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Abstract
Organizations’ authorization policies are usually de-

scribed by access control rules enforced on each protected
object scattered all over the organization. Having a single
global security policy specification would promote both
security clarity and coherency [4, 9, 18, 31, 37]. Having a
single security model for the whole organization, a single
point of management and enforcement with a innumerous
set of unknown users, does not scale well. However, both
the policy enforcement and the mapping of unknown
users to known entities [28] can be decoupled from the
specification; thus, having a single global security policy
decoupled from the enforcement and from the mapping of
unknown users promotes clarity and coherency without
compromising scalability. This work presents a security
policy language which is able to express simultaneously
many different types of models, which is essential to han-
dle all the policies used on a complex organization. The
proposed language can express the concepts of permission
and prohibition, and some restricted forms of obligation.
We show how to express and implement obligation using
the transaction concept. We also address the problem of
incoherent policies and show how to efficiently enforce
the security policies expressed by the language with a
security access monitor, implemented in java, including
history-based and obligation-based security policies.

Keywords: Authorization, coherency, history, obligation,
policy

1 Introduction
One of the problems security administrators of organi-

zations face is the lack of a global security policy specifica-
tion. Organizations security policies are often described
by access control rules (ACLs or other forms of simple
rules) enforced on each protected object scattered all over
the organization. This makes it very difficult for the or-
ganization to build a complete view of the policy enforced
and makes it impossible to maintain coherency, thus un-
dermining the trust in the system security.

Organizations with MAC policies are less affected by

this problem but they suffer from the lack of expressive-
ness of such policies. Because of such lack of expressive-
ness, MAC policies are never used alone, and therefore
the problem remains.

Having a single security model for the whole organi-
zation may not be appropriate at all. Moreover, having
a single service, enforcing one or more closed models at
the same time, does not scale in terms of efficiency and is
not suitable for situations where users are not known in
advance (open world assumption).

However, the enforcement and mapping of users to
policies [28] can be decoupled from the actual policy spec-
ification. Therefore, there is a need for a global specifi-
cation: (1) with enough expressive power to describe the
different types of policies required by the departments
and users of organizations systems, (2) which can be glob-
ally checked for incoherencies, (3) which is enforceable by
the underlying applications and systems, and (4) scalable,
with the policy size, in terms of design, management and
efficiency.

We have designed a security policy language (SPL) [41]
comprising a small number of generic primitives, which is
able to simultaneously express many different types of se-
curity policies within a single specification. We have also
described a tool to automatically check the coherency of
policies, and a compiler to enforce the policy with a se-
curity monitor. The use of a security monitor simpli-
fies the deployment in most systems because it is the
most frequent method of enforcing policies within appli-
cations and systems. SPL is currently being used within
the Heimdal [24] architecture to implement security poli-
cies on grid platforms. The current implementation uses
a centralized approach for policy evaluation. However,
SPL can be used in a similar way to the STRONGMAN
architecture [34], which implements the “distributed fire-
wall” concept [3] using a KeyNote [10] library on every
participating node.

SPL is composed of rules, policies and an algebra for
rules. Rules decide whose actions are allowed and whose
are denied. Policies provide encapsulation, parameteriza-
tion, and inheritance, and the algebra provides the nec-
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essary composition flexibility to express many different
types of policies. Among others, SPL is able to express the
classic MAC, DAC, RBAC and delegation-based policies.
It is also able to express obligation-based and history-
based policies, which are essential to express current or-
ganizations’ security policies.

History-based separation of duty is described as the
most flexible form of separation of duty [48]. Obligation
is a very powerful concept to express security policies [18].
However, neither history-based or obligation-based poli-
cies are easily enforced with a security monitor. The first
ones because they have a log scalability problem and the
second ones because they imply dependencies in the fu-
ture [46]. We have shown that history-based policies can
be efficiently enforced using a simple optimization algo-
rithm and that, by using the transaction concept, an ac-
cess control service based in SPL may enforce some forms
of obligation.

The remainder of the paper is organized as follows.
The next section presents some related work. Section 3
presents the SPL structure and basic blocks (rules, enti-
ties, sets and policies) and describes how to express and
enforce policies with those blocks. Section 4 shows how to
express and enforce history and obligation policies. Sec-
tion 5 describes how SPL handles conflicts. Finally, in
Section 6 the paper is concluded.

2 Related Work
Traditionally, access control policies are described by

their implementation (ACLs, Unix protection bits, or
database table permissions). This technique is not suit-
able for organizations with more than a few computers
and certainly not suitable for large organizations with
several domains, neither in terms of management or se-
curity. To cope with the management and scalability
problems, recent commercial solutions have adopted the
RBAC model [29, 35]. However, several of these solu-
tions are still not good enough in terms of expressiveness;
namely, when it is necessary to express more flexible forms
of separation of duty [22].

To overcome this lack of expressiveness several solu-
tions have been proposed. Most of these solutions are
language-based, but some are graphic-based and others
use a language to complement an RBAC structure.

Some of the solutions use logic-based languages. Jajo-
dia et al. [31] defines a stratified first-order language with
ten predicate symbols and three stratification levels. This
language is able to express several different types of se-
curity policies at the same time, including history-based
policies, and uses stratification to solve conflicts between
policies (the conflicting policies are prioritized by rules at
a higher level). Bertino [5] uses a different prioritization
strategy to handle conflicts between rules. In [5] rules
are prioritized based on their specificity, authorship, or
modality (e.g. negative rules have precedence over pos-
itive ones). In SPL, conflicts are implicitly handled by
the composition algebra. The policy architect chooses the
prioritizing scheme when he composes different eventually

conflicting rules.

Although modal conflicts are the most important type
of inconsistencies, SPL also handles other types of in-
consistencies which result in abnormal policy behavior.
We have identified several types of inconsistencies within
the security policy and between the security policy and
a workflow engine. Ioannidis [30] identifies and solves
some other types of inconsistencies. These inconsistencies
occur when organizations apply a uniform global policy
to a heterogeneous distributed system without a uniform
namespace. Due to different meanings given to actors and
resources, each system may end up implementing a dif-
ferent policy. SPL assumes a global uniform namespace
similar to the one described in [42].

Woo and Lam [51] have shown how default logic can
be used to express authorization rules. This logic is very
powerful for relating rules to each other, which results in
very expressive policies. Bertino et al [4] focus on the
problem of expressing common temporal constraints (e.g.
a resource that may only be accessed on Tuesdays) with
a simple yet flexible language. Cuppens and Saurel [17]
define a language for access control based on deontic logic.
Deontic logic includes both the common permission and
prohibition concepts together with the obligation concept,
thus allowing the expression of obligation-based polices.
Obligation can also be expressed in LGI [37].

LGI uses a distributed enforcement approach and uses
a Prolog like language to define policies. It is able to ex-
press several types of policies including obligation-based
and history-based policies. In LGI each participating en-
tity engages in a group of entities governed by the same
policy (called Law in LGI). The global group policy is lo-
cally enforced by each entity, thus ensuring event scalabil-
ity. SPL may also be used this way; in particular, Dias’s
[19] shows how SPL can be used on an agent framework
where each agent has its own policy to enforce, although
SPL by itself does not ensure event scalability. LGI en-
forces history-based policies by explicitly writing the code
that creates the log. Instead, SPL infers that code from
the policy itself.

Each logic-based language has its specific merits and
problems. However, they all share the design scalability
problem due to their lack of structure. All of them are
composed of a list of rules which is likely to become too
long to manage and is hardly suitable for reuse. This is
the case of the Adage language [9]. The Adage language
is composed of rules with a domain of applicability and
a domain of acceptability. Adage is able to express many
different types of policies including RBAC and history-
based policies although it cannot efficiently implement the
history-based ones [53]. Adage also provides a graphical
interface to design and manage policies. This interface
can minimize the design scalability problems but it was
designed for “intermittent users” with less expressiveness
requirements; thus, it is not suitable for designing large
complex policies. This problem of expressiveness also ex-
ists in Lasco [33], which is another graphical solution for
expressing security policies.
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Some access control languages [1, 15] were designed
to specify constraints over an RBAC model [45], thus
increasing its expressiveness. RBAC is a very success-
ful model that proved to meet reasonably large organiza-
tions’ needs. The result of the combination of the RBAC
structure with a constraint language is a more expressive
model than RBAC without constraints, which meets large
organizations’ needs. Although more expressive than the
original RBAC model, these languages were neither able
to express history-based policies nor delegation. These
limitations were addressed in [16] and [52], respectively.

Crampton [16] describes a history-based enforcement
solution which is similar to the one followed in SPL. Both
solutions try to solve the history log size problem by keep-
ing just the information needed by active policies in the
log. However, our solution is more general because SPL
rules are more expressive than the policy tuples used in
Crampton’s work (e.g. SPL is able to decide based on
the cardinality of previous accesses). Moreover, in an at-
tempt to further reduce the size and improve the query
efficiency of the log, the solution described in [16] divides
the log among users, i.e. each user records and queries its
own log; this means that a user cannot be prevented from
doing something based on someone else’s actions. In SPL,
the log is also divided with the same goal, but it is divided
among policies, and not among users, which is a better
partitioning solution because, by definition, each log will
only be read by the policy requiring it.1 Selectively writ-
ing events to logs is frequent in audit logs. For instance,
Windows audit ACEs [49] define which actions should be
logged. However, because their purpose is different, the
log is not split for query improvement and, more impor-
tantly, the logged actions are explicitly defined by ACEs.
They are not inferred from the access control policy as in
SPL.

Delegation is a very important action for access control
in distributed systems. In fact, delegation is the key prin-
ciple of trust management systems [10, 11]. These systems
use credentials, which are signed certificates with policies
fragments or simple attributes [21], to specify the rights
that belong to someone or to a key. However, these rights
are only granted if the signer has himself credentials to do
it. The final result is a global security policy comprising
a distributed web of credentials. However, having a web
of credentials specifying the security policy may not be
acceptable to all organizations. Some of them may want
to have a single and uniform view of its security policy.
A similar solution is proposed in [28], but instead of us-
ing the web of credentials to define the policy, it uses the
credentials to define a mapping between key holders and
roles and leaves the definition of the policy to a classical
RBAC system. This solution is particularly interesting
because it decouples user-mapping from policy specifica-

1The problem with this solution is the duplication of records
in several logs due to the fact that a single action may have to
be recorded in several logs. However, as shown in Section 4.1.2, the
information kept for each action in each log is very small and mostly
different.

tion, thus allowing the use of any policy specification on
systems where not all the users are known in advance
(open world assumption).

Ponder [18] and XACML [26] are languages that allow
the definition of organization-wide security policies. They
share the characteristic of organizing rules into encapsu-
lating units known as policies. XACML is a XML specifi-
cation for expressing access control policies. The specifi-
cation is able to express many different types of policies in-
cluding RBAC, obligation-based policies and delegation-
based policies. Although XACML rules are grouped into
policies, policies cannot be grouped into other policies
limiting the design scalability.

Ponder is a language that is very similar to SPL. It al-
lows the definition of template policies that can be used to
build policies easily. It is able to express RBAC, obliga-
tion, delegation and refrain policies, where refrain policies
are defined as negative obligations. The Ponder agglom-
eration strategy is supported by domains, which is a con-
cept very similar to a directory which may contain files
or other directories. The good thing about domains is
that policies may be applied to every object deep inside
a tree of domains. As far as we know, Ponder is not able
to express history-based policies thus it cannot enforce
history-based separation of duty as defined in [48]. The
other main difference from SPL is that Ponder does not
use a policy composition language. The absence of such a
language forces Ponder to have several types of composite
policies - group, role, rel and mstruct - for different us-
ages. In SPL these composites are all performed by one
entity - the policy. This solution is more flexible because
it allows the addition of other types of composite without
changing the language.

Some systems avoid the need for a composition algebra
by partioning the set of protected objects and applying
only one policy to each partition [6]. Although this a
simple solution, it cannot take advantage of the flexibility
provided by an algebra which is able to create a new pol-
icy through the combination of others, possibly already
defined in a policy library [12, 50]. Bonatti [12] describes
an algebra for composing policies expressed in different
languages. The set of operators defined by SPL is similar
to the one defined in [12] plus the quantification opera-
tors. In SPL the quantification operators are very im-
portant because they provide the ability to express both
history-based and obligation-based policies.

Wijesekera [50] describes a different approach for ex-
pressing policies. They are not described as sets of per-
missions and prohibitions, but as transformations of au-
thorizations. These policies decide which individual per-
missions and prohibitions should be added to the global
set of permissions and prohibitions based on the activa-
tion of a set of rules. These rules are activated when-
ever the conditions described in each rule are met. These
conditions can be the existence of specific authorizations
or context information in the global set. Although it is
very powerful, this approach has two problems. First, it
does not provide a mechanism to group rules into generic
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policies; second, the number of facts (authorizations, per-
missions and context information) in the global set may
grow to a very large number, degrading efficiency.

In conclusion, some of the most recent access control
frameworks are very expressive (the logical based lan-
guages) but do not scale well in terms of design. Oth-
ers, scale well in terms of design (RBAC solutions) but
are limited to one model (RBAC). Yet others scale well
in terms of design but cannot enforce history-based or
obligation-based policies. SPL builds all these proposals
up into a solution that is able to express most policies
described in previous systems. This solution scales bet-
ter than most of the others in terms of design; is able to
efficiently enforce history-based policies; and proposes a
passive solution to enforce some obligation types.

3 SPL Structure & Basic Blocks
In this section we present each one of the entities com-

prising SPL in detail and show how they are used in writ-
ing SPL security policies.

SPL is a policy-oriented constraint-based language. It
is composed of four entities: elements, groups, rules and
policies (Figure 1). The fundamental entity of the lan-
guage is the rule. Rules express constraints in terms of
relations between elements and groups. Policies are com-
plex constraints that result from the composition of rules
and groups into logical units. A complete BNF specifica-
tion can be found in [38].

Set

Rule

Policy SimpleComposed

Has

Composed by
Element

Group

Category

Has

Has

Uses

Entity

Figure 1: SPL entity relationship

3.1 Elements

SPL elements are strongly typed entities with an ex-
plicit interface through which their properties can be
queried. Every SPL element is a proxy to an entity of
the underlying platform, thus enabling access to context
information2.

SPL elements may represent many different types, each
one with its specific properties depending on the target
platform. For instance, in a file system the elements are
files, subjects and access requests (from now on referred
to as requests) over subjects and files. In a router, the
elements are networks, hosts and messages, each of these
having different properties. Each property may be a ref-

2This solution is also found in Ponder [18] and in XACML [26],
which use domains mapped to LDAP directories and XACML Con-
texts, respectively, and is opposite to the AAA IETF framework [2]
in which the context information is provided by the application re-
quiring the access.

erence to another element, to a group or to one of the
basic types number, string and boolean.

In many SPL target platforms, the SPL element set
may form a polymorphic hierarchy, where each element
is a specialization of another element. Figure 2 shows
the element type hierarchy used in the examples in the
next sections. The root of this hierarchy is the “element”
type. The remaining element types are defined through
the specialization of this base type.

One of SPL’s strengths is its ability to be used in sev-
eral target platforms. In the remainder of this paper, we
use the very simple framework described in Figure 2. This
framework has some properties that others may not have,
that may prevent, or at least make the expression of some
policies more difficult. For instance, in this framework,
subjects are a specialization of elements. Every element
has a creator, and every element knows which group it
belongs to, which might not be the case of every frame-
work. In fact, most access control systems have different
hierarchies for targets and subjects. However, in some
frameworks, subjects may sometimes behave as targets
[19] and the framework should reflect that.

Although the ability to adapt to different frameworks
is one of the strengths of SPL, it has some drawbacks.
Because the framework used in each particular situation
depends on the properties of the target platform chosen,
the expressivity of the overall system is not the same in
every platform. Thus, if Bertino’s comparison framework
[7] was used to compare the Bell-Lapadula model with
SPL, we would achieve different results depending on the
supporting framework.

3.2 Groups

Elements can be divided into groups. Groups are essen-
tial in any policy as they provide the necessary abstrac-
tion to achieve compactness, generalization and scalabil-
ity. Without groups, each rule would have to be repeated
for each element to which the rule applies.

Groups can be internal or external. Internal groups
are internal SPL structures with references to the enti-
ties contained in the group. External groups are proxies
for groups in the target platform. Some external groups
are very useful for the definition of policies; for instance,
the groups of all subjects and all elements known to the
system (Figure 3a).

SPL supports two types of groups: categories and sets.
Categories are groups defined through the classification
of entities according to their properties, e.g. all authen-
ticated subjects in machine A; sets are groups defined
through the explicit insertion and removal of their ele-
ments. The insertion and the removal of members from
a set can only take place through external actions since
SPL should not perform operations on external or inter-
nal entities that result in changes of state; this means that
sets defined within SPL are managed by external tools.
Both categories and sets are declared as groups, but are
instantiated differently.

Categories are defined by restricting the members
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type object {
string name; // The name of the object.
user owner; // The owner of the object.

string type; // A string identifying the type.
object group groups;// The groups with the object.

string homeHost; // The host where the user
} // is defined.

type user extends object {
rule group userPolicy;// User private policies.

}

type operation extends object {
number ID; // operation Id.

}
type event extends object {
user author; // The author of the event.

object target; // The target of the event.
operation action;// The performed action.
object group par;// The group of parameters.

number time; // The time instant.
object task; // The task to which

} // the event belongs to.

Figure 2: Example of an object type hierarchy definition

external string localhost; // An external entity
external user group AllUsers; // All the users

// in the system
external object group AllObjects; // All the objects
external operation group AllActions; // All the actions

external event group AllEvents; // All the events,
// past and future

(a)

// A category of all users that are
// defined locally

user group localUsers =
AllUsers@{.homeHost = localhost };

// A group defined as empty
user group ActiveGroup = {};

(b)

Figure 3: Example of: (a) external entities and sets; (b) a category and a group

of other groups to the ones with particular proper-
ties. This is done by the SPL restriction operator
(mygroup@{logical-expression}), which is a polymorphic
operator that can be used in any type of group or rule
(Figure 3b)3. The restriction operator has two operands,
one is the group that it wants to restrict, and the other is
a logical expression that must be satisfied by the elements
in the group in order to belong to the restricted group.
The logical expression uses properties of the entities in
the group to define which members are selected. These
properties are written with a dot before the name.

SPL defines five more group operators: the index oper-
ator (mygroup[nth]) that applied to a group returns the
nth member of the group; the membership operator (en-
tity IN mygroup); the cardinal operator (#mygroup) that
returns the number of members of the group; the union
operator (mygroup1 + mygroup2); and the intersection
operator (mygroup1 ∗ mygroup2).

3.3 Constraint Rules

SPL is a constraint-based language. Constraint lan-
guages are widely used to express systems and access con-
trol policies [9].

The language is composed of individual rules, which are
logical expressions that can take three values: allow, deny,
and notapply. Their goal is to decide on the acceptabil-
ity of each request under the control of the access control
service that implements the language. To make this deci-
sion, rules have an implicit parameter that represents the
request upon which the rule decides. To distinguish this
request from past and future requests we call it current
request, and refer to it as cr .

3See also Section 3.3, for restriction on rules.

A rule can be simple or composed. A simple rule is
composed of two logical binary expressions: one to estab-
lish the domain of applicability and another to decide on
the acceptability of the request. If the applicability ex-
pression evaluates to false the rule evaluates to notapply.
If both applicability and acceptability expressions evalu-
ate to true, then the rule evaluates to allow, and if the
applicability expression evaluates to true and the accept-
ability expression to false, the acceptability expression
will evaluate to deny.

The SPL syntax for a simple rule (Figure 4a) has two
parts: an optional label and two logic expressions sepa-
rated by a special marker (‘::’), representing the domain-
expression and the decide-expression respectively.

The domain-expression and the decide-expression are
simple binary expressions which use: the ‘&’, ‘|’ and ‘∼’
logic operators, respectively for the conjunction, disjunc-
tion and negation; the ‘=’, ‘!=’, ‘<’, ‘>’, ‘>=’, ‘=<’
equality/inequality operators; and the “true” and “false”
special values.

The domain-decide construction should not be consid-
ered a simple binary implication. If a binary implication
was used, every rule would be implicitly open, i.e. ev-
ery request outside the domain would be allowed, which
is contrary to the SPL design principle of being able to
express several different models simultaneously.

Figure 4b shows three simple rules, labelled OwnerRule,
DutySep and ClosedOwnerRule respectively. The first one
states that requests acting on a target owned by the au-
thor of the request (cr.target.creator=cr.author) is al-
ways allowed (decide-expression always true). The second
rule states that payment order approvals are only allowed
if the author is not the owner of the payment order. The
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[label :] domain-expression :: decide-expression

(a)

// Every event on an object owned by the author of the event is allowed

OwnerRule: ce.target.owner = ce.author :: true;

// Payment order approvals cannot be done by the owner of payment order
DutySep: ce.target.type="paymentOrder" & ce.action.name="approve" :: ce.author != ce.target.owner;

(b)

Figure 4: Simple rule: (a) syntax; (b) examples

third rule is similar to the first one, it allows the same re-
quests, but it denies every request on a target that is not
owned by the author of the request (whereas the first rule
does not decide on those requests). The first rule is more
appropriate for composition with other policies because it
only decides upon its domain of applicability.

The domain-decide type of construction described
above is simple, although it is more powerful than the per-
mission and prohibition construction [31], in which each
rule is exclusively a permission or a prohibition. Usually
a permission/prohibition rule is composed of a domain-
expression to identify which requests are allowed/denied
and a keyword specifying the type of rule: permission or
prohibition. The domain-decide construction is an exten-
sion of this permission/prohibition construction, in which
the keyword specifying the type is replaced by an expres-
sion, thus allowing a rule to simultaneously express per-
missions and prohibitions.

3.3.1 Rule Composition

In most rule-based authorization systems [31, 18, 26,
47], rules are combined into policies through an implicit
conjunction of deny rules and an implicit disjunction of
allow rules - each access is only allowed if none of the rules
deny it and at least one rule allows it. With this type of
composition it is not possible to specify open policies, only
closed ones. Closed policies which deny every action not
explicitly allowed, are the most frequent ones. However,
in some cases, an open policy which allows every action
not explicitly denied, is more appropriate [32].

In SPL, a rule can be composed of other rules through
a specific tri-value algebra with three logic operators: con-
junction (AND), disjunction (OR), and negation (NOT). These
operators behave as if their binary homonyms were ap-
plied to the decide-expressions of every rule applicable to
each request. So, to evaluate the conjunction, disjunction
or negation of rules, there are three steps: i) the appli-
cability expression of each rule is evaluated for a specific
request, ii) the rules inapplicable to that request are re-
moved, and finally iii) the result of each decide-expression
is combined using a binary conjunction, disjunction or
negation, respectively.

This tri-value logic allows some interesting construc-
tions for access control expressiveness. For instance, a
default value can be expressed using special rules in which

the domain-expression is always true and the decide-
expression is true or false depending on the default value
(allow or deny, in conjunctions/disjunctions) as shown in
Figure 5. Another interesting construction presented in
Figure 5, shows how to express priorities between rules.
The result of the defaultValue rule in Figure 5 is the result
of the DutySep rule, except when this rule is inapplicable,
in which case the result is equal to the result of OwnerRule.

Rules do not have to be written at the same time by the
same author. In fact, they are usually dynamically writ-
ten by several authors. It is often necessary to restrict
the domain of applicability of a previously written rule,
by the same author or by a different one, without com-
pletely removing it. For instance, a rule may state that
the rules inserted and managed by each user can only ap-
ply to targets belonging to them. In SPL, this is achieved
through the application of the polymorphic restriction op-
erator (presented in Section 3.2) to rules and policies, in
order to restrict their domain of applicability. Figure 5
shows how the restriction operator can be used to restrict
the policies defined by each user to targets owned by him
(the userPolicy rule), which together with the ownerRule

can be used to define a DAC policy.

SPL does not provide a specific mechanism for dele-
gation. Instead, it relies on the ability of each user to
dynamically insert rules and policies into groups of rules.
With these groups and the restriction operator, it is pos-
sible to specifically define who can delegate what to who
(Figure 6). The who rule states that the insertion and re-
moval of rules from the dynamicRules set can only be done
by users belonging to the Delegators set. The what rule
enforces every rule in the dynamicRules set, restricted to
a set of actions and a set of delegatees, i.e. delegators
cannot delegate everything to everyone.

SPL is also able to define the depth and width of a
delegation [52]. Both depth and width can be tracked by
history-based policies. With history-based policies it is
possible to prevent a delegated right to be further dele-
gated if there is a delegation chain which is bigger than a
value (depth), or to prevent a right to be delegated by an
entity more times than a specific value (width).

3.3.2 Quantifiers

In order to increase the flexibility of the composition,
SPL defines three types of quantifiers over rules (Figure
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// DutySep has a higher priority than OwnerRule
DutySep OR (DutySep AND OwnerRule);

deny: true :: false; // Implicit deny rule.

allow: true :: true; // Implicit allow rule.

// Simple rule conjunction,

//with default allow value
OwnerRule AND DutySep AND allow;

//User rules are restricted to their own objects
userPolicy: FORALL u IN AllUsers {

FORALL r IN u.userPolicy {
r @ { ce.target.owner = u }
}};

// Simple rule disjunction, with default deny value

// implementing a simple DAC policy.
DAC: OwnerRule OR userPolicy OR deny;

Figure 5: The Composition of rules using the conjunction, disjunction and restriction operators

// Who can delegate

who: ce.target = dynamicRules & ce.action IN insertRemoveActions :: ce.author IN Delegators;

// What can be delegated
what: FORALL r IN dynamicRules { r@{.author IN Delegatees & .action IN AllowedActions} };

delegation: who AND what;

Figure 6: Rules to control delegation of rights

7): one for each operator over rules - Universal quanti-
fier (conjunction), Existential quantifier (disjunction) and
Restriction quantifier (restriction). The Universal quan-
tifier is defined as the tri-value conjunction of every in-
stantiation of a rule over a specified set. The Existential
quantifier has three qualifiers: AT LEAST n, AT MOST
n and EXACTLY n, with the usual meanings. With
the AT LEAST qualifier the existential quantifier requires
that at least n instantiations of the rule allow the request;
with the AT MOST qualifier it requires that at least one
and no more than n instantiations of the rule allow the
request; with the EXACTLY qualifier it requires that no
more and no less than n instantiations allow the request.

The Restriction quantifier is slightly different from the
first two and complements them. While the universal and
existential quantifiers operate over the decide-expressions
of rules (remember that tri-value conjunctions and dis-
junctions are translated to binary conjunctions and dis-
junctions over the decide-expressions of rules), the re-
striction quantifier operates over the domain expression
of rules. It restricts the domain of applicability of a rule
to a domain that is defined by a universally quantified
parameterized expression over a specified set.

3.4 Policies

An SPL policy is a collection of rules and groups that
govern a particular domain of requests. Each policy has
one “Query Rule” (QR) (identified by a question mark
before the name of the rule) that relates all the rules
specified in the policy. This rule uses the algebra defined
before to specify which rules should be enforced and how.
The domain of applicability of a policy is the domain of
applicability of the QR.

Unlike several logical based languages, in SPL there
is not an implicit operation between rules, i.e. the rules
inside a policy do not form an implicit disjunction or con-

junction. The expression formed by the rules is given
by the query rule. This solution provides flexibility to
the language because the user building the language may
choose whatever construction is the best. In fact, he may
even choose to extend a predefined policy (see inheritance
below in this section) which has a predefined query rule
that performs the conjunction or the disjunction of every
rule in the policy.

In an SPL policy some of the groups can be parame-
ters that are passed to the policy whenever it is instanti-
ated (or, more correctly, activated). This allows for the
construction of several abstract policies, which may be
activated several times with different parameters. For
instance, it is possible to have a generic DAC policy, a
generic separation of duty policy, or a simple generic ACL
policy (Figure 8a).

When instantiated, a policy acts as a rule and can
be included in another policy by composing it with
other rules through the tri-value algebra. As in sev-
eral object-oriented languages, instantiation is performed
by the new keyword. Figure 8b shows a security policy
(InvoiceManag) that activates an ACE policy and dele-
gates the decision on request acceptability to it.

The ability to merge policies into more complex ones,
using the tri-value algebra, is one of the important fea-
tures of SPL because it allows for the development of li-
braries of frequently used security policies. These security
policies can then be used as building blocks for more com-
plex security policies, thus simplifying the specification of
security policies for complex organizations.

The natural SPL policy sharing mechanism is delega-
tion, but SPL also supports policy inheritance to simplify
some sharing situations. For example, defining a policy
which is similar to another policy with only one slightly
different rule is much more difficult with delegation than
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// Universal quantifier syntax

FORALL var IN set { rule skeleton(var) }

// Existential quantifier syntax

EXIST AT LEAST n var IN set { rule skeleton(var) }

// Restriction quantifier

rule@{ expression(var) } WITH var IN set

Figure 7: Universal, existential and restriction quantifiers syntax

policy ACL(

user group AllowUsers, // Users that are allowed to
// perform restricted actions

object group ProtObjects, // The protected objects

interface RestrictActions) // The restricted actions
{

?Psimple:
ce.action IN RestrictActions & // if event action

// is restricted
ce.target IN ProtObjects // and target object

// is protected then
::ce.author IN AllowUsers// the event is allowed

// if the author is allowed
}

(a)

policy InvoiceManag
{
// Clerks would usually be a role
// but for simplicity here it is a group

user group clerks ;

// Invoices are all objects of type invoice

object group invoices =
AllObjects@{ .doctype = "invoice" };

// In this simple policy clerks can

// perform every action on invoices
DoInvoices: new ACL(clerks, invoices,

AllActions);

?InvoiceManag: DoInvoices;
}

(b)

Figure 8: Definition and instantiation of a generic policy: (a) A generic ACL policy, with three parameters enclosed
in parenthesis next to the name; (b) a policy instantiating the ACL policy

with inheritance.

The use of inheritance is particularly interesting for
specifying RBAC policies. In SPL, roles can be defined
as policies comprising the group of subjects allowed to
play the role, the group of subjects playing the role and
the set of rules that specify the rights of the role (Fig-
ure 9). This solution is very similar to the one proposed
by Lupu and Sloman [36] in which roles are groups of
rules. However, while in Lupu’s work [36] roles are spe-
cial groups of rules, containing special properties, in SPL
roles are just another template policy. Figure 9 contains
two policies: the genericRole policy and the clerkRole

policy. The genericRole policy contains: i) the group
with the subjects allowed to play the role, ii) the group
of subjects playing the role and iii) a rule specifying that
only the subjects in the first group can be inserted in the
second. This generic role does not contain any special
right, only the basic role infrastructure. The clerkRole

policy inherits these properties from the genericRole and
adds rules specifying the permissions and prohibitions of
clerks. As in other object oriented languages with single
inheritance, the keyword super designates the inherited
policy, and the keyword ?super designates the query rule
of the inherited policy.

SPL policies are only active if instantiated and inserted
into another policy, except for the master policy, which is
implicitly activated by the security monitor. The result
is a hierarchical tree of active policies with the master
policy on top. Only the master policy is queried. If the

result is deny or allow the monitor should reject or accept
the request, respectively. If the result is notapply, it is
either an error that should be solved by the conflict veri-
fication tool (see Section 5) or it is used by the monitor to
return information for user awareness and then accept or
reject the request. This structure has several advantages
over a flat one [9, 31, 51]. First, it clearly identifies which
rules are related to each other, simplifying the global un-
derstanding of the policy. Second, it allows the dynamic
activation and deactivation of policies, by inserting and
removing them from other policies. Third, it partially
solves the problem of conflicting policies (see Section 5).

3.5 Implementation

One of the problems of expressive security frameworks
such as SPL, is the low efficiency of their implementa-
tions. While usual frameworks built upon access con-
trol lists, labels or Unix permission bits were designed to
be efficient, SPL was designed to be expressive. In this
section, we show that, using a mixture of compilation
and query techniques, it is possible to achieve acceptable
performance results, even for policies with thousands of
rules. We have designed and implemented a compiler for
SPL, which generates standard Java and is able to detect
special SPL constructions and generate the most efficient
code to implement them.

Given the resemblance between SPL and Java struc-
tures, most of the compiler’s actions are simple transla-
tions:

• each SPL policy is directly translated into a Java
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policy genericRole (user group Authorized,
user group Active)

{
// Events inserting a user into
// the Active group are allowed only if

// that user is in the Authorized group
?genericRole:ce.action.name = "insert"&

ce.target = Active

:: ce.par[1] IN Authorized;
}

(a)

policy clerkRole (user group Authorized,

user group Active) extends genericRole
{
// Invoices are all objects of type invoice
object group Invoices =

AllObjects@{.doctype="invoice"};
// All Active group members may access Invoices
Invoice: new ACL(Active, Invoices, AllActions);

?clerkRole: ?super AND Invoice;

}

(b)

Figure 9: SPL roles: (a) a generic role policy with no rights; (b) an example of an effective role policy

class;

• each rule is translated into a tri-value function with-
out parameters (with the exception of the query rule
which has one parameter – the current request);

• each element is translated into a Java interface;

• each group variable is translated into a Java variable
of the SplGroup type, which defines an interface to
access several kinds of groups (external groups, sub-
groups of external groups, internal groups).

Wherever a policy instance is used on behalf of a rule,
the compiler executes an automatic cast operation that
consists in making the call to the query rule of the policy
explicit. Thus, the overall structure of the generated code
can be seen as a tree of tri-value functions calling other
functions, in which the root is the function resulting from
the translation of the query rule of the master policy and
the leaves are the functions resulting from simple rules.

However, evaluating a tree of logical expressions for
each request may pose scalability problems. While in
standard ACL based systems only the access control en-
tries (ACE) belonging to the ACL of each target are eval-
uated in each access, in SPL potentially every rule has
to be evaluated for every access. This is a problem in
systems with thousands of rules, subjects and targets.

Nevertheless, given that SPL is a logical-based lan-
guage, it is possible to apply some evaluation optimiza-
tions. In a conjunction of rules (tri-value conjunction as
defined in Section 3.3), if a rule evaluates to deny than it is
not necessary to evaluate the remaining rules. This is sim-
ilar for the disjunction of rules and allow values. Unfor-
tunately, these optimizations are not very useful because
the disjunction of rules are rare and the optimization ap-
plicable to conjunctions can only optimize the denial of
requests.

Another useful optimization can be applied to the re-
striction operation ( rule@expression(request) ). The “re-
striction operation” restricts the domain of applicability
of a rule to the set of requests satisfying a logical expres-
sion. Thus, if that expression evaluates to “false”, it is
not necessary to evaluate the rule. This optimization is
very useful in those situations where rules are explicitly

organized in domains of applicability (e.g. rules that only
apply to targets produced by one branch of an organiza-
tion). However, it is not enough to prevent the unneces-
sary evaluation of inapplicable rules inside the same do-
main. Whenever the restriction operation is not used to
reach the conclusion that a branch of the evaluation tree
is not applicable to a particular request, it is necessary to
evaluate each domain expression of every leaf rule in that
branch. A possible solution would be to build a virtual
restriction operation in which the restriction expression
would be the logical disjunction of each domain expres-
sion4 of every leaf rule in the branch. Although this solu-
tion is very efficient in detecting inapplicable branches, it
penalizes applicable branches with the redundant evalua-
tion of domain expressions in each node of the evaluation
tree.

The solution used in SPL is based on the assumption
that most rules are target-limited, in the sense that they
are only applied to a limited set of targets. SPL is able
to express non target-limited rules (e.g. all actions per-
formed by a subject); nevertheless, we believe that most
security policies expressed in SPL will be target-limited.
This assumption is based on the observation that most
current security policies are target-limited; e.g. all ACL
based policies, Chinese wall policies, DAC and RBAC
policies.

Based on this assumption we have designed a target-
based index for rules, which allows for quick cuts on
branches of the rule evaluation tree. The system creates
an index for each target. Each index is maintained in
the corresponding target as a label and keeps the infor-
mation of every rule that may be applicable to a request
with that target. The representation of that information
in the current prototype is kept on a bit stream with one
bit for each rule in the system. However, given the sparse
nature of the information (we expect that only a few rules
are applicable to each target as in current ACL based sys-
tems), it is possible to develop more compact structures.

This index technique has proved to be efficient, show-
ing, on average, a speed-up of one order of magnitude.
In particular, for a policy with 4120 rules, 12000 targets
and 5000 subjects, it showed a speed-up of 4.8. The final

4Obviously a reduced canonical form.
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time to evaluate the rules was around 5µs which is about
6% of the time to open a file for reading in the testing
platform (Pentium M at 1.86Ghz running the Sun Java
1.5.0 virtual machine over Windows XP 5.1).

4 Special Constraints
The previously described language can be used to ex-

press several types of constraints, including complex con-
straints that require special implementation considera-
tions. In this section we show how to express and imple-
ment two special types of constraints with a request mon-
itor: history-based constraints and obligation constraints.

4.1 History Constraints

Several security policies require requests to be
recorded, in order to implement constraints with depen-
dencies in the past. Among them, the Chinese Wall pol-
icy [13] is one of the best known. But many other forms
of separation of duty [43] also require request recording.

The importance of history-based polices has been rec-
ognized by several authors [20, 43, 53, 31, 16, 37], however,
no framework is able to simultaneously express concisely
and implement efficiently every history-based policy that
SPL does. Sandhu’s transaction control expressions [43]
are not able to express all types of history-based policies
because not every action in long term targets is saved.
Jajodia’s work [31] writes every action in the global set
of rules, which does not scale. The current version of
Adage does not define an enforcement framework [53].
Deeds [20] and LGI [37] implement history-based policies
directly in java and prolog, respectively, which requires
specific programming for each history-based policy. Fi-
nally, Crampton’s work [16] is similar to our own but our
solution is more general because SPL rules are more ex-
pressive than the policy tuples used in Crampton’s work
(e.g. SPL is able to decide based upon the cardinality of
previous accesses).
4.1.1 Expressing History Constraints

In SPL, history-based policies are expressed by simple
quantification rules over the abstract PAR (Previous Ac-
cepted Requests) set. Each of these rules declares and
quantifies one variable, used to classify each type of past
request monitored by the access monitor. Thus, to mon-
itor a sequence of requests in SPL, it is necessary to cas-
cade several quantification rules over the PAR set, one for
each type of request. Figure 10 shows a Chinese wall pol-
icy with one class of interest expressed in SPL.

The Chinese Wall policy is a monotonic history-based
security policy, designed for open systems, i.e. insert-
ing the Chinese wall policy into a generic policy cannot
increase the set of allowed requests. Briefly, the policy
states that targets are divided into classes of conflicting
interests. Each object has a owner and a subject can ac-
cess every target, but in each class of interest he can only
access the targets belonging to a single owner.

The policy in Figure 10 defines a group and a rule.
The group contains all the targets with the same conflict
of interest. The rule states that the current request is
denied if the target of the request is in the “interest class”

and there is a past request (pr) performed by the same
subject on a target with a different owner that belongs to
that “interest class”.

Usually an organization implementing a Chinese Wall
policy has several classes of conflicting interests. The
above mentioned policy has just one class, but can be
instantiated several times, one for each class of interest.

The decide-expression of the rule has a constant value,
which is consistent with the monotonicity of the Chinese
Wall definition. This definition specifies which requests
should be denied, but leaves it up to complementary poli-
cies to decided upon the ones that should be accepted.
If, for instance, the expression cr.target.creator !=

pr.target.creator is moved from the domain-expression
to the decide-expression, the policy result could either be
allow or deny, which is against the monotonicity of the
policy definition.
4.1.2 Implementing History Constraints

A monitor-like security service has to decide, for each
request, whether it should allow or deny the request. The
decision must be taken at the time of the request with
the information available. Thus, in order to implement
history-based policies, any monitor-like security service
has to record information about past requests.

Some security services record requests implicitly in
their own data structures [44] (mostly using labels), oth-
ers record them explicitly into a request log [9, 31] that
can later be queried for specific requests. The latter so-
lution is more flexible than the former but if the request
log becomes too big, the memory space required to keep
that log may become unlimited and the time required to
execute each query could have a significant impact on the
performance of the system. Jajodia [31] tries to solve this
problem recording the requests that differ in time only
once. However, this does not solve the problem because
the number of requests to record is still huge and prevents
policies based on request cardinality to be enforced, e.g.
the user may only login three times in the system.

We show that it is possible to efficiently implement the
log solution, both in terms of memory-space and perfor-
mance. This is obtained through a compilation algorithm
that optimizes the amount of information to be saved and
the way that information should be queried. We show
that, although this algorithm does not obtain the best re-
sults for all history-based policies, the results obtained for
most frequent policies are equivalent to those obtained by
label-based implementations [44].

The goal of this algorithm is three-fold. First, the se-
curity manager should selectively log just the requests re-
quired by the history-based policy, e.g. if a policy needs
to know if a document was signed, there is no need to
record requests that are not “sign requests”. Second, the
security manager should selectively log just the fields of
the requests required by the specified history policies ,
e.g. if a policy wants to decide based on whether or not
the author of the current request has signed a document,
it is not necessary to record the “time” or the “task”
fields of signature requests. Third, the security monitor
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policy ChineseWall(element group InterestClass) {
?ChineseWall:

EXIST pr IN PAR {
cr.target IN InterestClass & pr.target IN InterestClass & cr.author = pr.author &
cr.target.creator != pr.target.creator :: false

};
}

Figure 10: A specification for the Chinese Wall policy; pr stands for past request

should use the best possible structure to maintain the log
and the best type of query to search it. The log is going
to be searched by entries with specific properties. These
properties might be expressed using equality constraints,
inequality constraints or membership constraints. Equal-
ity constraints can be searched in a hash table in O(1),
which makes them ideal to be used as index keys. How-
ever, if there is not a single equality constraint to look
for, it is better to use a balanced tree to hold the log and
use a different type of query.

The main drawback of the proposed solution is that
history-based policies cannot decide on requests prior to
their activation, i.e. the system only records requests for
each history-based policy after the policy starts to exist.

Instead of building a single log for every history-based
policy, the compiler builds a specific and fined tuned log
for each history-based policy. This solution has several
advantages. First, it divides the problem reducing the
number of requests required to be searched. Second, it
allows for a better adaptation of the base structure to
each query, because each log can be kept by a different
structure. Third, it simplifies the insertion and the re-
moval of policies. The problem in this solution is the
potential for maintaining redundant information in sev-
eral logs. However, given that the information kept by
each log is the minimum information necessary to that
policy, the level of redundancy expected is similar to the
one of label-based implementations, where the labels used
by different policies may also be redundant. Nevertheless,
this problem can be further limited through the sharing
of logs with the same signature (same requests to log,
same fields in those requests to log, same base structure)
between policies.

Figure 11 shows a graphic representation of the evalu-
ation of a history-based rule for a request. The evaluation
process is composed of the evaluation of a set of functions
generated by the compiler. Some of those functions are
binary functions which decide if the process should stop
or proceed, others are field removal functions whose job
is to strip requests from unnecessary fields.

The process is divided in two threads. The first thread
decides if the request is denied or not. The second thread
decides if the request should be logged or not. The β

function decides if the rule is applicable to the request; if
it is not, the acceptance thread stops5. The α function

5In the Chinese wall policy this function verifies if the target of
the request is in the interest class of the policy. If it is not, the

decides if the request should be logged for later use. The
Σ function decides which fields of the request should be
logged. The Π function decides which fields the log should
be queried by. Finally, the δ function is the original pol-
icy stripped of all the expressions already evaluated. To-
gether with the logged fields, there is also a counter with
the number of times that each distinct tuple occurs, to
avoid repetition of entries.

With this solution, the data kept in the log is small
and, more importantly it does not grow indefinitely. For
instance, for the Chinese wall policy the number of entries
in the log is, at most, equal to the number of subjects in
the system. This is the direct of result the fact that the
log does not have to keep repetitions and of the specific
nature of the Chinese wall policy. The only past infor-
mation needed to apply a Chinese wall policy with one
class of interest is the identity of the authors that have
accessed targets in that class of interest. This property is
also common to all history-based policies that can be im-
plemented with labels. In fact, the goal of the algorithm
is to automatically find the information that a security
designer would program to be saved in the labels on a
label-based implementation.

Since the log size is bounded, the time needed to eval-
uate a history-based policy is also limited. In fact, this
was confirmed by measurements taken in the current pro-
totype. Figure 12a shows the time required to evaluate
a Chinese wall policy with 10 classes of interest, accord-
ing to the number of evaluated and potentially logged
requests. As it can be seen, the time required remains
constant confirming the expected behavior.

The time required to evaluate the policy is also not af-
fected by the number of subjects or the number of targets
in each class of interest. However, it is severely affected
by the number of classes of interest (Figure 12b). This
result is a direct consequence of the number of rules used
to build the Chinese Wall policy with different numbers
of classes of interest. The Chinese Wall defined in Figure
10 requires the definition of a rule for each class of in-
terest. Thus, for Chinese Wall policies with more classes
of interest, the monitor needs to evaluate more rules for
each query.

The index solution presented in Section 3.5 can mini-
mize the problem as shown in Figure 12b. However, it is
not enough for policies such as the Chinese Wall or any
other policy with one single large conjunction of rules.

policy does not apply.
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Figure 11: Schema representing the evaluation of a history-based rule.
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Figure 12: (a) Chinese Wall dependency with the number
of events queried. (b) Chinese Wall scalability with the
number of classes of interest.

In these policies, the index effectiveness is small because
the branches in the evaluation tree of those policies are
small. Thus, the cuts which the index is able to perform
are necessarily small. These types of policies require bet-

ter indexes, for instance, indexes with several layers of
indexes over indexes. This solution is not implemented
in the current prototype but its effect can be measured
because it would be similar to rearranging the policies in
order to have a deeper evaluation tree. For instance, the
big conjunction of rules in the Chinese Wall policy can
be rearranged into a conjunction of conjunctions using
the associative property of conjunctions. The results in
Figure 12b show the effectiveness of such approach.

4.2 Obligation Constraints

SPL is able to express the concepts of permission, pro-
hibition and obligation. While the first two are usually
supported by classical access control services, the last one
is not. However, several access control solutions have re-
cently started to recognize the importance of obligations
to express current security policies [17, 18, 26, 37].

Although most solutions are different from each other,
all of them use some kind of special predicate to express
obligations. This solution is simple and clear. However,
with constraint-based languages the use of a special pred-
icate to express obligation is an unnecessary addition.

Defining an obligation is not simple. In deontic logic,
an obligation is defined as the prohibition of not doing
something [14]. The problem with this definition, in a
constraint-based system, is that rules decide upon re-
quests, not upon users or other agents. Thus, a rule
forbidding a request from not happening cannot be ex-
pressed. In SPL an obligation is defined as a constraint
with a dependency in future requests [40]. This definition
can easily be shown to be equivalent to a triggered obli-
gation.

Triggered obligations are those obligations activated by
triggering actions. These obligations can be represented
by the following generic expression “if do TriggerAction
then must do ObligatoryAction”, which can be shown to
be equivalent to “cannot do TriggerAction if will not do
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ObligatoryAction”6, which is a constraint with a depen-
dency in the future.

SPL specifies constraints with dependencies in the fu-
ture the same way it expresses constraints with dependen-
cies in the past, but with the special group PAR replaced by
the special group FAR (Future Accepted Requests). Fig-
ure 13a shows a policy which specifies that when someone
registers as a student of the “Online University”, he is
obliged to register as a student of at least one discipline
from that university. This is achieved by constraining the
action of registration in the University to the eventuality
that in the future a request for action of registration in
one of the disciplines will take place.

4.2.1 Conditional Obligations

Not every statement expressing a conditional obliga-
tion in common language requires an obligation-based
policy to be enforced. For instance, the statement“if
someone executes some application he must register as
a user” contains a conditional obligation but it can usu-
ally be expressed as a conditional prohibition with a de-
pendency in the past: “Someone may execute an appli-
cation if he has previously registered as a user”. Thus
it is necessary to clearly identify the situations where an
obligation-based policy must be used.

We have identified two generic situations where an
obligation-based policy is required. The first one occurs
when the two actions involved in a conditional obligation,
oblige each other. The situation described before, where
someone is obliged to register as a student of at least one
discipline if he has registered as a student of the Online
University and vice versa, can be given as an example. In
this situation, it is not possible to rewrite the statement
as a conditional prohibition because, whatever action is
performed first, there is always an obligation to fulfill.

The second situation occurs when the obligatory action
is causally dependent on the trigger action. For instance,
if the obligatory action requires a value obtained by the
trigger action, the obligatory action cannot be executed
before the trigger action, forbidding the transformation of
the conditional obligation into a conditional prohibition.

4.2.2 Implementing Obligation Constraints

Although the problem of expressing obligations with
a constraint-based language can be solved by transform-
ing them into constraints with dependencies in the fu-
ture, they still cannot be easily implemented by a security
monitor. In fact, Schneider [46] proved that constraints
with dependencies in the future cannot be enforced by a
security monitor. This is why most access control sys-
tems use some kind of engine to execute the obligatory
actions [18, 26]. The problem with this solution is that
the actions performed by the engine are not accountable
to anyone and the engine is, itself, a single point of attack
(whoever controls the engine can do everything).

In SPL, obligations are enforced by a passive security
monitor without requiring a specific engine to execute the
obligatory actions. In order to enforce constraints with

6O ⇐ T ≡ ¬T ⇐ ¬O

dependencies in the future with a security monitor, SPL
requires that both actions - the trigger action and the
obligatory action - are executed inside an ACID7 trans-
action. This allows the monitor to enforce an equivalent
history-based policy, which prevents the commitment of
the trigger action if, by the time of committing the trans-
action, the obligatory action has not taken place.

The process of translating a policy with a dependency
in the future into a history-based policy is called aging
[40]. The process has three steps. Each step adds or
modifies some constraints (Figure 13b):

Step 1. takes any reference to variable cr (Current Re-
quest) and translates it to tpr (Trigger Past Request)
which is universally quantified over PAR. If there are
other variables quantified over PAR, it is necessary to
add a new constraint specifying that tpr is the last
of them.

Step 2. replaces each reference to the FAR group by a
reference to PAR, and adds a new domain restriction
to specify that tpr happens before any of them.

Step 3. adds two more domain restrictions, defining the
request to be allowed or denied (current request). Af-
ter the aging process, the request to be monitored is
the request for the action of committing the transac-
tion containing the trigger request action.

However, it is not always possible to perform both the
trigger action and the obligatory action inside a transac-
tion because some actions cannot be undone, e.g. sending
a document to a printer or showing a text on the screen.
These actions are called real actions on transaction man-
agement systems [27] and are already known to require
special treatment by those systems in order to achieve
atomicity. Usually systems delay the execution of such
actions until all the other actions are executed, but if
these actions cannot be reordered, the system is not able
to ensure atomicity.

The problem is slightly more complex than in usual
transaction management systems because the set of ac-
tions identified as real actions must include actions that
change human knowledge state (e.g. showing a text on
the screen), which are not often considered.

Therefore, both the usual active method and the pro-
posed passive method of implementing obligations have
problems and advantages. The active approach (the sys-
tem executes actions by itself) is more flexible and is a
broader solution. The passive approach (the system only
denies or accepts requests) is useful for situations where
a transaction monitor is available and there is a require-
ment for the accountability of every action.

5 Conflict Resolution
SPL supports non-monotonic policies, in the sense that

it is able to express both positive and negative constraints
at the same time. The increased expressiveness with the

7ACID stands for: Atomicity, Consistency, Isolation, Durability
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policy Registration(university OnlineUniv) {
?Registration:

EXIST e IN FAR {
cr.action.name = "Register" &
cr.target = OnlineUniv ::

e.action.name = "Register" &
e.target IN OnlineUniv.disciplines;

}
}

(a)

policy ModRegistration(university OnlineUniv) {
?ModifiedRegistration:
FORALL tpr IN PAR { // Step 1
EXIST e IN PAR { // Step 2

cr.action.name = "commit" & // Step 3
cr.transaction = tpr.transaction &// Step 3

tpr.time < e.time & // Step 2
tpr.action.name = "Register" & // Step 1
tpr.target = OnlineUniv :: // Step 1

e.action.name = "Register" &
e.target IN OnlineUniv.disciplines;

}}}

(b)

Figure 13: An example of an obligation policy: (a) the Registration policy expressed as a constraint with a dependency
in the future; (b) Registration policy after the aging process (the lines modified by each step of the process are marked)

addition of non-monotonicity does not come without cost
as it leads to potential conflicts between contradictory
rules. Usually these conflicts are solved with the intro-
duction of implicit priority algorithms that choose which
rule overrides the other. Some of these algorithms are
very simple (e.g. negative rules override positive ones),
others are more complex and use not only the rules’ types
but also the authority of the rules’ issuers (i.e. rules is-
sued by a higher authority manager override others), the
specificity of the rules (more specific rules should often
override more generic ones), and the issuing time of the
rules (more recent rules override older ones) [5].

Windows 2000 uses a simplified version of this ap-
proach. It evaluates ACEs in a special order and stops
when it finds one which is applicable to the subject per-
forming the request. The order in which ACEs are evalu-
ated gives priority to non-inherited ACEs (priority to the
more specific) and, within these, it gives priority to neg-
ative ones. This approach is very intuitive and natural,
but it has some drawbacks. It is not unusual for a high
authoritative manager to issue a rule which may be over-
ridden by a low authoritative manager, or to express a
mandatory general rule which should not be overridden.

Another strategy is to stratify the security rules and in-
clude a special layer of rules to decide which rules should
override the others [8, 31]. SPL follows this strategy but,
instead of creating a special layer of rules to solve con-
flicts, it forces the security administrator to combine poli-
cies into a unique structure which is, by definition, free
of conflicts. In SPL, every active security policy must
be in the hierarchical delegation tree of policies. There-
fore, if two active policies present conflicting results to
the same request (one denying it and the other allowing
it), then somewhere up the hierarchical tree they must
be combined in one tri-value expression that inherently
solves the conflict. If the two policies are combined us-
ing a tri-value “AND”, the request is denied. If they are
combined using a tri-value “OR” the request is allowed.
With this solution, the policy architect is able to prioritize
rules the way it pleases. The policy architect may choose
a prioritization through specificity or through ownership
or through any other prioritization method.

However, these mechanisms should not be used to solve
real inconsistencies derived from the unification of several
policies from several sources. In fact, they can even be
detrimental, because they can mask real inconsistencies
and produce wrong results. For instance, a senior system
administrator can insert a rule which denies some accesses
and later a junior system administrator, unaware of that
rule, can insert one that specifically allows that type of
request. Should we use the most specific, the most recent,
or the rule issued by the most senior system administra-
tor? The choice would probably be the most specific one,
but what if the junior system administrator has made
a mistake? An automatic conflict resolution mechanism
would mask this error.

Although conflicts between contradictory policies are
the most important type of inconsistency that may be
present in a global security policy, they are not the only
ones. For instance, a policy may be completely overridden
by another policy in such a way that the former policy is
completely useless; or the combination of two or more
policies may result in a policy that denies or allows every
action in the system.

Furthermore, within an organization, it is not only nec-
essary to verify the self-consistency of the security pol-
icy but also to verify the consistency of the security pol-
icy with other specifications of the organization. For in-
stance, if a workflow application of an organization re-
quires access to some documents and the security policy
forbids that access, then the security policy is inconsistent
with that workflow specification, which may prevent the
organization from working as expected.

In SPL, these incoherencies are detected by a specific
verification tool [39], which may run between the syntac-
tic/semantic verification phase and the code generation
phase of the SPL compiler (Figure 15). This tool is com-
posed of: a generic constraint solver engine [23], a set
of specific rules for SPL operations [38], and a translator
from SPL to the specific logical language handled by the
generic constraint solver [38].

The generic constraint solver solves constraints defined
in the CHR (Constraint Handling Rules) language [23].
This language is composed of rules organized in handlers.
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Constraint
︷ ︸︸ ︷

A ≤ B , A 6= B
︸ ︷︷ ︸

Head

⇔ true
︸ ︷︷ ︸

Guard

| A < B
︸ ︷︷ ︸

Body

//Simplification rule

A ≤ B, B ≤ C ⇒ true | A ≤ C // Propagation rule

(a)

Goal 1: allRequest(AllRequests), RE ∈ AllRequests,

myPolicy(RE, . . . , r(D, A)), D.
Goal 2: allRequest(AllRequests), RE ∈ AllRequests,

myPolicy(RE, . . . , r(D, A)), ¬D ∨ A.
Goal 3: allRequest(AllRequest), RE ∈ AllRequests,

myPolicy(RE, . . . , r(D, A)), ¬D ∨ ¬A.

(b)

Figure 14: (a) Examples of the simplification and propagation rules. (b) Examples of incoherencies found by the
tool. Goal 1 verifies if the policy is applicable to at least one request. Goal 2 and Goal 3 verify if the policy does
not deny or allows every request, respectively.

SPL
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SPL 2

CHR

Generator

Verification

tool

Inconsisten

cies?

Monitor

Generator

End
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Yes

No
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Figure 15: Overall flow of actions to generate a monitor
from an SPL policy.

Each set of rules solves a specific type of constraint. For
instance, Figure 14a shows two of the rules used to solve
order constraints (defined with the <, >, =,≤,≥ and 6=
operators). One of these rules is a simplification rule and
the other is a propagation rule (denoted by the ⇒ opera-
tor). Whenever applicable, the simplification rule replaces
the constraints matching the head of the rule by the con-
straints matching the body of the rule. The propagation
rule just adds the constraints to the body of the rule.
Both rules are applicable when some of the constraints to
be solved unify with the head and the guard is true. The
successive activation of these rules gradually simplifies the
constraints in the goal and eventually finds a solution for
the free variables in the goal, or reports an incoherency.

To use this generic constraint solver engine to find in-
coherencies in SPL, it was necessary to write a program
composed of user- defined CHR rules which is able to han-
dle all the types of constraints that can be specified with
SPL operators. The problem with this approach is the
number of different rules required to cover all SPL opera-
tors and the scalability of the existing methods of proving
correctness and termination in this type of program. To
cope with this problem the program was divided into a set
of semi-independent [38] groups of rules, named handlers,
for which termination and correctness can be individu-
ally proved. It can be shown that the composition of a

set of semi-independent, terminating, and correct groups
of CHR rules, is also correct and terminates [38].

The tool is able to find many different types of in-
coherencies. To find each type of incoherency, the pol-
icy is solved with a specific goal. For instance, Figure
14b shows three different goals to detect three differ-
ent types of policies. Each goal assumes that the pred-
icate myPolicy(RE, . . . , r(D, A)) defines a generic rule
(r(D, A)) comprising every constraint of the policy. The
first goal verifies if the policy is applicable to a request; if
it is, the tool shows a solution for variable RE for which
the domain of the policy (variable D) is true. The other
two goals verify if the policy denies or allows every re-
quest.

The current prototype has ∼ 300 rules and is able to
solve all SPL constraints, including the constraints implic-
itly qualified with time. For instance, the SPL expression
“cr.target IN GenericGroup” is implicitly qualified with
the time of the request. Only at that time, the target
must be in the group, thus when translating it to a CHR
constraint, it must be qualified with a specific time. The
complete set of rules and the proofs of termination and
correctness of the tool can be found in [38].

6 Conclusion
We have defined an access control language that simul-

taneously supports multiple complex policies, and either
has a higher expressive power, or presents better results
in terms of design than other multi-policy environments.
The language uses its hierarchical based policy-oriented
structure to solve conflicts between simultaneously active
policies. We also provide a tool to verify incoherencies
within policies which goes beyond conflict detection.

The language was designed to be easily enforced by a
security monitor. We have shown how index techniques
can be applied to the policy structure to efficiently imple-
ment most security policies. Special care was taken with
the enforcement of history-based policies. We have shown
that by generating specific and special tuned logs for
each history-based policy it is possible to implement SPL
history-based policies as efficiently as handcoded label-
based implementations.

The language goes beyond the permission/prohibition
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concepts of security and shows how to express and imple-
ment the obligation concept using ACID transactions.

We have defined an easily described language, which
does not have any specific predicate for any type of policy,
yet it is able to express RBAC, history-based, obligation-
based and delegation policies, among others. The lan-
guage is composed of rules to decide about accesses, that
can be composed using a simple logic with four basic op-
erators (AND, OR, NOT and restriction) and their respective
quantifiers (FORALL, EXIST and restriction quantifier), and
uses policies to provide encapsulation, inheritance and pa-
rameterization, thus improving policy reusability.

Preliminary results show that SPL should be mainly
used to assemble big policy blocks. Simple rules and
quantifiers should only be added if absolutely necessary,
because they tend to clutter the policy with small and
difficult things to read. We are currently developing a
graphical interface which is expected to solve some of the
low level usability problems identified in SPL [25].

With this language, we have addressed the problems of
expressiveness, design and enforcement scalability of ac-
cess control policies. However, we have not addressed the
problem of establishing trust, which is a fundamental pre-
condition for the application of access control policies in
large distributed environments. We have plans to build a
trust framework to work together with the access control
framework already defined. We also plan to apply SPL
to a medium size organization (∼ 5000 users) to iden-
tify larger library policies thus simplifying future policies
design.
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