.5 ∗ µ). The
lower SP is, the more stable the attribute is. Here are the
actual values of SP with TTL.

• When covering 100%, SP = 1.39;

• For the icebergs when f = 0.001, SP = 0.58;

• For the icebergs when f = 0.01, SP = 0.42.

In other words, for the iceberg items that occupy more
than 0.01 of the total packets, their fraction varies only
within 42% of the average value.

3.2 Stability among Different Times and

Sites

To further verify traffic profile stability with more recent
data, we conducted a stability analysis with the packet
trace data available from NLANR packet trace archives
[17]. All trace data were collected for 90 seconds from 17
sites within the United States with the link speed ranging
from OC-3 to OC-48. We randomly selected the four sites
in Table 3 and total of 49 trace files were downloaded for
analysis. Table 4 shows general statistics for 10 selected
traces.

A quick examination of Table 4 reveals that each site
has a distinct traffic composition. Especially, we observed
that the traffic in AIX is mostly GRE rather than TCP
or UDP. For each trace, a profile was created using a
99% adaptive coverage method over a series of 10-second
windows. We employed only one joint attribute composed
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Table 4: Statistics of some downloaded traces

Time File Total # Ave. # Bandwidth Traffic composition
File Name Date (24H) Size packets packets (Mbps)

(MB) (1000) (1000) TCP UDP ICMP

MEM-1127750202-1.tsh 9/26/05 Mon 9:12 8.4 197.352 2.381 11.889 0.926 0.060 0.008

MEM-1127791306-1.tsh 9/26/05 Mon 21:10 7.3 171.343 2.066 13.457 0.899 0.086 0.009

MEM-1124810381-1.tsh 8/23/05 Tue 8:28 9.9 231.021 2.787 14.246 0.939 0.053 0.005

MEM-1125415231-1.tsh 8/30/05 Tue 8:35 6.5 151.524 1.827 7.609 0.834 0.147 0.012

AIX-1127750202-1.tsh 9/26/05 Mon 9:31 0.5 12.116 0.149 0.417 0.000 0.000 0.000

AIX-1127835595-1.tsh 9/27/05 Tue 8:42 0.5 12.397 0.158 0.267 0.002 0.000 0.001

AMP-1127747110-1.tsh 9/26/05 Mon 8:13 31.0 739.100 9.157 50.311 0.850 0.140 0.003

AMP-1127836180-1.tsh 9/27/05 Tue 8:58 21.0 496.516 6.140 36.308 0.922 0.075 0.002

PSC-1127747111-1.tsh 9/26/05 Mon 8:38 163.0 3799.190 47.051 276.604 0.849 0.132 0.018

PSC-1127836180-1.tsh 9/27/05 Tue 9:37 136.0 3171.690 39.570 233.482 0.864 0.113 0.022

Table 3: Trace data sites from NLANR

Site Location Link Speed # of traces
analyzed

AIX NASA Ames to OC12 28
MAE-West (655 Mbps)

AMP AMPATH, Miami, OC12 7
Florida (655 Mbps)

MEM University of OC3 7
Memphis (155 Mbps)

Pittsburgh OC48
PSC Supercomputing (2.5 Gbps) 7

Center

of Protocol type, server port, packet size because joint
attributes are more unique per site than single attributes.

For an objective comparison of two profiles, we define
the stability metric SC as follows:

SC = C × D.

C indicates how many items are common to both pro-
files:

C =
(# of common items in both profiles = n

(# of total items in both profiles)
.

D indicates how closely these common items are re-
lated. For example, the two profiles may have 3% vs.
1.7%, or 3.2% vs. 2.9% for a given attribute value. Ob-
viously the latter shows a stronger resemblance. For an
item i that is in both profiles, the comparison ratio is de-
fined as the smaller (Rsmall(i)) of two values divided by
the larger (Rlarge(i)) of two values. D is defined as the
average of the comparison ratios. When the comparison
ratio is too small, e.g., below 0.01, we consider it 0.

D =
Σn

i=1
Rsmall(i)
Rlarge(i)

n
.

SC varies between 0 and 1, from no stability to perfect
stability. When two profiles are exactly the same (C = 1

and D = 1), SC becomes 1. When there are no common
items (C = 0) or the comparison ratios are zero for all
of the common items (D = 0), SC becomes zero. We
believe that this SC metric is more accurate than the
usual correlation coefficient due to many absent attribute
values in the iceberg style profile. For a better comparison
of the stability at low SC values, we define SL as a log
version of SC :

SL = log
10

10C × log
10

10D, SL = 0, if C ≤ 0.1 or D ≤ 0.1.

For stability analysis, one reference profile was com-
pared with other profiles and the SL value is calculated.
The selected reference profile is from the MEM trace of
Tuesday, September 27, 2005, 8:49 a.m. We investigate
the following questions.

• Are the profiles similar for the 10-second windows
within a 90-second trace?

• Are the profiles similar between mornings and
evenings at the same site?

• Are the profiles similar over multiple weeks at the
same time of a specific day? (e.g., 8:00 p.m. every
Tuesday)

• Are the profiles different at different sites at the same
date and time?

The analysis results are shown in Figure 3. In Figure
3(a), the profile of the first 10-second window is com-
pared with other 10-second window profiles. It indicates
that there is strong correlation among the 10-second win-
dows, thus validating the SL metric. Figure 3(b) com-
pares seven profiles from September 26, 2005 to October
2, 2005 at approximately 9:00 a.m. (morning) and 8:00
p.m. (evening) each day. It indicates that there is moder-
ate correlation among the daily profiles, although weaker
than within the same trace. It should be noted that when
the Tuesday profile is compared with itself, the SL = 1. It
also shows that there is a higher correlation for the same
time of day (approximately 9:00 a.m.) than at a different
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Figure 3: Stability Comparison

time of day (approximately 8:00 p.m.). Figure 3(c) com-
pares the profiles for seven Tuesdays at the same time
of day (approximately 9:00AM) from August 23, 2005 to
October 11, 2005. Although it spans seven weeks, it still
shows a similar correlation to the short-term profiles of
9:00 a.m. as in Figure 3(a). These seven Tuesday morn-
ing profiles are slightly closer than the evening profiles
in Figure 3(b). In all cases within the same site, the SL

is generally above 0.4. However in Figure 3(d), the SL

is much lower when compared with other sites, showing
much weaker correlation.

In summary, we observe that traffic profiles are most
similar among on the same day at the same time, even
over multiple weeks. A traffic profile is still very similar
for a different time or day within a site, although stability
is slightly lower than the same time of day. On the other
hand, there are considerable differences among different
sites, so it is necessary to keep separate profiles for each
site. By tracking S, we can determine the stability of the
profiles for different times or days and can also decide how
many profiles are needed. Unless there is a significant dif-
ference between profiles, we may use one uniform profile
to minimize the maintenance effort.

4 Discussions

One challenging issue of the anomaly-based IDS is the
need for a clean baseline profile as in other profile-based
systems. This may not be easy today because various at-

tack traffic is already prevalent in the Internet and a quiet
attack-free period may be hard to find. Especially the
Distributed denial-of-service attack is very common, and
as a result, the constructed baseline profile may be biased
by the DDoS traffic. A cleaner profile can be made one of
two ways. First, the packet trace data can be analyzed to
identify legitimate flows that show proper two-way com-
munication behavior. The packets from the legitimate
flows are used for constructing the profile. Secondly, we
can use a packet filtering algorithm [8] with a generic pro-
file to create a cleaner packet trace, and use the new trace
to create the cleaner base profile. The generic profile re-
flects overall Internet traffic characteristics, e.g., TCP vs.
UDP ratio, common packet size, common TCP flags, etc.
Our preliminary research shows that this two-step profil-
ing is very effective to filter generic attacks.

5 Conclusions

One of the defense mechanisms against the network at-
tacks is using a baseline profile established during normal
network operation, and detecting the traffic that deviates
from the baseline profile. This is a common approach
in many Intrusion Detection Systems and some Dis-
tributed Denial-of-Service (DDoS) attack defense mech-
anisms. However, this approach works only if there is a
stable baseline profile representing the legitimate network
traffic. In this study, we analyzed actual traffic traces
from two Internet traffic archives and verified the traffic
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stability in several aspects. Our analysis shows that there
is stable and distinct traffic patterns for different sites,
and different time/day for a particular site. When there
is a significant difference per day or time, using estab-
lishing multiple profiles is recommended. This research
guides how to check whether a particular site has mean-
ingful traffic stability, how to measure the stability within
a site, and how to decide the number of required traffic
profiles. This research uses sample traces collected at the
NLANR archive in September 2005. We plan to analyze
more packet trace data to confirm the findings in this pa-
per for wider range of sites and to investigate long-term
traffic pattern stability.

References

[1] J. D. Brutlag, “Aberrant behavior detection in Time
Series for Network Monitoring,” in the 14th USENIX
Conference, pp. 139-146, Dec. 2000.

[2] Captus Networks. (http://www.captusnetworks.com)

[3] DeepNines Technologies.
(http://www.deepnines.com)

[4] C. Estan, S. Savage, and G. Varghese, “Automati-
cally inferring patterns of resource consumption in
network traffic,” in Proceedings of 2003 ACM SIG-
COMM, pp 137-148, 2003.

[5] L. Feinstein, D. Schnackenberg, R. Balupari, and D.
Kindred, “Statistical approaches to DDoS attack de-
tection and response,” in Proceedings DARPA Infor-
mation Survivability Conference and Exposition, vol.
1, pp. 303-314, Washington, DC, Apr. 2003.

[6] S. Jin, and D. S. Yeung, “A Covariance analysis
model for DDoS attack detection,” in Proceedings of
2004 IEEE ICC, pp. 1882-1886, 2004.

[7] J. Jung, B. Krishnamurthy, and M. Rabinovich,
“Flash crowds and denial of service attacks: Charac-
terization and implications for CDNs and web sites,”
in Proceedings of the International World Wide Web
Conference, pp. 252-262, May 2002.

[8] Y. Kim, W. C. Lau, M. C. Chuah, and H. J.
Chao, “PacketScore: statistics-based overload con-
trol against distributed denial-of-service attacks,”
in Proceedings of IEEE INFOCOM, pp. 2594-2604,
Mar. 2004.

[9] J. Li, and C. Manikopoulos, “Early statistical
anomaly intrusion detection of DOS attacks using
MIB traffic parameters,” in Proceedings of 2003
IEEE Workshop on Information Assurance, pp. 53-
59, June 2003.

[10] Q. Li, E. C. Chang, and M. C. Chan, “On the ef-
fectiveness of DDoS attacks on statistical filtering,”
in Proceedings of IEEE INFOCOM, pp. 1373-1383,
2005.

[11] D. Liu and F. Huebner, “Application profiling of
IP traffic,” in Proceedings of the 27th Annual IEEE
Conference on Local Computer Networks (LCN), pp.
220-229, 2002.

[12] M. Mahoney and P. K. Chan, “Learning nonsta-
tionary models of normal network traffic for de-
tecting novel attacks,” in Proceedings of ACM 2002
SIGKDD, pp 376-385, 2002.

[13] D. Marchette, “A Statistical method for profiling
network traffic,” in the 1st USENIX Workshop on In-
trusion Detection and Network Monitoring, pp. 119-
128, Apr. 1999.

[14] MAWI Working Group Traffic Archive.
(http://tracer.csl.sony.co.jp/mawi)

[15] J. Mirkovic, G. Prier, and P. Reiher, “Attacking
DDoS at the source,” in Proceedings of 10th IEEE
International Conference on Network Protocols, pp.
312-321, Nov. 2002.

[16] D. Moore, G. M. Voelker, and S. Savage, “Inferring
internet denial-of-service activity,” in Proceedings of
10th USENIX Security Symposium, pp. 9-22, Aug.
2001.

[17] NLANR PMA Internet Packet Trace Data Archive.
(http://pma.nlanr.net/Traces)

[18] Top Layer Networks. (http://www.toplayer.com)
[19] Vsecure Technologies. (http://www.v-secure.com)

Yoohwan Kim is an Assistant Pro-
fessor of Computer Science at Univer-
sity of Nevada, Las Vegas (UNLV). He
received his Master’s and Ph.D. de-
grees in Computer Engineering from
Case Western Reserve University,
Cleveland, Ohio, in 1994 and 2004 re-
spectively, and his Bachelor degree in

Economics from Seoul National University, Korea in 1989.
Before joining UNLV in 2004, he worked in software and
communication networking industry for several years. He
was a Member of Technical Staff at Lucent Technologies,
Whippany, New Jersey, developing software for wireless
networking equipment between 1997 and 1999. In 2000,
he co-founded and managed a New Jersey-based software
company that developed technologies for delivering and
customizing video advertising over the Internet. His cur-
rent research interests include network security, Internet
traffic analysis, software architecture, and real-time em-
bedded software design

Ju-Yeon Jo received PhD degree in
computer science from Case Western
Reserve University, Cleveland, Ohio.
She is an assistant professor of school
of informatics at the University of
Nevada, Las Vegas where she joined
in August 2006. From 2003 to 2006,
she was an assistant professor of com-

puter science department at California State University,
Sacramento. Prior to that she spent several years in com-
munication networking and software industry. She was
a member of technical staff at Lucent Technologies, Bell
Labs, in Homdel, New Jersey, and a software engineer



International Journal of Network Security, Vol.6, No.1, PP.60–66, Jan. 2008 66

at Coree Networks, a New Jersey based start-up com-
pany. Her current research interests include information
security, network security, networking protocol design and
performance analysis, and Internet traffic characteriza-
tion.

Kyunghee Suh is working at Amer-
ican Institues for Research as a Re-
search Scientist.She is working on all
aspects of psychometric work on the
development of large scale assessment
such as High School Exit Exam item
analysis, item calibrations, equating
design, quality control of data, item

banking and score reports to meet the technical standards
of the assessment. Before joining AIR, Dr. Suh worked on
various researches in education field-focus on constructing
of statistical research design, large-scale statistical data
analysis, item analysis, and item calibrations-as statisti-
cal consultant at University of Northern Colorado. Dr.
Suh is familiar with statistical analysis software, educa-
tional research design, complex data analysis and data
manipulation in psychometric aspect, and scoring of per-
formance assessment. Dr. Suh specializes in statistical
analysis and educational measurement. Dr. Suh received
her Ph.D in Applied Statistics and Research Methods,
with a Modified Rater Agreement Index in educational
measurement, from University of Northern Colorado


