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Abstract

Certificateless public key cryptography was introduced to
overcome the key escrow limitation of the identity-based
cryptography. Recently, Yum1 and Lee have proposed a
generic series construction model of certificateless pub-
lic key encryption (CL-PKE). However, this model pays
much attention on the generic construction and neglects
the properties of the pairings. In this paper we propose
a CL-PKE scheme which is based on the nice algebraic
properties of the pairing. The scheme breaks through the
old series model and works in an efficient parallel model.
Our scheme is more efficient on computation and has more
compact ciphertext than the existing schemes.

Keywords: Certificatelss public key encryption, parallel
model, weil pairing

1 Introduction

Traditionally, a Public Key infrastructure (PKI) is used
to provide an assurance to the user about the relationship
between a public key and the identity of the holder of the
corresponding private key by certificates. However, a PKI
faces may challenges in the practice, especially the scal-
ability of the infrastructure and the management of the
certificates. To simplify the management of certificates,
Shamir [11] proposed identity-based public key cryptog-
raphy (ID-PKC) in which the public key of each party is
derived directly from certain aspects of its identity, for
example, an IP address belonging to a network host, or
an e-mail address associated with a user. Private keys are
generated for entities by a trusted third party called Key
Generation Center (KGC). For a long while it was an open
problem to obtain a secure and efficient identity based en-
cryption (IBE) scheme. Until 2001, Boneh and Franklin
[4] presented a provably secure identity-based encryption
scheme (BF-IBE) using the bilinear pairings on elliptic
curves. BF-IBE requires a special hash function which is
probabilistic and generally inefficient. In 2003 Sakai and

Kasahara [12] proposed another method of constructing
identity-based keys, also using pairings, which has the
potential to improve performance. This construction use
general cryptographic hash functions rather than special
ones. Later, Chen and Cheng [6] gave a provably secure
identity-based scheme (SK-IBE) using this construction.
The direct derivation of public keys in ID-PKC eliminates
the need for certificates and some of the problems asso-
ciated with them. However, the dependence on a KGC
who can generate private keys inevitably introduces key
escrow to the identity-based cryptography. Then in [1]
Al-Riyami and Patersion introduced the notion of Certifi-
cateless Public Key Cryptography (CL-PKC). CL-PKC
can overcome the key escrow limitation of ID-PKC with-
out introducing certificates and the management over-
heads that this entails. It combines the advantages of
the ID-PKC and the PKI.

In this paper, we concentrate on the certificateless pub-
lic key encryption (CL-PKE) schemes. So far almost all
the CL-PKE schemes [1, 2, 7, 8] are based on the BF-IBE
scheme. Recently, Dae Hyun Yum and Pil Joong Lee [14]
have proposed a generic series construction of CL-PKE
which is built from generic primitives: identity-based en-
cryption and public key encryption. The CL-PKE scheme
in [2] is an instance of such model. However, this model
pays much attention on the generic construction and ne-
glects the nice properties of the bilinear pairings. In this
paper, we propose an efficient CL-PKE scheme which is
based on the nice algebraic properties of the bilinear pair-
ing. The scheme works in a kind of parallel model and
bases on the efficient identity-based encryption scheme
SK-IBE [6] which requires only general hash functions.
Hence our scheme does not requires special hash func-
tions. Furthermore, our scheme is more efficient on com-
putation and has more compact ciphertext than the ex-
isting schemes.

The paper is organized as follows: First we review the
concepts of CL-PKE and two types of adversaries. In
Section 3, we introduce some mathematic basis of bilinear
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maps. Then we present our new efficient CL-PKE scheme
in Section 4 and analyze its security. In Section 5, we
compare our scheme with the existing CL-PKE schemes
on performance. Finally, Section 6 gives conclusions.

2 Certificateless Public Key En-

cryption

In this section, we review the definition and security
model for CL-PKE from [1].

Definition 1. [1] A CL-PKE scheme is specified by
seven algorithms (Setup, Partial-Private-Key-Extract,
Set-Secret-Value, Set-Private-Key, Set-Public-Key, En-
crypt, Decrypt) such that:

• Setup is a probabilistic algorithm that takes security
parameter κ as input and returns the system parame-
ters params and the masterkey. The system param-
eters include a description of the message space M
and ciphertext space C.

• Partial-Private-Key-Extract is a deterministic
algorithm which takes params,
masterkey and an identifier for entity A, IDA ∈
{0, 1}n, as inputs. It returns a partial private key
DA .

• Set-Secret-Value is a probabilistic algorithm that
takes as input params and outputs a secret value xA.

• Set-Private-Key is a deterministic algorithm that
takes params, DA and xA as inputs. The algorithm
returns SA, a (full) private key.

• Set-Public-Key is a deterministic algorithm that
takes params and xA as inputs and outputs a public
key PA.

• Encrypt is a probabilistic algorithm that takes
params, M ∈ M, xA and IDA as inputs and re-
turns either a ciphertext C ∈ C or the null symbol ⊥
indicating an encryption failure.

• Decrypt is a deterministic algorithm that takes as
inputs params, C ∈ C and SA. It returns a mes-
sage M ∈ M or a message ⊥ indicating a decryption
failure.

Algorithms Set-Private-Key and Set-Public-Key

are normally run by an entity A for himself, after run-
ning Set-Secret-Value. Usually, A is the only entity in
possession SA and xA. Algorithms Setup and Partial-

Private-Key-Extract are usually run by a trusted third
party, called Key Generation Center (KGC) [1].

Al-Riyami and Patersion presented the security model
for CL-PKE in [1]. The security model distinguishes two
types of adversaries:

Type I Adversary: Such an adversary AI does not
have access to the masterkey. However, AI may request
public keys and replace public keys with values of its
choice, extract partial private and private keys and make
decryption queries, all for identities of its choice.

Type II Adversary: Such an adversary AII does have
access to the masterkey, but may not replace public keys
of entities. AII can compute partial private keys for him-
self, given the masterkey. It can also request public
keys, make private key extraction queries and decryption
queries, both for identities of its choice. This adversary
models security against an eavesdropping KGC.

3 Mathematic Basic

Before presenting the new CL-PKE scheme, we first re-
view a few concepts related to bilinear maps. Let E/Fq

be an elliptic curve and m = #E(Fq) be the group order
of the curve. Let n be a prime such that n | m and n - q
. Then the group of n-torsion points has the structure
E[n] ∼= Zn ⊕ Zn and is thus generated by two elements,
say P1 and P2 (< P1 > 6=< P2 >) . We can denote the
elements in the set of E[n] using the form aP1 + bP2,
a, b ∈ Z∗

n . Denote the group generated by P1 by G1 and
the group generated by P2 by G2, i.e. G1 =< P1 > and
G2 =< P2 >. ψ is an isomorphism from G2 to G1 with
ψ(P2) = P1. The Weil pairing is a function [10, 12]:

en : E[n] × E[n] → µn.

en maps to the group µn of nth roots of unity, which
is a cyclic group of order n as well. Denote this group by
GT . The following are some useful properties of the Weil
Pairing.

• Identity: For all P ∈ E[n], en(P, P ) = 1.

• Alternation: For all P,Q ∈ E[n], en(P,Q) =
en(Q,P )−1.

• Bilinearity: For all P,Q,R ∈ E[n], en(P +
Q,R) = en(P,R)en(Q,R), and en(P,Q + R) =
en(P,Q)en(P,R).

• Non-degeneracy: For all P ∈ G1 and Q ∈ G2,
en(P,Q) 6= 1.

• Computable: For all P,Q ∈ E[n], en(P,Q) is com-
putable in polynomial time.

According to [13], we can either assume that the
isomorphism ψ is computable in polynomial time or
model the security proof with respect to a result whereby
the adversary has access to an oracle which computes
this isomorphism. In the following, we consider some
problems.

co-BIDH Assumption: For a, b, c ∈R Z∗

q , P2 ∈
G∗

2, P1 = ψ(P2) ∈ G∗

1, en, given (P1, P2, aP2, bP2), to
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compute en(P1, P2)
a−1b is hard.

k-BCAA1 Assumption: [6] For an integer k, and
x ∈R Z∗

n, P2 ∈ G∗

2, P1 = ψ(P2) ∈ G∗

1, en, given
(P1, P2, xP2, h0, (h1,

1
h1+xP2), ...., (hk,

1
hk+xP2)) where

hi ∈R Z∗

q and different from each other for 0 ≤ i ≤ k, to

compute en(P1, P2)
1/(x+h0) is hard.

k-BDHI Assumption: [5, 6] For an integer k, and
x ∈R Z∗

n, P2 ∈ G∗

2, P1 = ψ(P2) ∈ G∗

1, en, given (P1, P2,
xP2,x

2P2,...x
kP2), to compute en(P1,P2)

1/x is hard.
The k-BDHI problem is well known [5, 6]. In [6] Chen

and Cheng have proved the following relationship between
the k-BCAA1 problem and the k-BDHI problem.

Theorem 1. [6] If there exists a polynomial time algo-
rithm to solve (k-1)-BDHI, then there exists a polynomial
time algorithm for k-BCAA1. If there exists a polynomial
time algorithm to solve (k-1)-BCAA1, then there exists a
polynomial time algorithm for k-BDHI.

From the Theorem 1, we know that the k-BCAA1 prob-
lem has a similar hardness with the k-BDHI problem. In
the next section, we will present our new scheme which is
based on the hardness of the k-BCAA1 problem.

4 A New CL-PKE Scheme

Inspired by the provable secure SK-IBE scheme [6, 12],
we propose a new CL-PKE scheme. We describe our new
scheme in a similar method of [4]. First, we give a basic
CL-PKE scheme which is only IND-CPA secure. Then we
will extend the basic scheme to the full scheme which is
secure against an IND-CCA attack using a technique due
to Fujisaki-Okamoto transformation [9].

4.1 Basic CL-PKE

Our basic scheme is consisted of the following algorithms.

Setup: Given a security parameter κ, the generator takes
the following steps.

1) Generate a Weil pairing e : E[q] × E[q] → GT with
E[q] = G1 ⊕ G2 and an isomorphism ψ from G2 to
G1. Pick a random generator P2 ∈ G∗

2 and set P1 =
ψ(P2).

2) Pick a random s ∈ Z∗

q and compute Ppub = sP1.

3) Compute g = e(P1, P2).

4) Pick cryptographic hash functions H1 : {0, 1}∗ → Z∗

q

and H2 : GT → {0, 1}n.

The message space is M = {0, 1}n. The ciphertext
space is C = E[q] × {0, 1}n. The system parameters are
params =< q,G1, G2, GT , e, n, P1, P2, g, Ppub, H1, H2 >.
The masterkey is s.

Partial-Private-Key-Extract: The algorithm takes
as input an identifier ID ∈ {0, 1}∗, params and
the masterkey s and returns the partial private key
DID = 1

H1(ID)+sP2.

Set-Secret-Value: The algorithm takes as inputs
params and identifier ID, selects a random xID ∈ Z∗

q

and outputs xID as the entity’s secret value.

Set-Private-Key: The algorithm takes an inputs
params, entity ID’s partial private key DID and secret
value xID. The output of the algorithm is the pair
SID =< DID, xID >.

Set-Public-Key: The algorithm takes params and
entity ID’s secret value xID as inputs and constructs
ID’s public key as PID = xIDP2.

Encrypt: To encrypt M ∈ M for entity ID with the
public key PID, perform the following steps:

1) Check that PID is in G∗

2, if not output ⊥. This checks
the validity of the public key.

2) Compute QID = H1(ID)P1 + Ppub.

3) Choose random values r1 and r2 and compute the
ciphertext:

C =< r1QID + r2PID,M ⊕H2(g
(r1+r2)) > .

Decrypt: Suppose C =< U, V >. To decrypt this ci-
phertext using the private key SID =< DID, xID > com-
pute:

M = V ⊕H2(e(U,DID −
1

xID
P1)).

According to the Weil Pairing’s properties, we know
e(P1, P1) = 1, e(P2, P2) = 1, and e(P2,−P1) = e(P1, P2).
Hence the consistency of the scheme can be verified by

e(U,DID −
1

xID
P1)

= e(r1QID + r2PID, DID −
1

xID
P1)

= e(r1(H1(ID) + s)P1 + r2xIDP2,

1

H1(ID) + s
P2 −

1

xID
P1)

= e(r1(H1(ID) + s)P1,

1

H1(ID) + s
P2)e(r2xIDP2,−

1

xID
P1)

= e(P1, P2)
r1e(P1, P2)

r2

= g(r1+r2).

4.2 Security of Basic CL-PKE

To study the security of the BasicCL-PKE scheme, we
define the following two public key encryption schemes
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called BasicPub-I and BasicPub-II.

BasicPub-I: The scheme includes the following algo-
rithms:

Key-generation: Given a security parameter κ, the gen-
erator takes the following steps.

1) Generate the parameters < q,G1, G2, GT , e,
P1, P2, g > which are identical to the ones of the
BasicCL-PKE.

2) Pick a random s ∈ Z∗

q and compute Ppub =
sP1.Randomly choose different elements hi ∈ Z∗

q and

compute 1
hi+sP2 for for 0 ≤ i < q1.

3) Pick a random x ∈ Z∗

q and compute PID = xP2.

4) Pick a hash function H2 : GT → {0, 1}n.

The public parameters are Kpub−I =< q,G1, G2,
GT , e, n, P1, P2, g, Ppub, x, PID, h0, (h1,

1
h1+sP2), (h2,

1
h2+sP2), · · · , (hq1−1,

1
hq1−1+sP2), H2 > and the private

key is Kpri−I = 1
h0+sP2.

Encrypt: To encrypt M ∈ M, perform the following
steps:

1) Check that PID is in G∗

1, if not output ⊥. This checks
the validity of the public key.

2) Choose two random r1, r2 ∈ Z∗

q and compute the
ciphertext:

C =< r1(h0P1 + Ppub) + r2PID,M ⊕H2(g
(r1+r2)).

Decrypt: Suppose C =< U, V >. To decrypt this ci-
phertext using the private key Kpri−I compute:

M = V ⊕H2(e(U,Kpri−I − x−1P1)).

BasicPub-II: This scheme is similar to the BasicPub-I
expect that s is publicly available, but x is kept secret.

Key-generation: Given a security parameter κ, the gen-
erator takes the following steps.

1) Generate the parameters < q,G1, G2, GT , e, P1, P2,
g > which are identical to the ones of the BasicCL-
PKE.

2) Pick a random s ∈ Z∗

q and compute Ppub = sP1.
Randomly choose element h0 ∈ Z∗

q .

3) Pick a random x ∈ Z∗

q and compute PID = xP2.

4) Pick a hash function H2 : GT → {0, 1}n.

Hence the public parameters are Kpub−II =<
q,G1, G2, GT , e, n, P1, P2, g, s, Ppub, PID, h0,
H2 > and the private key is Kpri−II = x.

Encrypt: To encrypt M ∈ M, perform the following
steps:

1) Check that PID is in G∗

1, if not output ⊥. This checks
the validity of the public key.

2) Choose two random r1, r2 ∈ Z∗

q and compute the
ciphertext:

C =< r1(h0P1 + Ppub) + r2PID,M ⊕H2(g
(r1+r2)).

Decrypt: Suppose C =< U, V >. To decrypt this ci-
phertext using the private key Kpri−II compute:

M = V ⊕H2(e(U,
1

h0 + s
P2 −

1

Kpri−II
P1)).

In the following, we prove that the BasicPub-I and
BasicPub-II are IND-CPA secure.

Lemma 1. The BasicPub-I scheme is secure against
IND-CPA adversaries provided that H2 is a random ora-
cle and the k-BCAA1 assumption is sound.

Proof. Algorithm B is given as input a random k-
BCAA1 instance < q,G1, G2, GT , e, ψ, P1, P2, xP2,
h0, (h1,

1
h1+xP2), · · · , (hq1−1,

1
hq1−1+xP2) > where

x ∈ Z∗

q is a random element. Algorithm B finds

D = e(P1, P2)
1/(x+h0) by interacting with A as follows:

Setup: Algorithm B first simulates algorithm Key-
generation of BasicPub-I to create the public parameters
as below.

1) Computes Ppub = ψ(xP2) ∈ G1.

2) Pick a random r ∈ Z∗

q and set PID = rP2.

3) Now B passes A the public parameters Kpub−I =<
q,G1, G2, GT , e, ψ, P1, P2, Ppub, r, PID, h0, (h1,

1
h1+x

P2), · · · , (hq1−1,
1

hq1−1+xP2) >. The private key is

Kpri−I = 1
h0+xP2.

H2-queries: At any time algorithm A can query the ran-
dom oracle H2. To response to these queries B maintains
a list of tuples < Xi, Hi >. We refer to this list as the
H list

2 . When A queries the oracle H2 at a point Xi algo-
rithm B responds as follows:

1) If the query Xi already appears on the H list
2 in a

tuple < Xi, Hi >, then algorithm B responds with
H2(Xi) = Hi.

2) Otherwise, B chooses a random Hi ∈ {0, 1}n, return
H2(Xi) = Hi, and adds the tuple < Xi, Hi > to the
H list

2 .

Challenge: Algorithm A outputs two message M0 and
M1 on which it wants to be challenged. B chooses a
random string R ∈ {0, 1}n and two random integers
r1, r2 ∈ Z∗

q , and then defines the challenged ciphertext to
be C =< U, V >=< r1P1+r2PID, R >. Observe that the
decryption of C isR⊕H2(r1P1+r2rP2,

1
h0+xP2−r

−1P1) =
R⊕H2(D

r1 ∗ e(P1, P2)
r2).



International Journal of Network Security, Vol.6, No.1, PP.26–32, Jan. 2008 30

Guess: Algorithm A outputs it guess b ∈ {0, 1}. At this
point B pick a random tuple < Xi, Hi > from the H list

2

and outputs (Xi/e(P1, P2)
r2)−r1 as the solution to the

given instance of (q1 − 1)-BCAA1 problem.

Lemma 2. The BasicPub-II scheme is secure against
IND-CPA adversaries provided that H2 is a random ora-
cle and the co-BIDH assumption is sound.

Proof. B is given as input a random co-BIDH problem
instance < P1, P2, aP2, bP2 >. Let D = e(P1, P2)

a−1b be
the solution to the co-BIDH problem. Algorithm B finds
D by interacting with A as follows:

Setup: Algorithm B simulates algorithm Key-
generation of the BasicPub-II to create the public
Kpub−II =< q,G1, G2, GT , e, n, P1, P2, g, s, Ppub, PID,
h0, H2 > by randomly selecting s, h0 ∈ Z∗

q and setting
Ppub = sP, PID = aP2. H2 is a random oracle controlled
by B. The private key Kpri−II equals to a which B
does not know. Then algorithm B passes the public key
Kpub−II to A and responds queries as follows.

H2-queries: To response to these queries B maintains a
list of tuples < Xi, Hi >. We refer to this list as the H list

2 .
When A queries the oracle H2 at a point Xi algorithm B
responds as follows:

1) If the query Xi already appears on the H list
2 in a

tuple < Xi, Hi >, then algorithm B responds with
H2(Xi) = Hi.

2) Otherwise, B chooses a random Hi ∈ {0, 1}n, return
H2(Xi) = Hi, and adds the tuple < Xi, Hi > to the
H list

2 .

Challenge: Algorithm A outputs two message M0

and M1 on which it wants to be challenged. B chooses
a random string R ∈ {0, 1}n and a random integer
c ∈ Z∗

q , and then defines the challenged ciphertext to
be C =< U, V >=< (h0 + s)cP1 + bP2, R >. Observe
that the decryption of C is R ⊕ H2(e((h0 + s)cP1 +
bP2,

1
h0+sP2 − a−1P1) = R⊕H2(D ∗ e(P1, P2)

c).

Guess: Algorithm A outputs it guess b ∈ {0, 1}. At this
point B pick a random tuple < Xi, Hi > from the H list

2

and outputs Xi/e(P1, P2)
c as the solution to the given

instance of co-BIDH problem.

According to the security of the above BasicPub-I
and BasicPub-II schemes, we can prove the security of
our new BasicCL-PKE scheme formally. For the limited
space, we skip the detailed formal proof here and only
analyze the security of our scheme heuristically for the
two types of certificateless encryption adversaries.

Type I adversary AI : AI does not know themasterkey
s but he can replace public keys of entities with values of
his choice. Suppose AI selects x ∈ Z∗

q randomly and
replaces the public key of entity ID with P ′

ID = xQA. If

a sender wants to encrypt a message M ∈ M for entity
ID, he computes the BasicCL-PKE ciphertext as:

C =< r1QID + r2P
′

ID,M ⊕H2(g
(r1+r2)) > .

For the adversary AI who knows x, the ciphertext
C is the BasicPub-I encryption for the message M .
Hence for the adversary AI the IND-CPA security of the
BasicCL-PKE scheme can be reduced to the IND-CPA
security of the BasicPub-I scheme which is based on the
hardness of the k-BCAA1 problem.

Type II adversary AII : AII does have access to the
masterkey s but he may not replace public keys of en-
tities. With s, AII can compute the partial private key
DID for the entity ID. If a sender wants to encrypt a
message M ∈ M for entity ID, he computes the CL-PKE
ciphertext as:

C =< r1QID + r2PID,M ⊕H2(g
(r1+r2)) > .

For the AII who knows the masterkey s, the cipher-
text C is the BasicPub-II encryption for the message M .
Hence for the adversary AII the IND-CPA security of the
BasicCL-PKE scheme can be reduced to the IND-CPA
security of the BasicPub-II scheme which is based on the
hardness of the co-BIDH problem.

4.3 FullCL-PKE

In this section, we use a technique due to Fujisaki and
Okamoto [9] to convert the BasicCL-PKE scheme into an
IND-CCA secure scheme. The Fujisaki-Okamoto trans-
formation starts from an IND-CPA encryption scheme
and builds an IND-CCA scheme in the random oracle
model. Let Epk(m, r) indicate the encryption of the indi-
cated messagem using the random bits r under the public
key pk. The transformation is defined as:

Enew
pk (m, r) = Epk((m ‖ r), H(m ‖ r)),

where r is a random string chosen from an appropriate
domain and H denotes a hash function.

Lemma 3. [9] Suppose that if Epk is secure in the sense
of IND-CPA, then Enew

pk obtained by the above transfor-
mation is secure in the sense of IND-CCA in the random
oracle model.

In the following, we apply the Fujisaki-Okamoto trans-
formation to the BasicCL-PKE and then indicate that
the resulting scheme called FullCL-PKE is IND-CCA
secure. The FullCL-PKE is described as follows.

Setup: As in the BasicCL-PKE scheme. In addition,
we select two hash functions H3 : {0, 1}∗ → Z∗

q , H4 :

{0, 1}∗ → Z∗

q . Now M = {0, 1}(n−k0) and C = E[q] ×
{0, 1}n.

Algorithms Partial-Private-Key-Extract, Set-

Secret-Value, Set-Private-Key and Set-Public-Key
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Table 1: Comparison of the CL-PKE schemes

Schemes Encrypt Decrypt Pubkey Len

AP’s Scheme I [1] 3p+1s+1e+4h∗ 1p+1s+3h 2
CC’s Scheme I [7] 3p+1s+1e+4h∗ 1p+1s+3h 2
AP’s Scheme II [2] 1p+2s+1e+5h∗ 1p+2s+4h 1
CC’s Scheme II [8] 1p+2s+1e+4h∗ 1p+2s+3h 1
Our scheme 3s+1e+4h 1p+3s+3h 1

h∗: Require a special hash function.

are identical to the ones of the BasicCL-PKE scheme.

Encrypt: To encrypt M ∈ {0, 1}(n−k0) for entity ID
with the public key PID, perform the following steps:

1) Check that PID is in G∗

2, if not output ⊥. This checks
the validity of the public key.

2) Compute QID = H1(ID)P1 + Ppub.

3) Choose a random σ ∈ {0, 1}k0 and set r1 =
H3(M,σ), r2 = H4(M,σ).

4) Compute the ciphertext:

C =< r1QID + r2PID, (M ‖ σ) ⊕H2(g
(r1+r2)) > .

Decrypt: Suppose C =< U, V >. To decrypt this ci-
phertext using the private key SID =< DID, xID > com-
pute:

1) Compute V ⊕H2(e(U,DID − 1
xID

P1)) = M ‖ σ.

2) Parse M ‖ σ and compute r1 = H3(M,σ), r2 =
H4(M,σ). Check that U = r1QID + r2PID where
QID = H1(ID)P1 + Ppub can be precomputed. If
not, reject the ciphertext.

3) Output M as the decryption of C.

The FullCL-PKE scheme is obtained by applying the
above Fujisaki-Okamoto transformation to our IND-CPA
secure BasicCL-PKE scheme. Then according to the
lemma 3 we know that our FullCL-PKE is secure in the
sense of IND-CCA in the random oracle model.

5 Performance Analysis

In this section, we will show that our proposed FullCL-
PKE scheme has the best performance, comparing with
other existing IND-CCA secure CL-PKE schemes [1, 2,
7, 8]. All the schemes have four major operations, i.e.,
Pairing (p), Scalar(s) and Exponentiation (e) and Hash
(h). Pairing is the heaviest one even if many techniques
have been applied on pairing operation to dramatically
improve the performance[3].

In AP’s Scheme I [1] and CC’s Scheme I [7], the en-
tity ID’s public key has two elements of G1. The validity

test of the public key requires two pairing computations.
Then their authors [2, 8] have improved their old schemes
to Schemes II respectively. Public key has only one ele-
ment of G1 in AP’s Scheme II and CC’s Scheme II and
the validity test of the public key is a simple group test
PID ∈ G1. AP’s Scheme II and CC’s Scheme II are more
efficient than their old schemes for they require only 1
pairing operation while their old schemes require 3 pair-
ing operations.

The advantage of our scheme is that it has better per-
formance than the above existing schemes, particularly in
encryption. First, the above existing schemes require a
special hash function called MapToPoint [4] which maps
an identifier to an element in G1. The special hash func-
tion is generally inefficient and slower than the general
hash function used in our scheme which maps an identi-
fier to an element in Z∗

q . Second, no pairing operation is
required in the Encrypt algorithm of our scheme. Even if
our scheme requires 1 more scalar operation in Encrypt
algorithm, it is still more efficient because pairing com-
putation is much more time-consuming than scalar com-
putation [3]. Finally, in any previous existing scheme,
its ciphertext has three parts and the ciphertext space
is C = G∗

1 × {0, 1}n × {0, 1}n. Compared with these
schemes, our scheme has more compact ciphertext for it
is consisted of only two parts and the ciphertext space is
C = E[q] × {0, 1}n.

Without considering the pre-computation, the perfor-
mance of the FullCL-PKE schemes are listed in Table 1,
where we compare the schemes on the computation com-
plexity and public key length (PK-Len). From Table 1,
we can see that the computation complexity of our scheme
compares favorably with previous known schemes.

6 Conclusions

In this paper, we present an efficient CL-PKE scheme.
It has been analyzed to be IND-CCA secure in the ran-
dom oracle model based on the hardness of the k-BCAA1
problem and the co-BIDH problem. Our scheme only
requires generic hash functions rather than special ones.
Compared with previous existing CL-PKE schemes, our
scheme has absolute advantages in computation complex-
ity and the length of the ciphertext.



International Journal of Network Security, Vol.6, No.1, PP.26–32, Jan. 2008 32

References

[1] S. S. Al-Riyami and K. G. Paterson, “Certificateless
public key cryptography,” in Advances in Cryptology
ASIACRYPT’03, LNCS 2894, pp. 452-473, Springer-
verlag, 2003.

[2] S. S. Al-Riyami and K. G. Paterson, “CBE from
CL-PKE” A Generic Construciton and Efficient
Schemes (PKC’05), LNCS 3386, pp. 398-415, 2005.

[3] P. S. L. M. Barreto, H. Y. Lynn, and M. Scott, “ Ef-
ficient algorithms for pairing-based cryptosystems,”
in Advances in Cryptology (Crypto’02), LNCS 2442,
pp. 354-368, 2002.

[4] D. Boneh and M. Franklin, “Identity based encryp-
tion from the weil pairing,” in Advances in Cryptol-
ogy (Crypto’01), LNCS 2139, pp. 213-229, Springer-
Verlag, 2001.

[5] D. Boneh, and X. Boyen, “ Efficient selective-id se-
cure identity-based encryption without random ora-
cles,” in Proceedings of Advances in Cryptology (Eu-
rocrypt’04), LNCS 3027, pp. 223-238, 2004.

[6] L. Q. Chen and Z. H. Cheng, Security Proof
of Sakai-Kasahara’s Identity-Based Encryption
Scheme, Cryptology ePrint Archive, Report
2005/226.

[7] Z. H. Cheng, R. Comley, and L. Vasiu, “Remove
key escrow from the identity-based encryption sys-
tem,” in Foundations of Information Technology in
the Era of Network and Mobile Computing, pp. 37-
50, France, Aug. 2004.

[8] Z. H. Cheng and R. Comley, Efficient Certificateless
Public Key Encryption, Cryptology ePrint Archive,
Report 2005/012.

[9] E. Fujisaki and T. Okamoto, “ How to enhance the
security of public-key encryption at minimum cost,”
IEICE Transactions on Fundamentals, E-83A, no. 1,
pp. 24-32, 2000.

[10] M. Martijn, Pairing-Based Cryptography, Master
thesis, Technische Universiteit Eindhoven, 2004.

[11] A. Shamir, “Identity based cryptosystems and
signature schemes,” in Advances in Cryptology
(Crypto’84), LNCS 196, pp. 47-53, Springer-Verlag,
1985.

[12] R. Sakai and M. Kasahara, ID Based Cryptosystems
with Pairing on Elliptic Curve, Cryptology ePrint
Archive, Report 2003/054.

[13] N. Smart and F. Vercauteren, On Computable
Isomorphisms in Efficient Pairing Based Systems,
Cryptology ePrint Archive, Report 2005/116.

[14] D. H. Yum and P. J. Lee, “Generic construc-
tion of certificateless encryption,” in Australasian
Conference on Information Security and Privacy
(ACISP’04), pp. 200-211, 2004.

Yijuan Shi received her M.S. in Com-
munication and Information System
from Electronic and Engineering Insti-
tute, Hefei, China. Currently, She is
a Ph.D. candidate in Electronic Engi-
neering, Shanghai Jiao Tong Univer-
sity (SJTU). Her current research in-
terests include network management,

network security and cryptography.

Jianhua Li received his M.S. and
Ph.D. in Communication and Informa-
tion System from the Shanghai Jiao
Tong University, Shanghai, China.
Currently, he is now a professor at the
Department of Electronic and Engi-
neering, Shanghai Jiao Tong Univer-
sity. His research interests include mo-

bile communications, network management and informa-
tion security.

Jianjun Shi received his M.S. and
Ph.D. in Communication and Informa-
tion System from the Shanghai Jiao
Tong University. Currently, he is now
an assistant professor at the Depart-
ment of Electronic and Engineering,
Shanghai Jiao Tong University. His
research interests include mobile com-

munications and network security.


