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Abstract

The Logical Key Hierarchy (LKH) provides a scalable
and efficient way to distribute session keys to autho-
rized group members in secure group (multicast) com-
munication. However, because multicast is a best-effort
service, it requires additional mechanism to ensure that
every member receives the rekey information. To solve
this problem, several FEC-based schemes have been pro-
posed. Although these schemes significantly enhance the
reliability of the rekey transmissions, they require signifi-
cant additional resources at the key server. In this paper
we propose a distributed scheme for recovering lost rekey
packets. Our scheme allows each member to contact other
members to get the missing packets during rekey events,
thus avoiding the extra computation and bandwidth re-
sources at the key server. We compare our scheme with
a well-known FEC scheme with respect to latencies ex-
perienced by receivers in reasonably large groups. Re-
sults show that our scheme yields lower average and 95th-
percentile latencies than the FEC-based scheme across
several operating regimes.

Keywords: Rekey, reliability, secure multicast

1 Introduction

The growth of the Internet has led to the development
of many group-oriented applications such as video distri-
bution, stock quote delivery, and news broadcast. Some
of these applications require that only authorized group
members be able to access group data. Although tech-
nologies such as multicast [5] provide an efficient way to
deliver data to a group of recipients, they do not provide
access control—anyone can join the multicast group to
receive group data.

The Secure Multicast working group (MSEC) of the
Internet Engineering Task Force (IETF) has developed a
general architecture for secure group communication [1,
6]. The basic idea of the approach is that group members
share a symmetric key called a session key, and group

data is encrypted with that key. Access to transmitted
data is controlled by ensuring that only authorized mem-
bers know the current session key. When the set of group
members changes (i.e. when current members leave or
new members join), the session key needs to be changed
to prevent unauthorized access. The update of session
key is called a rekey event. The central problem of secure
group communication is how to make rekey events effi-
cient; the design of a scalable rekey scheme has been stud-
ied extensively in recent years [8, 9, 13, 14]. In the MSEC
architecture, a logical entity called the Group Controller
and Key Server (GCKS) is responsible for managing the
rekey events.

The Logical Key Hierarchy (LKH) [13, 14] approach
has so far received the most attention. In LKH, the
GCKS maintains a tree of auxiliary keys and assigns to
each member a subset of these keys; the basic idea is that
a new session key can be securely and efficiently transmit-
ted to the group by encrypting it with certain auxiliary
keys. When membership in the group changes, the session
key and some of the auxiliary keys need to be changed.
The GCKS encrypts the new keys in such a way that
only currently-authorized members have the proper aux-
iliary keys to decrypt the necessary new auxiliary keys
then get the new session key. This approach (described
in more detail in the next section) reduces the compu-
tational complexity (i.e. number of encryptions) at the
GCKS to O(logdN), where N is the group size and d is
the degree of the key tree. Nevertheless, a rekey opera-
tion can consume a significant amount of system resources
(computation and bandwidth) at the GCKS.

It is crucial for the LKH approach that each autho-
rized member receive the packets containing the session
key and the auxiliary keys he needs. Otherwise, he won’t
be able to access the group data encrypted with the new
session key. Furthermore, these auxiliary keys are used in
future rekeying to protect new session keys. Any autho-
rized member who does not have the proper auxiliary keys
will be excluded from access to future group. Therefore,
the reliability of rekey messages is an important issue for
LKH.
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To address this problem, several schemes based on
the use of forward error control (FEC) have been pro-
posed [15, 16]. In these schemes, error-correction codes
are used to produce extra redundant packets that are mul-
ticast along with the original rekey packets. Any mem-
ber who receives an adequate subset of the transmitted
packets can recover the necessary auxiliary keys. This
scheme significantly enhances the reliability of the rekey
transmissions; however, it requires significant additional
computational resources at the GCKS.

In this paper we propose a distributed scheme for re-
covering lost rekey packets. In our approach, each mem-
ber maintains information about a small number of other
group members, called peers. At rekey time, a member
who fails to receive all required multicast packets will con-
tact his peer(s) to ask for the missing packets. The ba-
sic idea behind our solution is that multicast losses are
generally scattered throughout the multicast tree, and it
is unusual for a packet to be delivered to no receivers;
a judicious assignment of peers can greatly increase the
likelihood that some peer always has the needed packet.
The advantage of our scheme is that it avoids the extra
computation and bandwidth resources at the GCKS re-
quired by FEC-based schemes. This makes it possible for
ordinary members to act as GCKS. By reducing the over-
head at the GCKS, the group key management system is
more scalable, i.e, it can support more and larger groups.

The main contributions of this paper are the introduc-
tion of the peer-based recovery method for rekeying, and
a careful comparison of its performance characteristics to
those of the best known FEC scheme. We perform simu-
lations under different conditions to compare the distribu-
tion of latencies experienced by receivers in each scheme.
Our results show that the peer recovery scheme yields
lower average and 95th-percentile latencies than the FEC-
based scheme across several operating regimes.

The rest of this paper is organized as follows. In the
next section we present a more detailed description of
the LKH key management approach, along with a dis-
cussion of alternative approaches to reliability. Section 3
describes our peer-based approach, while Section 4 com-
pares the expected latency of our approach and that of
AFEC, a published FEC-based rekey approach. Section 5
presents the results of our simulation study. Section 6
concludes the paper.

2 Background and Related Work

As noted in the Introduction, the problem of efficiently
rekeying a secure group has received a good deal of atten-
tion. The Logical Key Hierarchy method was indepen-
dently developed several years ago by Wallner et al. [13]
and by Wong, Gouda and Lam [14]. Since then, other re-
lated approaches have been proposed, including one-way
function trees [8] and a method based on subset differ-
ences [9]. All of these methods assume a Group Controller
and Key Server (GCKS) that is responsible for enforcing

the group policy, which defines the set of authorized mem-
bers. At random times, the set of authorized members
may change when new members join, or existing mem-
bers leave the group. Therefore from time to time the
GCKS initiates a rekey event.

In this paper we focus on the LKH approach, because
it is very efficient overall, and has been well-studied.

2.1 The Logical Key Hierarchy

In LKH, the GCKS organizes the session key and auxiliary
keys into a regular tree structure called the key tree. The
session key is the root. Each member holds a key known
only to itself and the GCKS, which corresponds to a leaf
node in the tree; that key need not change throughout the
user’s membership. Each member knows all the keys on
the path from its own leaf node to the root node. When a
member joins or leaves the group, the keys on the corre-
sponding path have to be changed to prevent the depart-
ing member from accessing subsequent data, or the new
member from accessing old data. At the time of rekey-
ing, the GCKS encrypts each updated key with each of
its “child keys” respectively then puts the encrypted keys
into rekey packets. For example, in Figure 1, when M9

leaves the group, the key server constructs the encryp-
tions by traversing the key tree in a bottom-up fashion:
{k7−8}k7

, {k7−8}k8
, {k1−8}k1−3

, {k1−8}k4−6
, {k1−8}k7−8

.
Here {ki}kj

denotes key ki encrypted with key kj . Upon
receiving rekey packets, each member extracts and de-
crypts the needed auxiliary keys. In our example, M1

needs {k1−8}k1−3
.
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Figure 1: An example of key tree

To reduce overhead in situations where the group mem-
bership changes relatively rapidly, batched-LKH was pro-
posed by Yang and others [15]. The idea of batched-
LKH is to accumulate a number of membership changes
in a batch before changing the session key. By amortiz-
ing auxiliary key changes over more membership changes,
this method requires fewer encryptions per membership
change and thus saves system resources at the GCKS. In
exchange for this increased efficiency, the data may be
accessible to unauthorized participants (or inaccessible to
authorized participants), for some periods of time.
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2.2 Reliable Transmission Mechanisms

The problem of the reliable transport of rekey messages
has been discussed in the MSEC working group of the
IETF. Baugher et al. [1] identify general categories of so-
lutions to address loss of rekey messages. One general
approach is to use an existing reliable multicast proto-
col solution. Different types (NACK-based, ACK-based,
etc.) of reliable multicast protocols have been specified;
each has different properties and is suitable for different
situations. However, as Yang et al. have observed [15],
the rekey transport workload in LKH has a sparseness
property: although the GCKS generates a lot of encryp-
tions at each rekey event, any particular member needs
only a relatively small fraction of them. In our previous
example (Figure 1) when M9 leaves the group, M1 needs
only {k1−8}k1−3

. If the encryptions are carefully packed
into packets [17], a member may need as few as one packet
among all the transmitted rekey packets. Therefore it is
unnecessary and inefficient to use a reliable multicast pro-
tocol designed to ensure that all members to receive all
rekey packets.

The other general approach is to transmit redundant
information along with the rekey messages, to enable re-
ceivers to reconstruct the required (encrypted) keys. For
example, the rekey messages themselves might be trans-
mitted several times. However, more efficient use of band-
width can be achieved with modern Forward Error Con-
trol (FEC) coding techniques (erasure codes), which re-
duce the amount of redundancy required to reconstruct
the desired packets in the face of a modest number of
packet losses.

Generally, erasure coding techniques group a fixed
number (k) of packets together, and then apply an algo-
rithm to generate additional, redundant packets to form a
block ; the total number of packets in a block is n, k < n.
If a receiver obtains any k out of n packets in a block,
he will be able to reconstruct the original k data packets.
Several FEC-based reliable transport protocol have been
proposed for Batched-LKH [15, 16].

Yang et al. [15] presented a round-based proactive FEC
protocol. In their protocol, the GCKS first packs the en-
cryptions into rekey packets, then uses the FEC encoding
technique to generate some redundant packets and mul-
ticasts all the packets to the entire group. At the end of
the multicast round, the GCKS collects negative feedback
from members. The feedback of a member is a NACK
packet containing the number of packets ar that the mem-
ber needs to reconstruct the required packets. The GCKS
keeps track of the largest value of ar, generates that many
new FEC repair packets, then multicasts the repair pack-
ets at the next round. This process continues until all
members recover their required rekey packets.

One potential problem of this scheme is feedback im-
plosion, i.e., the GCKS may receive a lot of NACKs at the
end of first round. Zhang et al. [16] proposed an Adaptive
FEC-based scheme (AFEC) which limits NACK feedback
to a small fraction of the member population. Their pro-

tocol runs only one multicast round. At the end of mul-
ticast round, the members who couldn’t reconstruct their
rekey packet from the multicast will contact GCKS for
unicast recovery. Based on the feedback from previous
rekey events, the GCKS dynamically adjusts the redun-
dancy factor of the encoding to achieve a target residual
error rate at the next rekeying. To minimize the effect of
burst loss on a single block, the authors designed a packet
spacing strategy in which the packets in the same block
are sent equally spaced during the sending interval while
packets from different blocks are sent in an interleaved
fashion. For example, if a rekey message is divided into
three blocks b1, b2, and b3, the GCKS will send the first
packet in b1, b2, and b3, then send the second packet in
b1, b2, and b3, and so on so forth. In this way, the packets
in the same block are spaced out as far as possible and
the possibility of burst loss destroying an entire block is
reduced.

The main problem with FEC-based schemes is that
FEC encoding is computationally expensive and intro-
duces additional bandwidth overhead. Thus the load on
the GCKS is significantly higher than that on the re-
ceivers. Also, the overhead increases with the loss rate
experienced by receivers.

3 Recovery from Peer Members

The goal of our protocol is to let members in an LKH
scheme get required rekey packets in a timely manner
while reducing the overhead at the GCKS. We observe
that each member and its sibling members in the key tree
share all the keys except for the individual key; therefore
they need the same rekey packets. Based on this obser-
vation, we propose a distributed scheme to use these sib-
ling members to retransmit the missing rekey packet(s)
in case of packet loss. This scheme does not require FEC
encoding, and therefore saves computation power at the
GCKS, as well as multicast bandwidth. It also avoids the
potential “NACK implosion” problem at the GCKS. In-
stead, it requires that members retain the rekey packets
they receive for a short time, and assist other members
by forwarding the packets upon request.

3.1 Definitions

Remember that a key tree is a tree structure in which each
node represents a key and a leaf node also represents a
member. The leaf members who share the same parent
node in the key tree form a cluster. Let c(m) represent
the cluster member m belongs to. Then the sibling peers
of m, sp(m) are the other members in the cluster, i.e.,
sp(m) = c(m) \ {m}. For example, in the key tree in
Figure 3, M1’s sibling peers are M2 and M3.

When m is the only member in c(m), sp(m) is null. In
this case, we find indirect peers, ip(m), for m. We assume
that the key tree is balanced1. Indirect peers of m are

1Zhang et al. [17] suggested an algorithm to construct a balanced



International Journal of Network Security, Vol.6, No.1, PP.15–25, Jan. 2008 18

parent = get parent(m);
//first sibling() get the first sibling
// in sequence of id on the tree.
uncle = first sibling(parent);
ip = children(uncle);

Figure 2: Find indirect peers ip(m) of m

M2 M3 M4 M5 M6 M7M1

... ...

... ...

Figure 3: Part of key tree

m’s cousins (children of m’s parent’s sibling). Figure 2
illustrates the process to find indirect peers. Given the
above definition, in Figure 3 M7’s indirect peers are M1,
M2 and M3.

We define m’s logical peers lb(m) as the union of sibling
peers and indirect peers. If the degree of the key tree is d,
each member will know up to d − 1 sibling peers and up
to d remote peers. The peer information maintained at
each member is O(d), and is independent of group size.
Briefly speaking, the protocol operates in the following
way. The GCKS knows the entire logical tree; when a
member joins, the GCKS informs it of its logical peers
(and may optionally provide an additional shared secret
key with which members of the peer group can authenti-
cate each other). The joining member establishes a TCP
connection with each of its logical peers. When a member
detects the loss of a required rekey packet, it asks one of
its logical peers to retransmit the packet. We explain our
protocol in more detail in the following subsections.

3.2 Recovery for Required Packet

We assume that given a member’s ID in key tree, any
neighbor can easily determine which rekey packet is nec-
essary to that member. In the LKH algorithm [17], for
example, the header of a rekey packet has a field that
specifies the members who will need this packet. There-
fore our assumption is trivial.

During a rekey event, each member looks for the packet
he needs by checking the header of rekey packets. When a
member sees a gap in the sequence number of rekey pack-
ets, it is likely that the missed packet was dropped on the
way. If the dropped packet is required by the member, it
sends a request for the packet to one of its peer(s). When
a member detects loss of a required packet, it does not
wait until the end of a multicast “round” to ask for re-
transmission; instead, it uses the following fast initiation
strategy: Assume m requires the packet with sequence
number pi. When m receives any packet with sequence
number greater than pi + b without having received pi, it
requests retransmission from its peer. The parameter b is
intended to keep (slightly) reordered packets from being

key tree.

mistaken for lost, and is set to 3 in our simulation. Han-
dling the case where a packet is lost within b packets of
the end of the sequence, however, does require a timeout.

To recover from the loss, the member sends a retrans-
mission request to the first peer in its peer list, and waits
for the reply. When a peer receives a retransmission re-
quest, it simply sends back the rekey packet the requesting
member needs. If the peer does not have the packet, it
sends a negative reply, and the requesting member con-
tacts the next peer in its list. In case none of the peers
have the requested packet, the member has to ask the
GCKS to retransmit the packet.

A more aggressive strategy is to contact all the peers
at the same time when a member needs retransmission.
Then the member processes the first packet retransmit-
ted from the peers and ignores the rest of replies. This
strategy helps a member get a required packet earlier if
it has to contact more than one peer for retransmission.
The disadvantage of this strategy is that it introduces ex-
tra bandwidth overhead when a member sends requests
to all the peers. However, the request packet is small,
and each of the peers retransmits only one packet. So the
extra bandwidth overhead will have little impact on the
network.

3.3 Logical Peer Assignment

Our scheme is based on the assumption that a member’s
logical peers receive its required packets, even if it doesn’t.
This assumption may be violated if either (i) losses occur
close to the GCKS, and thus affect all members; or (ii)
logical peers are close to each other in the multicast tree,
and are therefore likely to be affected by the same losses.
The former problem is common to any multicast-based
approach. The latter problem can be avoided by placing
members in the key tree in such a way that logical siblings
are not close together in the network topology.

Recall that the GCKS is responsible for assigning mem-
bers to the key tree. The simplest approach is to replace
the leaf node of a departed member with a joining member
randomly. The advantage of this strategy is that it is used
by existing Batched-LKH schemes, so no change is needed
to the key tree assignment algorithm. The disadvantage
is that it may not guarantee that logical siblings are far
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apart in the multicast tree, particularly for small groups.
If the GCKS can determine members’ physical location, it
can try to maximize the distance between members in the
same cluster when it assigns them to the key tree. How-
ever, the problem of determining nodes’ physical location
in the network is beyond the scope of this paper. We note,
however, that one promising approach is to use a Network
Coordinate System [3, 7, 10, 11] to determine each mem-
ber’s location in a space that corresponds in a known way
to physical space. Given this information, it is possible to
assign members so as to maximize the distance between
logical neighbors. However, it is likely to be computation-
ally difficult; similar problems, such as k-mean clustering,
are known to be NP-hard [4]. We therefore leave this
aspect as future work. In our performance evaluations,
members are assigned to the key tree randomly.

3.4 Logical Peer Maintenance

As group membership changes dynamically, the peer list
of a member may change from time to time. A straight-
forward way for members to update neighbor list is to let
GCKS inform the affected members (by either multicast
or unicast) at each rekeying. However, this method will
cause a lot of communication overhead at the GCKS. Our
protocol avoids the bottleneck at GCKS by having join-
ing/leaving members inform their peers. To achieve this,
two additional messages are introduced, namely, HELLO,
and GOODBYE.

We assume that each new member will establish a se-
cure reliable channel with GCKS when it registers. A new
member x sends a JOIN request to the GCKS over this
channel and receives the IP addresses of its logical peers
in response. Then x makes a TCP connection and sends
a HELLO message to each of its peers. When a mem-
ber m receives a HELLO from x, m adds x to its list of
established peers. When a member leaves the group, it
may send GOODBYE to its peers. Upon receiving the
GOODBYE message from m, x removes m from the list.
A member can also know a peer has left by detecting the
broken TCP connection.

4 Evaluation

In this section and the next, we compare our scheme to
the Adaptive FEC-based scheme of Zhang et al. [16], re-
ferred to hereafter as “AFEC”. Our goal is to produce an
apples-to-apples comparison of the latency distributions
achievable under realistic conditions with the two meth-
ods. In this section, we first consider the relationship
between the degree of redundancy (a parameter of the
FEC code) and the target residual error rate—that is,
the fraction of receivers who still cannot reconstruct their
required packets after all blocks have been transmitted by
the GCKS. Then we derive and compare expressions for
the delay experienced by a receiver under each scheme.

4.1 Degree of Redundancy in AFEC

As described above, AFEC improves multicast reliabil-
ity by adding redundant packets. For any given amount
of redundancy—i.e. ratio between n, the overall block
size, and k, the number of data (rekey) packets—enough
losses may still occur to prevent some receivers from re-
constructing all the data they need. To limit the num-
ber of retransmission requests (number of NACKs) to a
given target value, the GCKS will dynamically change the
amount of redundancy in response to network conditions.
In practice, the target number should be small to reduce
the fluctuations of number of NACKs. In this section we
analyze the amount of redundant packets the GCKS will
generate to achieve the target NACKs.

Let r denote the fraction of group members who send
NACK to the GCKS, h denote the number of redundant
packets for each block. The GCKS will send k + h = n
packets for each block. For simplicity, receivers are as-
sumed to experience same end-to-end loss rate, denoted
by p. Zhang et al. studied the relationship between r
and h at given p using both Bernoulli model and Markov
model [16]. Bernoulli model assumes that the packets ex-
perience independent losses while Markov model consid-
ers correlated losses between consecutive packets. When
the GCKS applies the packet spacing strategy suggested
by Zhang et al. to send rekey packets, the packets of the
same block will likely experience independent loss. There-
fore we analyze the amount of redundancy based on the
Bernoulli model.

Intuitively, r is the probability that the user does not
receive its required rekey packet and receives fewer than
k packets from the block. In [16], Zhang et al. derived r
as a function of h and p as follows:

r = p ·
k−1
∑

i=0

(

k + h − 1

i

)

(1 − p)ipk+h−1−i

= pk+h ·

k−1
∑

i=0

(

k + h − 1

i

)

(
1

p
− 1)i.

From this equation, we try to find the smallest h which
can achieve the target residual rate r∗ at given loss rate
p. We calculate r with the increase of h at a specific p,
find the closest r to the target then get the corresponding
h. Figure 4 shows the result for h when r∗ is 1% and 3%.
Here we set k to 10.

From the figure we find that the number of redundant
packets in a block increases nearly linearly with the end-
to-end packet loss rate. The redundant packets can take
up significant fraction of total bandwidth when loss rate is
medium to high. For example, when receivers experience
15% of packet loss, h will be 30% to 50% of block size (3
to 5 packets per block in the figure). In the simulations
described in the next section, we use a target NACK rate
of 1.2%.
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Table 1: Notation
Symbol Description
L average rekey latency of all members
p the probability that a member will receive the required packet from

multicast
q the probability that a member can reconstruct the required packet

in AFEC
r the probability that a member has to contact the GCKS for re-

transmission
Dmcast the average multicast packet delay
Dtcp(i, j) the average TCP delay between i and j
k the number of rekey packets per block in AFEC
h the number of redundant packets per block in AFEC
TA the time to send out all packets at the GCKS in AFEC
TP the time to send out all packets in peer-based recovery scheme
∆A the time a member waits before he sends NACK in AFEC
∆P the time a member waits before he contacts his peers
c the average number of peers a member needs to contact to get the

required packet
δi the delay in Case i, i = 1, 2, 3, 4
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Figure 4: h as a function of p

4.2 Rekey Message Delay

We define rekey latency seen at a group member as the
time from when the rekey event starts (i.e. the first packet
is transmitted by the GCKS) until the member receives
its required rekey packet. Table 1 lists the notations to
be used in our analysis.

In AFEC scheme, a group member can get its re-
quired packet in three ways: (1) from multicast transmis-
sion directly; (2) from FEC reconstruction if it receives
enough packets; or (3) after contacting the GCKS to re-
quest retransmission of missing packets. The fraction r of
members that require GCKS retransmission, is the target
NACK rate discussed in the previous subsection. Letting
δi denote the delay for Case i, the rekey latency in the
AFEC scheme is given by:

LAFEC = p · δ1 + q · δ2 + r · δ3

where q = 1 − p − r.

In our peer-based recovery scheme, a group member
either (1) gets the required packet from multicast delivery,
or (4) gets it from TCP retransmission:

Lpeer = p · δ1 + (1 − p) · δ4.

The average delay in the first case of both schemes should
be the same, so we take a closer look at the other cases.
For simplicity, we let L′ denote the latency not including
Case (1), i.e.,

L′

AFEC = (1 − p − r) · δ2 + r · δ3

L′

Peer = (1 − p) · δ4.

In Case (2) for AFEC, a member didn’t receive the
required packet, but received at least k other packets to
perform reconstruction. According to the spacing strat-
egy for packet sending, it will take at least k+1

k+h
TA time

to send k + 1 packets at the GCKS.

δ2 = 1/2(
k + 1

k + h
+1)TA+Dmcast =

TA

2
·
2k + h + 1

k + h
+Dmcast.

In Case (3) of AFEC scheme, the member waits for awhile
at the end of rekeying, then sends retransmission request
to the GCKS. The waiting time ∆A usually is the RTT.
So the latency in this case is:

δ3 = TA + ∆A + 2Dtcp(m, GCKS).
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Therefore,

L′

AFEC = (1 − p − r)[
TA

2
·
2k + h + 1

k + h
+ Dmcast]

+r[TA + ∆A + 2Dtcp(m, GCKS)]

= (
1 − p − r

2
·
2k + h + 1

k + h
+ r)TA

+(1 − p − r)Dmcast + r · ∆A

+2r · Dtcp(m, GCKS).

In Case (4) for the peer recovery scheme, when the fast
recovery initiation strategy is used, a member can detect
the loss of required packet before all packets have been
transmitted. The detection time ∆P is just the time to
receive a few packets after the lost required packet. The
delay in this case is:

1/2TP + Dmcast + ∆P + c · 2Dtcp(mi, mj).

Therefore,

L′

Peer

= (1 − p)[1/2TP + Dmcast + ∆P + c · 2Dtcp(mi, mj)]

=
1 − p

2
TP + (1 − p)Dmcast

+(1 − p)∆P + 2c(1 − p) · 2Dtcp(mi, mj).

Because AFEC scheme will send more packets in a
rekey event, TA is larger than TP . Given a small residual
rate r, the second terms of L′

AFEC and L′

Peer will be sim-
ilar. ∆A is bigger than ∆P because the time to receive
a few more packets to initiate the recovery is less than
the RTT. Based on the first three terms of the two ex-
pressions, we can expect that delays will be similar when
losses are low. For members who fail to receive their re-
quired packet in the “initial” transmission (i.e. in the first
k packets), we can expect that the peer-based approach
will have lower latency, due to elimination of the need to
wait until all multicast packets have been transmitted.

Finally, the magnitude of the “residual” Dtcp term for
each method will depend heavily on the delay experienced
by TCP, in particular due to TCP’s congestion control
mechanism. To characterize the effect of that term, and
to verify the above analysis of the effect of the other terms
on the distribution of latency, we resort to simulation.

5 Simulations

We compare the performance of our peer-based recovery
scheme with that of AFEC using ns2 simulation [12]. We
generated several transit-stub graphs with 2500 routers
using the GT-ITM software [2]. Each graph consists of 5
transit domains, with each transit node having 7 stub do-
mains attached; each domain has 10 (on average) nodes.
The capacity of a link between two transit nodes is 100
Mbps. All other links have capacity 10 Mbps. The GCKS
resides on one stub node. The rekey bandwidth is limited
to 100 Kbps. The reason for a limiting rekey bandwidth

is that rekey messages will share bandwidth with group
data and we do not want rekey traffic to hurt the data traf-
fic. The 100 Kbps limit was also used in the simulation by
Zhang et al. [16]. Given the bandwidth constraint of rekey
traffic at the GCKS, the time to send out all rekey pack-
ets is on the order of a few seconds. Group members are
randomly scattered on remaining stub nodes. The group
size varies from 512 to 2048. Initially, the key tree (with
degree 4) is balanced with members. At each rekey event,
n/4 members depart and n/4 members join, where n is
the group size. The actual processing time of a rekey op-
eration in AFEC—in particular the time taken to encode
rekey packets—will depend on the computational capac-
ity of the GCKS. For simplicity, we assume that capacity
is adequate and the encoding takes zero time. The target
number of NACKs in AFEC is set to slightly more than
1%: 6, 12, 18 and 24, for group sizes 512, 1024, 1536 and
2048, respectively.

In all simulations, we assume that losses are due en-
tirely to congestion. We first test the scenario of light
background traffic on the network. In this scenario, we
assume that the traffic causes limited number of congested
links and has no impact (other than longer queueing de-
lay) on other links. We randomly select some links in the
graph as bottleneck links2. For each selected bottleneck,
we add 30 TCP flows and 5 UDP flows to cause con-
gestion. On each TCP connection, an ns2-provided FTP
application generates traffic. On each UDP flow, we use a
traffic generator which generates traffic with an exponen-
tial inter-arrival distribution. The mean rate of each such
exponential flow is 0.4 Mbps. The observed average loss
rate of multicast packets on the bottleneck links is 27%.

Figures 5 to 7 show scatter plots of rekey latencies with
each method, for 1024 group members when the graph has
20, 40, 100 congested links, respectively.

From the above results, we can see that, as expected,
most members in our scheme receive the required rekey
packets earlier than those in AFEC. The reason is twofold:
First, members in our scheme detect the loss faster and
initiate the retransmission process earlier. Second, it
takes less time in our scheme to send all the rekey packets
at the GCKS, because no redundant packets are trans-
mitted. However, from the scatter plot we also find that
occasionally some members may experience very long de-
lay to get rekey packet. This is due to TCP congestion
control behavior in the case of repeated packet losses.

Next, we introduce more background traffic to test the
performance of our scheme. To save simulation running
time, we introduce background traffic only on the links of
the multicast tree. Every tree node has 20–30 incoming
FTP flows and 20–30 outgoing FTP flows. Each source
node is randomly connected to one destination node. To
introduce some heterogeneity, we add extra UDP flows on
between 100 and 200 tree nodes. Each of those nodes has
five incoming and five outgoing Exponential traffic flows.
The mean rate of each Exponential flow is 0.4 Mbps. How-

2Only transit-stub and intra-stub links are selected as a bottle-
necks.
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Figure 5: 20 bottlenecks
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Figure 6: 40 bottlenecks
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fic

Figure 11: Rekey delay (ts2500-1, more background traf-
fic)

ever the node the GCKS is on has no background traffic.
We run simulations on two graphs, ts2500-1 and ts2500-
2. On both graphs, the end-to-end loss rate experienced
by each user varies from 6% to 10 % at different group
sizes. On both graphs, we test AFEC and two recovery
strategies of peer-based recovery scheme.

We show our results in Figures 9–13. To show the
numbers clearly, we also give the results of ts2500-1 in
Figure 11. Because the results of ts2500-2 are similar,
we omit the table. Figures 9 and 12 compare the aver-
age number of rekey packets transmitted in a rekey event
between AFEC and peer-based recovery scheme. It is
clear that AFEC scheme sends many more rekey packets
than peer-based scheme. Figures 10 and 13 show the me-
dian, average and 95th-percentile of rekey latencies for
different groups. The lowest point of each bar repre-
sents the median. Again, we find that most members
in our scheme can receive required rekey packets earlier
than those in AFEC: For larger group sizes, the median
and 95th-percentile latencies are at least 10% lower for
the peer-based recovery scheme. The figures also show
that the “aggressive” request strategy offers very little
improvement over the non-aggressive strategy. The rea-
son is that most members can get required packet from
the first peer contacted, so the aggressive strategy does
not help too much.

6 Conclusions

We have presented a peer-based approach to reliability in
group rekeying. Our approach is suitable for use when-
ever a logical tree structure is imposed on the group, and
members who are “close” in the logical tree need to re-
ceive similar information during rekey events. The idea
of the scheme is to have each member contact other mem-
bers who are nearby in the logical tree (but—ideally—not
nearby in the multicast tree) to obtain information that
is missing due to loss of multicast packets.

The advantages of our approach are that it is simple,
and it reduces the resource requirements at the GCKS
by removing the need to process rekey messages using
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Forward Error Control Coding. Analysis and simulation
confirm that our approach also reduces the latency ex-
perienced by most receivers who need to recover packets.
Reduced latency is important for reducing the likelihood
that an authorized member will fail to have access to
group data because of missing keys. The approach re-
quires that members rely on other members to provide
some rekey information, but does not require any addi-
tional authentication or other mechanisms beyond what
were already required.

In future work, we will investigate methods of assigning
members to the key tree so that nodes that are nearby in
the key tree are far apart in the multicast tree.
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