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Abstract

Informally, Privacy Homomorphism (PH) refers to en-
cryption schemes with a homomorphic property allowing
to obtain Ek(a + b) or Ek(a × b) from ciphertexts Ek(a)
and Ek(b) without the knowledge of the decryption key.
Privacy homomorphisms, especially algebraic ones, have
a wide range of applications in information security due
to the homomorphic property. In this paper, we correct a
misunderstanding regarding the security of additive PH,
give a definition for efficient PH, and discuss the secu-
rity of algebraic PH in the black-box model to show that
any PH is at most semantically secure under non-adaptive
chosen-ciphertext attacks (i.e. IND-CCA1 secure), which
also implies that we can simulate an IND-CCA1 secure
algebraic PH with a small amount of hardware.

Keywords: Chosen-ciphertext attacks, private computa-
tion, privacy homomorphism, semantic security

1 Introduction

Privacy homomorphism (hereafter referred to as PH) is
first introduced by Rivest et al. [21] as a tool for processing
encrypted data. Basically, an additive PH is a tuple (G,
E, D, �) of polynomial-time algorithms satisfying the
following conditions:

1) On input 1n, probabilistic key generator G outputs a
pair of strings (e, d), where n is the security param-
eter, e is the encryption key and d is the decryption
key.

2) There exists a polynomially bounded function ` : N

→ N, called the block length, such that for every
pair (e, d) produced by G(1n) and for every x, y

∈ {0,1}`(n), encryption algorithm E and decryption
algorithm D satisfy

Pr[D(d, E(e, x)) = x] = 1 (1)

∗A preliminary version of this work appeared in proceedings of
international conference on Information Technology: New Genera-
tions (ITNG 2006).

Pr[D(d, �(E(e, x), E(e, y))) = x + y] = 1, (2)

where “+” denotes addition over the plaintext space
and the probability is taken over the internal coin
tosses of E (note that D is deterministic).

The above definition does not distinguish between
private-key block ciphers and public-key ones. In private-
key schemes, e and d can be inferred from each other.
Thus, for simplicity, we assume that e=d=k and that k

is kept secret. In public-key schemes, e is publicly known
and it is computationally infeasible to infer d from e. In
the rest of this paper, we write Ee(x) instead of E(e, x)
and Dd(c) instead of D(d, c). Equations (1) and (2) are
written in terms of probability since we do not distin-
guish probabilistic ciphers from deterministic ones. Anal-
ogously, we can define a multiplicative PH, (G, E, D,
�), using almost the same definition as the additive PH
except that Equation (2) is replaced by

Pr[Dd(�(Ee(x), Ee(y))) = x× y] = 1, (3)

where “×” denotes multiplication over the plaintext
space. If a PH, (G, E, D, �, �), is both additive and
multiplicative (i.e., satisfies Equations (1), (2) and (3)),
it is called an algebraic PH.

PH would be useful in a number of applications such
as secret sharing schemes, software protection, multiparty
computation and electronic voting (e.g. [3, 9, 10, 17, 22]).
Rivest et al. [21] have presented four basic PHs, which
are later shown to be vulnerable to either ciphertext-only
attacks or known-plaintext attacks [7]. Goldwasser and
Micali [16] present a probabilistic additive PH (the GM
crypto-system) with the block length `(n)=1 (i.e. regard-
less of the security parameter n) and it is semantically
secure if the Quadratic Residuosity Assumption holds.
More efficient GM crypto-system variants are proposed
in [4, 25]. There are also other semantically secure ad-
ditive PHs (e.g. [19, 20]) whose “�” simply takes as in-
put two ciphertexts and outputs the product of them.
Domingo-Ferrer [12, 13] proposed two algebraic PHs tar-
geted at combating known-plaintext attacks and the cor-
responding cryptanalysis is given in [2, 8, 24]. Sander,



International Journal of Network Security, Vol.6, No.1, PP.33–39, Jan. 2008 34

Young and Yung [23] proposed an unconditionally secure
algebraic PH, which is inefficient as the length of cipher-
texts is increased by a constant factor after each semi-
group operation and thus it is used for computing only
log-depth circuits. Boneh, Goh and Nissim [6] presented
an algebraic PH based on the subgroup decision problem
but their PH allows only one multiplication on cipher-
texts.

Feigenbaum and Merritt [14] doubt the existence of se-
cure algebraic PH. Boneh and Lipton [5] show that any de-
terministic algebraic PH can be broken in sub-exponential
time under a reasonable assumption. We stress that this
result is not surprising since it is well-known that stateless
deterministic encryption schemes are not secure under the
standard privacy notion. Therefore, in spite of those neg-
ative results, the best achievable security of PH remains
an open question.

In this paper, we first correct a misunderstanding re-
garding the security of PH, then give a definition for “ef-
ficient” PH, which rules out most existing algebraic PHs.
We proceed to exploring the best security of efficient alge-
braic PH in the black-box model where only oracle access
is allowed to the homomorphic functions � and �. As
shown in Figure 1, this can be achieved by implement-
ing � and � using a portable weak power device (e.g. a
smart card) and thus it offers a hardware-based solution
to construct secure PH. We show that the best achiev-
able security of the resulting PH is semantic security un-
der non-adaptive chosen-ciphertext attacks (IND-CCA1
security). Consequently, any PH (either hardware-based
or algorithm-based) is at most IND-CCA1 secure.

Ee(x0) , Ee(x1), MOD

tamper-proof

x0 Dd(Ee(x0))

x1 Dd(Ee(x1))

IFMOD =        THEN

c Ee(x0+x1)

ELSE // MOD =

c Ee(x0 x1)

END IF

×

c = Ee(x0 MOD x1)

Figure 1: The oracle access to � (resp., �) can be em-
ulated by a tamper-proof device that takes Ee(x0) and
Ee(x1) as argument, decrypts them and outputs the en-
crypted sum (resp., product) of x0 and x1.

2 A Misunderstanding Regarding

the Security of PH

Ahituv, Lapid and Neumann [1] showed a chosen-
plaintext attack at additive PH and this result is some-
times mistakenly cited as that no additive PH can be se-

cure against chosen-plaintext attacks. We point out that
the attack does not work for all additive PHs.

The attack can be summarized as follows: Let Ek:
{0,1}n → {0,1}m be an additively (or algebraically) ho-
momorphic block cipher. For each a and b ∈ {0,1}n, it
holds that

Dk(�(Ek(a), Ek(b))) = a + b

where “�” is an addition function and we assume that
[an,· · · ,a1] (resp., [bn,· · · ,b1)]) is the binary representa-
tion of a (resp., b). An attacker chooses the following m

plaintext-ciphertext pairs:

Ek([c11, c12, ..., c1n]) = [1, 0, · · · , 0]
Ek([c21, c22, ..., c2n]) = [0, 1, · · · , 0]
...
Ek([cm1, cm2, ..., cmn]) = [0, 0, · · · , 1].

Then given any Ek([x1,· · · ,xn])=[a1,· · · ,am], he may
obtain [x1,· · · ,xn] by computing:

[x1, · · · , xn] =

m
∑

i=1

aiEk([ci1, ci2, · · · , cin]).

Nevertheless, the above attack is successful only when
the “�” computes addition or similar linear functions. By
the definition of PH, “�” is a polynomial-time algorithm
that takes Ek (a) and Ek (b) as argument and outputs
Ek (a+b). Thus, if “�” is a non-linear function (e.g.
multiplication), then the attack would not be successful.

3 Efficient Privacy Homomor-

phism

In this section, we show a trivial and inefficient all-
operation-support privacy homomorphism and provide a
definition for efficient privacy homomorphism.

The notion of PH was introduced to process encrypted
data [21], namely, to allow an untrustworthy party to
perform operations on ciphertexts without revealing him
anything substantial. However, it turns out that most
existing algebraic PHs (e.g. [12, 13, 23]) are not length-
preserving, namely, there is at least one homomorphic
function that inputs two ciphertexts and outputs a new
one whose length is the sum of their lengths. In other
words, the length of resulting ciphertext goes exponen-
tially with regard to the depth of such operations. Fur-
thermore, decryption takes time at least proportional to
the length of ciphertext. In this case, we take no advan-
tage of the untrustworthy party as we would spend more
time on decrypting the final ciphertext than on perform-
ing the computation in plaintext all by ourselves. Carried
to the extreme, the inefficiency can be illustrated with a
trivial PH.

Suppose that we have a semantically secure encryp-
tion scheme (G, E, D), then for any operation “?”
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on plaintexts, we write the homomorphic operation on
ciphertexts as “F”, which takes c1 and c2 as inputs
and outputs ciphertext denoted by c1Fc2, and define
Dd(c1Fc2)=Dd(c1)?Dd(c2). It is not hard to prove that
the resulting PH (G, E, D, F), but it is trivial, for exam-
ple, if we want an untrustworthy Bob to perform a compu-
tation on plaintexts x1, · · · , xn, then we need to encrypt
those plaintexts and send their ciphertexts to Bob, and
after Bob returns the final ciphertext of the result, we
still need to recover x1, · · · , xn and perform the compu-
tation on them, which takes more time than we do the
computation in the first place without Bob. As the inef-
ficiency is caused by non-length-preserving homomorphic
function(s), we define efficient PH as follows:

Definition 1. (Efficient PH): A PH is efficient if all its
homomorphic functions are length-preserving, namely, for
any homomorphic function F, and for any ciphertext-pair
(c1,c2), the length of the resulting ciphertext F(c1,c2) is
not larger than the maximal length of c1 and c2.

It is relatively easy to construct an efficient PH that
supports only one homomorphic function, and most ex-
isting additive or multiplicative (but not both) PHs are
efficient in the sense of Definition 1. In contrast, most
algebraic PHs are not efficient with an exception being
the one introduced in [6], which unfortunately supports
only one multiplication on ciphertexts and hence is not
truly multiplicative. Therefore, in the rest of the paper,
we consider only the security of efficient algebraic PH.

4 IND-CCA1 Secure Block Ci-

phers

In this section, we introduce the notion of IND-CCA1
security and point out that block ciphers of this type exist
under reasonable assumptions.

Informally, a block cipher is IND-CCA1 secure if and
only if it has indistinguishable encryptions1 (i.e. IND)
and it is secure under nonadaptive chosen-ciphertext at-
tacks (i.e. CCA). IND-CCA1 security can be described
using a “guess” game between an adversary Malice and
an oracle O [18, Protocol 14.1]:

Game 1.

1) O and Malice agree on a target (G,E,D) and O
chooses a pair of keys by (e,d)←G(1n), where the
encryption key e is revealed to Malice if (G,E,D) is
a public-key encryption scheme.

2) O allows Malice to have oracle access to Ee and Dd.
After several rounds, they proceed to the next step.

3) Based on the information achieved, Malice selects
two distinct messages x0 and x1 of the same length
and sends them to O.

1In most cases, indistinguishability of encryptions is equivalent to
semantic security. Thus, we use IND as the shorthand for semantic
security.

4) O tosses a fair coin b ∈U {0,1} and selects a value
c∗ from the distribution of Ee(xb).

5) After receiving c∗, Malice can only have oracle access
to Ee. Then, Malice guesses b by answering either 0
or 1.

If Malice has no strategy to win Game 1 better than
random guessing, then (G,E,D) is IND-CCA1 secure for
any single message. We stress that the single-message
IND-CCA1 security is equivalent to the multiple-message
one in which multiple messages are encrypted [15, Section
5.4.4.1]. The rigorous definition for IND-CCA1 is given
by Goldreich as follows [15, Definition 5.4.14]:

Definition 2. (indistinguishability of encryptions under
non-adaptive chosen-ciphertext attacks): For public-key
schemes: A public-key block cipher, (G,E,D), is said to
be IND-CCA1 secure if for every pair of probabilistic
polynomial oracle machines, A1 and A2, for every pos-
itive polynomial p, and all sufficiently large n and z ∈
{0,1}poly(n) it holds that

|p(0)
n,z − p(1)

n,z| <
1

p(n)
,

where

p(i)
n,z

def
= Pr









v = 0, where

((x0, x1), σ)← A
Ee,Dd

1 (e, z)
c∗ ← Ee(xi)

v ← AEe

2 (σ, c∗).









(e,d) ← G(1n), |x0|=|x1|=n and the probability is
taken over the internal coin tosses of G, Ee, A1 and A2.

For private-key schemes: The definition is identical ex-
cept that A1 gets the security parameter 1n instead of the
encryption key e.

In the above definition, adversary Malice is decoupled
into a pair of oracle machines (AEe,Dd

1 ,AEe

2 ). That is, A1

has oracle access to both Ee and Dd (see the step 2 of
Game 1) while A2 is restricted to Ee (step 5). In the
joint work of A1 and A2, σ denotes the state information
A1 passes to A2. Since we use non-uniform formulations z

is a non-uniform auxiliary input of A1 (A2’s counterpart
is included in σ). Finally, A2 outputs v as its guess.

We can construct block ciphers that is IND-CCA1
secure under reasonable assumptions, e.g., the private-
key IND-CCA1 secure block cipher in [15, Construction
5.4.19] and the public-key one in [15, Construction 5.4.23].
In both cases, the encryption function Ee is probabilistic
(or stateful deterministic), namely, if we invoke Ee on the
same input x polynomially (in n) many times, its outputs
will be different from each other with an overwhelming
probability. Otherwise, Malice can win Game 1 with ease.
In practice, � (resp., �) can be emulated by tamper-proof
hardware that takes as input two ciphertexts Ee(m1) and
Ee(m2) and outputs Ee(m1+m2) (resp., Ee(m1×m2)) by
invoking Ee and Dd. Such hardware can be smart cards
as some smart cards can do both private-key encryptions
and public-key encryptions with the help of cryptographic
co-processors.
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5 IND-CCA1 Secure PH

In this section, we assume an IND-CCA1 secure block ci-
pher (G, E, D) having oracle access to � and � and prove
that the resulting PH, (G, E, D, �, �), preserves IND-
CCA1 security. Analogously, the IND-CCA1 security for
PH (G, E, D, �, �) can be modelled with Game 2:

Game 2.

1) O and Malice agree on a target (G,E,D,�,�) and
O chooses a pair of keys by (e,d)←G(1n), where the
encryption key e is revealed to Malice if (G,E,D) is
a public-key encryption scheme.

2) O allows Malice to have oracle access to Ee, Dd, �

and �. After several rounds, they proceed to the next
step.

3) Based on the information achieved, Malice selects
two distinct messages x0 and x1 of the same length
and sends them to O.

4) O tosses a fair coin b ∈U {0,1} and selects a value
c∗ from the distribution of Ee(xb).

5) After receiving c∗, Malice is only allowed to have ora-
cle access to Ee, � and �. After that, Malice guesses
b by answering either 0 or 1.

Thus, the formal definition of IND-CCA1 security for
(G, E, D, �, �) is almost same as Definition 2 except

that the pair of oracle machines is (AEe,Dd,�,�
1 ,AEe,�,�

2 )

instead of (AEe,Dd

1 ,AEe

2 ).
We proceed to proving that an IND-CCA1 secure (G,

E, D) preserves the same security when we allow adver-
saries to have additional oracle access to � and �. Before
presenting the formal proof, we sketch it informally in Fig-
ure 2. By definition, (G, E, D) is IND-CCA1 secure iff no
polynomial-time adversary can win Game 1 better than
random guessing. Note that the only difference between
Game 1 and Game 2 is that in the latter case Malice can
have oracle access to � and � (see step 2 and step 5). We
will show that the oracle access to (Ee, Dd, �, �) in step
2 is equivalent to accessing only (Ee, Dd). In addition,
the oracle access to (Ee, �, �) can be made computation-
ally indistinguishable to accessing only Ee by emulating
� and � with Ee. Recall that the indistinguishable prop-
erty (i.e. IND) implies that any polynomial-time adver-
sary is unable to distinguish between any pair of distinct
ciphertexts, e.g., Ee(tn) and Ee(0).

Lemma 1. (Indistinguishablity between Ee(tn) and
Ee(0)): For public-key schemes: Let (G, E, D) be an
IND-CCA1 secure public-key (resp., private-key) block ci-
pher, then for every plaintext tn ∈ {0,1}

n, for every pair
of probabilistic polynomial oracle machines A1 and A2,
every positive polynomial p, all sufficiently large n’s and
z∈{0,1}poly(n), it holds that

|p(0)
n,z − p(1)

n,z| <
1

p(n)

A1

A1 A2

Ee , Dd ,    ,

Ee , Dd

oracle access

equivalent
oracle access

x0 , x1

Ee

computationally indistinguishable

ro acle access

Ee ,    ,
oracle access

b'
b' = b ?

A2

Figure 2: The proof sketch

where

p(i)
n,z

def
= Pr













v = 0, where

σ ← A
Ee,Dd

1 (e, z)

c∗ ←

{

Ee(0), i = 0
Ee(tn), i = 1

v ← AEe

2 (σ, c∗)













(e,d)←G(1n) and the probability is taken over the internal
coin tosses of G, Ee, A1 and A2.

For private-key schemes: The indistinguishability also
holds except that A1 gets the security parameter 1n instead
of the encryption key e.

Proof sketch. For the sake of contradiction, we assume
that Ee(tn) and Ee(0) are distinguishable by AEe

2 within
polynomial time. It follows that Definition 2 does not
hold in case that x0=0 and x1=tn, which contradicts the
fact that (G, E, D) is IND-CCA1 secure.

Theorem 1. (IND-CCA1 secure PH): Let (G, E, D)
be an IND-CCA1 secure block cipher, let � and � be as
in (2) and (3) respectively and assume that only oracle
access is allowed to � and �, then the PH (G, E, D, �,
�) is also IND-CCA1 secure.

Proof. As discussed, we only need to prove that Def-
inition 2 still holds if we replace (AEe,Dd

1 ,AEe

2 ) by the

corresponding (AEe,Dd,�,�
1 ,AEe,�,�

2 ). The equivalence of

A
Ee,Dd

1 and A
Ee,Dd,�,�
1 is quite straightforward since ei-

ther � or � is implied by Ee and Dd. In other words,
O can efficiently emulate � (resp., �) by decrypting the
input ciphertexts, computing the sum (resp., product) of
the corresponding plaintexts and encrypting the result.
The remaining difficulty is the reduction from A

Ee,�,�
2 to

AEe

2 . Obviously, the input-output behaviors of � and �
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cannot be emulated using only Ee, but O can implement
a function O+,× using Ee such that their input-output
behaviors are computationally indistinguishable to those
of � and �. For example, we can let O+,× be as follow:

O+,× (Ee(x0), Ee(x1)){
return Ee(0);

}

By the definition of � and �, it holds that

� (Ee(x0), Ee(x1)){
return Ee(x0+x1);

}

� (Ee(x0), Ee(x1)){
return Ee(x0×x1);

}

By Lemma 1, AEe

2 cannot distinguish between Ee(0) and
Ee(x0+x1) (or Ee(x0×x1)), namely, whatever can be ef-
ficiently computed from the oracle access to � and � can
also efficiently computed from scratch. Thus, replacing
(�,�) by O+,× has no effect on the decision of A2 and

as a result, A
Ee,�,�
2 and A

Ee,O+,×

2 compute almost the
same function (with a negligible difference). Therefore, it

suffices that A
Ee,O+,×

2 can be reduced to AEe

2 in a compu-
tational sense and the conclusion immediately follows.

In the above proof, we make use of the simulation
paradigm, namely, if the view of an adversary can be ef-
ficiently simulated by a PPT from scratch (or what the
adversary already knows), then the adversary gain noth-
ing substantial from his view. The knowledge of � and �

only allows him to produce semantically correlated cipher-
text triplets (Ee(x0), Ee(x1), Ee(x0+x1)) and (Ee(x0),
Ee(x1), Ee(x0×x1)), but does not help to distinguish be-
tween Ee(x0) and Ee(x1) for any distinct x0 and x1. In
addition, we note that Ee is probabilistic and hence Mal-
ice cannot even distinguish between the two instances of
Ee(x), where x is an arbitrary plaintext. Thus, Malice
cannot tell whether two ciphertexts have the same se-
mantics.

6 Beyond IND-CCA1 Security

We have shown that it is possible to obtain IND-CCA1
secure PH given only oracle access to � and �. In this
section, we show that IND-CCA1 is the best achievable
security for any PH, namely, any security beyond IND-
CCA1 is not attainable.

6.1 Non-Malleable Security

Informally, IND security against some-type attacks re-
quires that the ciphertexts reveal nothing to passive ad-
versaries conducting the some-type attacks, where “some-
type” can be ciphertext-only, chosen-plaintext, chosen-
ciphertext, etc. This notion is enough in most cases

where the adversary only hopes to gain the information
from ciphertexts, but it does not prevent Malice from re-
placing the ciphertext with a semantically related one.
Let us consider the well-known private key encryption of
the one-time pad (Vernam cipher). Given an n-bit mes-
sage m=m1· · ·mn, the key generator outputs an n-bit key
k=k1· · ·kn uniformly chosen from {0,1}n. The encryption
is done by bitwise XORing mi with ki, that is, for 1≤i≤n,
ci=mi⊕ki. It is well-known that this cipher is uncondi-
tionally secure in that ciphertexts disclose nothing (except
the length n) in an information-theoretic sense. However,
the cipher is malleable. Malice is able to flip each ci by
replacing ci with c′i=ci⊕1 such that the one that decrypts
c′i will get the complement of mi. In this way, Malice can
flip the semantics of each ciphertext.

(G, E, D, �, �) is also malleable. Given any plaintext-
ciphertext pair (a, Ee(a)) with a 6= 0 (resp., a 6=1), Malice
is able to increment (resp., multiply) by a the seman-
tics of any ciphertext c by replacing c with c′, where
c′←�(c,Ee(a)) (resp., c′←�(c,Ee(a))). Therefore, non-
malleable (NM) security is not achievable for any PH.
Although there are techniques (e.g. message authentica-
tion code) that prevents active adversaries from faking
any valid ciphertext, these techniques contradict the defi-
nition of PH by which any party is allowed to create valid
ciphertext using existing ciphertexts and � (or �).

6.2 Security under Adaptive Chosen-

ciphertext Attacks

So far, we know that (G, E, D, �, �) cannot have NM
security. That is, it is at most IND secure against some-
type attacks and this “some-type” can be CCA. However,
can this “some-type” be something more advanced? In
other words, can (G, E, D, �, �) be IND secure under
adaptive chosen-ciphertext attacks (CCA2)? To answer
this question 2, we first model the notion of IND-CCA2
security for PH with the following game:

Game 3.

1) O and Malice agree on a target (G,E,D,�,�) and
O chooses a pair of keys by (e,d)←G(1n), where the
encryption key e is revealed to Malice if (G,E,D) is
a public-key encryption scheme.

2) O allows Malice to have oracle access to Ee, Dd, �

and �. After several rounds, they proceed to the next
step.

3) Based on the information achieved, Malice selects
two distinct messages x0 and x1 of the same length
and sends them to O.

4) O tosses a fair coin b ∈U {0,1} and selects a value
c∗ from the distribution of Ee(xb).

2Alternatively, we can answer the question using the results by
Dolev et al. [11], who showed that under CCA2 semantic security
and non-malleable security are equivalent. Since we have already
shown that PH is malleable under CCA2, it cannot be IND-CCA2
secure.
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5) Upon receiving c∗, Malice is only allowed to have or-
acle access to Ee, Dd, � and � with the exception
that the decryption query of c∗ will be denied. Then,
Malice guesses b by answering either 0 or 1.

Now we show that Malice can always win Game 3 effi-
ciently. For any c∗, Malice decrypts it using � (or �) to
obtain b with the following steps:

1) Malice queries Ee with 0 (resp., 1) to receive Ee(0)
(resp., Ee(1)).

2) Malice queries � (resp., �) with c∗ and Ee(0) (resp.,
Ee(1)) to obtain c∗∗.

3) Malice queries Dd with c∗∗ to obtain xb.

4) Malice determines b by looking up xb in (x0,x1).

To conclude, no matter how secure (G, E, D) is, the
homomorphic property of � or � will make the PH vul-
nerable under CCA2. Thus, the best achievable security
of PH is no more than IND-CCA1 security.

7 Concluding Remarks

After correcting a misunderstanding regarding the secu-
rity of additive PH and defining efficient PH, we show that
any algebraic (or additive or multiplicative) PH can be at
most IND-CCA1 secure in the black-box model, but it still
remains an open question whether IND-CCA1 security is
a tight upper bound for algorithm-based PH. We believe it
is extremely hard to find such efficient PHs as we have put
some restrictions: (1) homomorphic functions are length-
preserving. (2) the additively homomorphic function can-
not be addition or any other linear function. Nevertheless,
we can construct IND-CCA1 secure hardware-based PH
using low-cost portable devices (e.g. smart cards with
cryptographic co-processors) and they might be useful in
applications where no algorithm-based solution is avail-
able and interactions are not so intensive. For example,
in software protection, most algorithm-based solutions
are heuristic and have no complexity-theoretic founda-
tions. Thus, with hardware-based PH, we can use a small
amount of hardware to achieve provable security.
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