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Abstract

A scheme for general group oriented ID-based cryptosys-
tems is proposed. This scheme allows an authorized sub-
set in the general access structure to cooperatively de-
crypt the ciphertext of a message. It is constructed using
bi-linear pairings. Its security is based on the intractabil-
ity of the computational bilinear Diffie-Hellman problem.
The scheme possesses chosen-plaintext security in the ran-
dom oracle model.
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1 Introduction

In a group oriented cryptosystem, a group of participants
cooperatively decrypt the ciphertext of a message. More
generally, a group oriented cryptosystem designates au-
thorized subsets of participants. The members of an au-
thorized subset can cooperatively decrypt the ciphertext.
But those of an unauthorized subset cannot obtain any
information about the message. The set of all authorized
subsets is called the access structure of the participant
group [14]. Let N denote the number of participants
in the group. Then a (t, N) threshold cryptosystem al-
lows any t or more out of N participants to be an au-
thorized subset. A general group oriented cryptosystem
defines an authorized subset by enumerating members.
For example, there are five participants P1, P2, P3, P4 and
P5. We establish three authorized subsets by enumerat-
ing members: {P1, P2, P3}, {P3, P5}, and {P2, P4, P5}(We
only consider the minimal authorized subsets). Note that
these authorized subsets cannot be described as a thresh-
old access structure. Sometimes all participants form the
only authorized subset. This is a special case of general
access structures. Usually so-called group oriented cryp-
tosystems are based on this special access structure.

Group oriented cryptosystems can be certificates-based

or ID-based. In certificates-based cryptography, a user
chooses his private key, and the trusted authority (TA)
issues a corresponding public key for the user. To as-
sure the legal owning relation between a public key and
its owner, the TA should generate a certificate for each
public key. The certificate is actually the digital signa-
ture of the TA on the 2-tuple (Public key, User’s ID).
Thus certificate-based cryptography needs large amount
of computation and large number of memory requirements
for certificates storing, verification, and revocation. On
the other hand, ID-based cryptography allows a user’s
ID information such as his telephone number, email ad-
dress, ID card number or other ID information to serve
as his public key. Such a public key is clearly bound to
the user. It doesn’t need a certificate any more. Hence
ID-based cryptography reduces largely public keys man-
agement overhead. The application potential of ID-based
cryptography has been revealed for its attractive charac-
teristics.

Shamir [12] presented the idea of ID-based cryptogra-
phy to the research society as early as in 1980s. How-
ever research on group oriented ID-based cryptosystems
opened not long ago, much later than that on the
certificates-based [5, 6, 7, 8, 10, 13, 15]. Additionally, It
should be pointed out that Fouque et al. [7] and Shoup et
al. [13] introduced the provable security approach to the
research on group oriented certificates-based cryptosys-
tems and proposed certificates-based threshold cryptosys-
tems with provable security.

Boneh and Franklin [2] proposed the first practical,
secure and efficient ID-based encryption scheme using
computable bilinear maps. Liber and Quisquater [9] did
a generation of Boneh-Franklin’s ID-based scheme and
proposed an ID-based threshold cryptosystem. Liber
and Quisquater’s cryptosystem is secure against chosen-
plaintext attacks. Baek and Zheng [1] also proposed an
ID-based threshold cryptosystem that is secure against
chosen-ciphertext attacks. Recently, Z. Chai et al. [3] ad-
dressed ID-based threshold decryption without random
oracles, the goal of which is to share secrets among the
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authorities to remove the key escrow problem in ID-based
cryptography.

ID-based group oriented cryptosystems presented in
the literature are all of thresh-old schemes so far. In fact,
there exist a lot of practical scenarios that cannot be de-
scribed with the threshold access structure. Obviously, we
can describe any scenario with the general access struc-
ture. Thus general group oriented cryptosystems have
wider application potential than threshold schemes in the
real world.

In this paper, we propose a scheme for general group
oriented ID-based cryptosystems. The proposed scheme
is constructed using bilinear pairings. Its security is
based on the intractability of the computational bilinear
Diffie-Hellman problem, and it is secure against chosen-
plaintext attacks in the random oracle model.

The rest of the paper is organized as follows. In the
following section, we discuss bilinear pairings and the bi-
linear Diffie-Hellman problems. In Section 3, we present
our scheme for general group oriented ID-based cryptosys-
tems. The security of our scheme is analyzed in Section
4. Finally Section 5 concludes the paper.

2 Bilinear Pairings and the Bilin-

ear Diffie-Hellman Problems

We first review the Weil parings and the bilinear Diffie-
Hellman problems. They are basis of our scheme for gen-
eral group oriented ID-based cryptosystems.

2.1 The Weil Pairing

Let G1 and G2 denote two cyclic groups of the same prime
order q, where G1 is an additive subgroup on an elliptic
curve over the finite field GF (p) (p is a large prime), and
G2 is a multiplicative subgroup of the finite field GF (p2).

The Weil pairing ê is a bilinear map as ê : G1 × G1 →
G2 that satisfies the following three conditions:

1) Non-degeneracy: ∃P ∈ G1, ê(P, P ) 6= 1;

2) Bilinearity: ∀P, R, V ∈ G1, ê(P + R, V ) = ê(P, V ) ·
ê(R, V ),and ê(V, P + R) = ê(V, P ) · ê(V, R);

3) Computability: for any points P, R ∈ G1, ê(P, R) is
computable.

2.2 The Bilinear Diffie-Hellman Prob-

lems

1) Discrete log problem in G1 (DL problem):
Let P denote a generator of G1. Given P and Q = xP
where x ∈ Z∗

q , compute x.

2) Computational Diffie-Hellman problem in G1 (CDH
problem):
Given a 3-tuple (P, xP, yP ), where P is a generator
of G1 and x, y ∈ Z∗

q , compute xyP .

3) Decision Diffie-Hellman problem in G1 (DDH prob-
lem):
Given a 4-tuple (P, xP, yP, zP ), where P is a gener-
ator of G1 and x, y, z ∈ Z∗

q , verify xy = z mod q.

4) Computational bilinear Diffie-Hellman problem
(CBDH problem):
Given a 4-tuple (P, xP, yP, zP ), where P is a
generator of G1 and x, y, z ∈ Z∗

q , computeê(P, P )xyz .

The DDH problem can be effectively solved by means
of the properties of the Weil pairings. Compute ξ =
ê(xP, yP ) = ê(P, P )xy , and η = ê(zP, P ) = ê(P, P )z ,
then check ξ = η. If it holds, the 4-tuple (P, xP, yP, zP )
is a 4-tuple of the Diffie-Hellman problem, and otherwise
it is not. The other three problems, the DL problem, the
CDH problem and the CBDH problem are all intractable
problems. However, if we could find any solution to the
DL problem, that is given (P, xP, yP, zP ), we could com-
pute x, y, and z, then we could solve the CDH problem by
computing xyP , and solve the CBDH problem by com-
puting ê(xyP, zP ) = ê(P, P )xyz accordingly. On the other
hand, if we could solve the CBDH problem, whether we
could solve the CDH problem and the DL problem re-
mains unknown.

3 Scheme for General Group Ori-

ented ID-Based Cryptosystems

The proposed scheme for general group oriented ID-based
cryptosystems will be described in four phases: setup,
keygen, encrypt and decrypt.

Setup: The key generation center (KGC) generates the
system parameters as follows.

• Choose two cyclic groups G1 and G2 of the same
prime order q, and a Weil map ê : G1 × G1 −→ G2,
where G1 is an additive group, and G2 is a multi-
plicative group.

• Choose a random number s ∈ Z∗

q as its master key.
Compute its public key as Ppub=sP where P is a
generator of G1.

• Choose two hash functions H1 : {0, 1}∗ −→ G1 and
H2 : G2 −→ {0, 1}n.

Then we obtain the system parameters <
n, q, G1, G2, P, Ppub, H1, H2, ê >.

Keygen: The KGC computes the public key and
private key corresponding to an identity ID ∈ {0, 1}∗ as
QID = H1(ID) and dID = sQID, respectively.

Encrypt: Let M = {P1, P2, · · · , PN} denote the par-
ticipants group. Their identities and corresponding
private keys are denoted by (ID1, ID2, · · · , IDN) and
(dID1

, dID2
, · · · , dIDN

), respectively. The message sender
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forms authorized subsets of M : A1, A2, · · · , Af , where

Aj = {P
Aj

1 , P
Aj

2 , · · · , P
Aj

l }(j = 1, 2, · · · , f). Those in an
authorized subset can only be able to cooperatively de-
crypt the ciphertext of a message.

Suppose that a message m ∈ {0, 1}nneeds
to be sent to M . For each authorized sub-
set Aj(j = 1, 2, · · · , f), the sender computes
gAj

= ê(
∑

P
Aj
i ∈Aj

Q
ID

Aj
i

, rPpub), where r ∈R Z∗

q , and

the ciphertext as CAj
= (U, VAj

) = (rP, m
⊕

H2(gAj
)).

Decrypt: The participants in any authorized sub-
set Aj(j = 1, 2, · · · f) can cooperatively decrypt
the ciphertext CAj

= (U, VAj
). Each participant

P
Aj

i ∈ Aj uses his private key d
ID

Aj
i

to calculate

ê(d
ID

Aj
i

, U). Then the message m is calculated as: m =

V
⊕

H2(
∏

P
Aj

i ∈Aj

ê(d
ID

Aj

i

, U)).

Since
∏

p
Aj

i ∈Aj

ê(d
ID

Aj

i

, U) =
∏

p
Aj

i ∈Aj

ê(sQ
ID

Aj

i

, rP )

=
∏

p
Aj
i ∈Aj

ê(Q
ID

Aj
i

, rsP ) =
∏

p
Aj
i ∈Aj

ê(Q
ID

Aj
i

, rPpub) =

gAj
, the encrypting algorithm and the decrypting algo-

rithm are consistent.

4 Security Analysis

Now we analyze the security of our scheme in the random
oracle model, and prove that the scheme is secure against
chosen-plaintext attacks.

First we introduce the notion of chosen-plaintext se-
curity [2]. An adversary E wants to attack a cryptosys-
tem Enc. A challenger F serves as a random oracle. E
chooses two plaintexts m0 and m1, and submits them to
F . F computes a ciphertext as C∗ = Enckey(mb) where
key is the encryption key and b ∈R {0, 1} is a random bit.
F sends C∗ to E, and then E guesses b.

Denote the adversary E’s guess result by b′. Define
the adversary’s advantage as ε = Adv(E) = |2Pr[b′ =
b]− 1| where Pr[.] denotes the probability of an event. If
ε is negligible, that is, if Enckey(m0) and Enckey(m1) are
indistinguishable, the cryptosystem Enc is secure against
chosen-plaintext attacks (denoted by IND-CPA).

Our scheme is an ID-based one. Suppose that an adver-
sary makes an attack on an authorized subset of which the
member number is l. We allow the adversary to possess
the most advantageous conditions that he could obtain
the private keys of any l-1 participants in the authorized
subset, and furthermore, he could also obtain the private
keys of any number of participants other than those in the
authorized subset. We expect that the scheme remains se-
cure under this worst situation.

Based on the above discussion, we define that a general
group oriented ID-based cryptosystem is secure against
chosen-plaintext attacks (denoted by IND-ID-ggCPA) if
no polynomially bounded adversary has a non-negligible
advantage against the cryptosystem in the following
game. In the game, E obtains private keys by private
key extraction queries.

An adversary E and a challenger F are involved in the
game.

Setup: F produces the system parameters with the
Setup algorithm of the cryptosystem and sends the
system parameters to E.

Phase 1: E designates an authorized subset
A = {PA

1 , PA
2 , · · · , PA

l }. The corresponding iden-
tity set is IDA

1 , IDA
2 , · · · , IDA

l . E makes private key
extraction queries at any l − 1 identities in the set.
Without loss of generality, suppose that E queries
at (IDA

1 , IDA
2 , · · · , IDA

l−1). F responds with their
corresponding private keys (dID1

A , dID2
A , · · · , dIDA

l−1

).

Then E makes a polynomially bounded number of
private key extraction queries at any identity other than
IDA

1 , IDA
2 , · · · , IDA

l . The queries may be performed
adaptively, that is, a query may depend on the previous
answers.

Challenge: E chooses two plaintexts m0, m1 ∈ {0, 1}n

and sends m0, m1 and {IDA
1 , IDA

2 , · · · , IDA
l } to F .

F takes a random bit b ∈R {0, 1} and computes
C = Encryt(mb, IDA

1 , IDA
2 , · · · , IDA

l−1, IDA
l ) with the

encrypting algorithm in the cryptosystem. F sends C to
E.

Phase 2: E issues a second series of private key extrac-
tion queries other than at IDA

l .

Guess: Finally, E guesses a bit b′ according to all infor-
mation he obtained. If b′ = b, E wins the game.

After receiving the ciphertext C, the adversary E may
require more private key extraction queries to help him-
self. Thus the game adds a second series of private key
extraction queries to meet his possible need.

As in IND-CPA, we also define the adversary’s advan-
tage as ε = Adv(E) = |2Pr[b′ = b] − 1|. Then we have
the following theorem.

Theorem 1. Suppose H1 and H2 are random oracles. If
an adversary E has a non negligible advantage ε in IND-
ID-ggCPA against the proposed scheme for general group
oriented ID-based cryptosystems, a challenger F can solve
the bilinear Diffie-Hellman problem with an advantage no
less than ε/qH1

qH2
where qH1

and qH2
denote the poly-

nomially bounded number of H1 queries and that of H2

queries, respectively.

Proof. F is given a random instance (P, xP, yP, zP ) of
the bilinear Diffie-Hellman problem. He tries to compute
ê(P, P )xyz by interacting with the adversary E in the
following game.

Setup: F sets Ppub = xP and generates the other
system parameters < n, q, G1, G2, P, H1, H2, ê >with the
Setup algorithm of the scheme. Then F sends the system
parameters < n, q, G1, G2, P, Ppub, H1, H2, ê > to E.
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Phase 1: E queries the random oracles H1 and H2. F
simulates H1 and H2. He responds to the queries and
maintains two lists List1 and List2 (Both lists are initially
empty) to store the answers for H1 and those for H2,
respectively.

E first queries H1 at the identities
IDA

1 , IDA
2 , · · · , IDA

l−1 and queries for their cor-
responding private keys. F responds to the queries with
H1(IDA

i ) = dA
i P (i = 1, 2, · · · , l − 1)where dA

i ∈R Z∗

q ,

and the private key dIDA
i

= dA
i Ppub(i = 1, 2, · · · , l − 1).

F chooses a random integer a ∈ {1, 2, · · · , qH1
}. Then

E takes queries to H1 at any qH1
identities other than

IDA
1 , IDA

2 , · · · , IDA
l−1 and takes queries for their corre-

sponding private keys if he wants. Assume that the
queries are distinct. E also issues queries to H2. F
responds to the hash queries and private key extraction
queries as follows.

Response to H1 queries: If a is queried at, then
H1(IDa) = yP . Otherwise H1(ID) = dP where d ∈R Z∗

q ,
and add the entry (ID, d) to List1.

Response to private key extraction queries: If IDa is
queried at, stop and output “failure”. Otherwise, find out
the entry (ID, d) in List1 and return dPpub as a private
key.

Response to H2 queries: If any gi(i = 1, 2, · · · , qH1
) is

queried at, search the entry (gi, Ri) in List2. If found,
return Ri to E. Otherwise choose randomly Ri ∈ {0, 1}n,
set H2(gi) = Ri, return Ri, and add the entry (gi, Ri) to
List2.

Challenge: E chooses a pair of plaintexts {m0, m1}
and outputs the identities (IDA

1 , IDA
2 , · · · , IDA

l ) to be
challenged on. If IDA

l 6= IDa, F stops and outputs
“failure”. Otherwise, F chooses a random bitstring
R ∈R {0, 1}n and sends the ciphertext C = (zP, R) to E.

Phase 2: E issues a second series of queries. F handles
these queries in the same way as in Phase 1.

Guess: Define g = ê(P, P )xyz ê(zP, dIDA
1

)ê(zP, dIDA
2

) · · ·

ê(zP, dIDA
l−1

) and denote by Ψ the event that E makes

query to H2 at the point g during the H2 queries. Since
Pr[b′ = b|Ψ̄] = 1

2 , then Pr[b′ = b] = Pr[b′ = b|Ψ]Pr[Ψ] +
Pr[b′ = b|Ψ̄]Pr[Ψ̄] ≤ Pr[Ψ] + 1

2Pr[Ψ̄] = 1
2Pr[Ψ] + 1

2 .

We have Pr[Ψ] ≥ 2Pr[b′ = b] − 1. On the other
hand, Pr[b′ = b] ≥ Pr[b′ = b|Ψ̄]Pr[Ψ̄] = 1

2 − 1
2Pr[Ψ].

Then Pr[Ψ] ≥ 1 − 2Pr[b′ = b]. As a result, we have
Pr[Ψ] ≥ |2Pr[b′ = b]−1| = ε. F randomly picks an entry
(h, H2(h)) from List2, then Pr[h = g|Ψ] = 1

qH2

. Hence

Pr[h = g] ≥ Pr[h = g|Ψ]Pr[Ψ] ≥ ε
qH2

.

Note that in Challenge, if IDa = IDA
l , the game

will not fail. The probability of the event IDa = IDA
l

is Pr[IDa = IDA
l ] = 1

qH1

(Assume that E has made

H1 query at the identity IDA
l ). The event IDa =

IDA
l and the event h = g are independent. Hence

Pr[IDa = IDA
l , h = g] = Pr[IDa = IDA

l ]Pr[h = g] ≥

ε
qH1

qH2

. Therefore, the probability of the event that F

guesses g
ê(zP,d

IDA
1

)ê(zP,d
IDA

2

)···ê(zP,d
IDA

l−1

) as ê(P, P )xyz is

non-negligible, that is, F has a non-negligible probability
to find out a solution to the CBDH problem.

5 Conclusions

We proposed a scheme for general group oriented ID-
based cryptosystems using the Weil pairing and the
CBDH problem. And we proved that our scheme is se-
cure against chosen plaintext attack (IND-ID-ggCPA ) in
the random oracle model. Furthermore, since the mes-
sage sender designates authorized subsets in our scheme,
participants are known to him. Such scenarios are often
seen in practice. For example, someone himself deter-
mines who can read his mail when he is absent; a person
himself determines that which family members can ac-
cess his testament. In most other group oriented encryp-
tion schemes, participants are anonymous to the message
sender. This needs the third party to define authorized
subsets.

Similarly, we can construct another scheme for general
group oriented ID-based cryptosystems that possesses the
security against chosen ciphertext attack. This work is
under investigation.

References

[1] J. Baek and Y. Zheng, “Identity-based threshold de-
cryption,” in Proceedings of PKC’04, LNCS 2947, pp.
262-276, Springer, 2004.

[2] D. Boneh and M. Franklin, “Identity-based en-
cryption from the weil pairing,” in Proceeding of
CRYPTO 2001, pp. 213-229, Springer-Verlag, 2001.

[3] Z. Chai, Z. Cao, and R. Lu, “ID-based threshold de-
cryption without random oracles and its appli-cation
in key escrow,” in Proceedings of the 3rd Interna-
tional Conference on Information Security, pp. 119-
124, ACM Press, New York, 2004.

[4] L. Chen and C. Kudla, “Identity based authenti-
cated key agreement protocols from pairings,” in
Proceedings of the 16th Computer Security Founda-
tions Workshop (CSFW-16), pp. 219-233, 2003.

[5] Y. Desmedt, “Society and group oriented cryptogra-
phy: a new concept,” in Proceeding of Crypto’87, pp.
120-127, Springer-Verlag, 1988.

[6] Y. Desmedt and Y. Frankel, “Threshold cryptosys-
tems,” in Proceeding of Crypto’89, pp. 307-315,
Springer-Verlag, 1990.

[7] P. Fouque and D. Pointcheval, “Threshold cryptosys-
tems secure against chosen-ciphertext attacks,” in
Proceedings of AsiaCryp’2001, pp. 351-368, Springer-
Verlag, 2001.

[8] T. Hwang, “Cryptosystem for group oriented cryp-
tography,” in Proceedings of Eurocrypt’90, pp. 352-
360, Berlin, Springer-Verlag, 1991.



International Journal of Network Security, Vol.6, No.1, PP.1–5, Jan. 2008 5

[9] B. Libert and J. Quisquater, “Efficient revocation
and threshold pairing based cryptosystems,” in Pro-
ceedings of the 22nd annual symposium on Principles
of distributed computing, pp. 163-171, ACM Press,
2003.

[10] T. P. Pedersen, “A threshold cryptosystem without
a trusted party,” in Proceedings of Eurocrypt’91, pp.
522-526, Springer-Verlag, 1991.

[11] S. Saeednia and H. Ghodosi, “A self-certified group-
oriented cryptosystem without a combiner,” in Pro-
ceedings of ACISP’99, pp. 192-201, Berlin, Springer-
Verlag. 1999.

[12] A. Shamir, “Identity-based cryptosystems and signa-
ture scheme,” Advances in Proceeding of Crypto’84,
LNCS 196, PP. 47-53, Springer-Verlag, 1985.

[13] V. Shoup and R. Gennaro, “Securing threshold cryp-
tosystems against chosen ciphertext attack,” Jounal
of Cryptology, vol. 15, pp. 75-96, 2002.

[14] D. R. Stinson, Cryptography: Theory and Practice,
pp. 343-350, Florida, CRC Press, 1995.

[15] C. C. YANG, T. Y. CHANG, J. W. LI, and M. S.
HWANG, “Simple generalized group-oriented cryp-
tosystems using elgamal cryptosystem,” Informatica,
vol. 14, no. 1, pp. 111-120, 2003.

Chunxiang Xu received her PhD
degree in Cryptography, her MS de-
gree and her BS degree in Applied
Mathematics from Xidian University,
in 2004, 1988 and 1985 respectively.
She is currently a Professor in School
of Computer Science and Engineering,
University of Electronic Science and

Technology of China. Her research interests include Cryp-
tography and Information Security.

Guozhen Xiao was born in 1934.
He was graduated from the Depart-
ment of Mathematics, Northeast Nor-
mal University, Changchun, China,
in 1954. In 1956, he received the
M.S. degree in mathematics from the
East China Normal University, Shang-
hai,China. He is now a professor and

Ph.D. advisor of cryptography inCommunications Engi-
neering School of Xidian University. His research interests
include cryptography, coding and informationtheor

Junhui Zhou received his BS degree
in Electronic Engineering from Uni-
versity of Electronic Science and Tech-
nology of China in 1982, and his MS
degree in Computer Applications from
Northwest Institute of Nuclear Tech-
nology in 1988. He is currently a re-
searcher in School of Computer Sci-

ence and Engineering, University of Electronic Science
and Technology of China. His research interests include
Cryptography, and Network Security.


