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Abstract

Deniable authentication protocol is different from tradi-
tional authentication protocol in that the intended re-
ceiver can authenticate the source of a given message,
but cannot prove the source to a third party. In recent
years, many deniable authentication protocols have been
put forth. To adapt to some special group communication
requirements, in this paper, we will propose a new group
oriented Identity-based deniable authentication protocol
based on the bilinear pairings. In our proposed protocol,
the sender is no longer a single person but a sender group,
only all senders in the sender group agree to generate a
deniable authentication code for a message, can the deni-
able authentication message be regarded as valid in eye
of the intended receiver.

Keywords: Bilinear pairings, group oriented deniable au-
thentication protocol, identity-based

1 Introduction

Deniable authentication protocol is a new authentication
mechanism compared to traditional authentication pro-
tocols. It mainly has the following two properties: First,
it enables an intended receiver to identify the source of
a given message. Second, the intended receiver cannot
prove the source of the message to a third party. Just
due to these two properties, deniable authentication pro-
tocols are used to provide freedom from coercion in elec-
tronic voting systems and to support secure negotiation
over the Internet [1].

Over the past years, many deniable authentication pro-
tocols [1, 3, 4, 6, 8, 9, 10, 13, 14] have been proposed. In
1998, Dwork et al. [6] proposed a notable deniable au-
thentication protocol based on concurrent zero-knowledge
proof, and Aumann and Rabin [1] presented another deni-
able authentication protocol based on the factoring prob-

lem. Later, Deng et al. [4] put forth two deniable authen-
tication protocols based on the factoring problem and the
discrete logarithm problem, respectively. In 2002, Fan et
al. [8] also proposed a new deniable authenticated proto-
col based on the Diffie-Hellman key distribution protocol
[5]. However, all these protocols are interactive and there-
fore inefficient.

In 2004, to resolve the above issue, Shao proposed
an efficient non-interactive deniable authenticated proto-
col based on the generalized ElGamal signature scheme
[7, 13]. In 2005, following Shao’s idea, we also have pre-
sented two non-interactive deniable authentication pro-
tocols based on factoring and bilinear pairings [9, 10].
More recently, Cao, Lin and Xue [3] and Shi and Li [14]
also have presented another two non-interactive Identity-
based deniable authentication protocols.

By taking a closer look at these deniable authentica-
tion protocols mentioned above, we can see all of them
are in manner of person-to-person, which may not meet
some special group communication requirements. There-
fore, in this paper, we would like to extend the general
deniable authentication protocol to group oriented deni-
able authentication protocol. In the group oriented de-
niable authentication protocol, the sender is no longer a
single person but a sender group. Only all senders in the
sender group can collectively send a deniable authentica-
tion message to an intended receiver. In what follows,
we will present a group oriented Identity-based deniable
authentication protocol based on the bilinear pairings.

The rest of this paper is organized as follows: In Sec-
tion 2, we first review the concepts of the bilinear pairings.
Then, we present our new group oriented Identity-based
deniable authentication protocol in Section 3 and analyze
its security in Section 4. Finally, we draw our conclusion
in Section 5.
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2 The Bilinear Pairings

Let G1 be a cyclic additive group and G2 be a cyclic mul-
tiplicative group of the same prime order q. We assume
that the discrete logarithm problems in both G1 and G2

are hard. A bilinear pairing is a map e : G1 × G1 → G2

which satisfies the following properties:

Bilinear For any P, Q ∈ G1 and a, b ∈ Z∗
q , we have

e(aP, bQ) = e(P, Q)ab.

Non-degenerate There exists P ∈ G1 and Q ∈ G1 such
that e(P, Q) 6= 1.

Computable There is an efficient algorithm to compute
e(P, Q) for all P, Q ∈ G1.

From the literature [2], we note that the Weil pairings
associated with super-singular elliptic curves or abelian
varieties can be modified to create such bilinear maps.
For instance, Let p be a prime such that p = 2 mod 3
and p = 6q − 1 for some prime q > 3. Let E be a super-
singular curve defined by y2 = x3 + 1 over Fp. The group
of rational points E(Fp) = {(x, y) ∈ Fp × Fp : (x, y) ∈ E}
forms a cyclic group of order p + 1. Because the prime
q satisfies the condition 6q = p + 1, the group of points
order q in E(Fp) also form a cyclic subgroup, namely G1.
Let P be the generator of G1 and G2 be the subgroup of
Fp2 containing all elements of order q. Then, a bilinear
pairing e is a computable map between G1 and G2.

We now describe some related mathematical problems
in G1 and G2.

Decisional Diffie-Hellman Problem (DDHP): For
a, b, c ∈ Z

∗
q , given P, aP, bP, cP , decide whether

c = ab mod q. The DDHP is easy in G1 as it
can be solved in polynomial time by verifying
e(aP, bP ) = e(P, cP ). This is the well known MOV
reduction [11].

Computational Diffie-Hellman Problem (CDHP):
For a, b ∈ Z∗

q , given P, aP, bP , compute abP ∈ G1.

Bilinear Diffie-Hellman Problem (BDHP):
For a, b, c ∈ Z

∗
q , given P, aP, bP, cP , compute

e(P, P )abc ∈ G2.

We have the relationship of the BDHP and CDHP that
the BDHP in (G1, G2, e) is no harder than the CDHP in
G1 or G2 [2]. That is to say, an algorithm for CDHP
in G1 or G2 is sufficient for solving BDHP in (G1, G2, e).
Therefore, we assume throughout this paper that BDHP
is intractable, which means there is no polynomial time
algorithm to solve BDHP and CDHP with non-negligible
probability.

3 Our Proposed Protocol

In this section, we present our new group oriented
Identity-based deniable authentication protocol from the

bilinear pairings. Let S = {S1, S2, · · · , Sn} be the sender
group of n members and R be the intended receiver. Only
all senders S1, S2, · · · , Sn ∈ S agree to generate a deniable
authentication code for a message m, can the deniable au-
thentication message m be regarded as valid in eye of the
intended receiver R.

Our proposed protocol, which consists of four algo-
rithms: Setup, Extract, Authenticate and Verify, is
described in detail as follows.

Setup: Let G1 be a cyclic additive group of prime order
q, G2 be a cyclic multiplicative group of the same
order q. A bilinear paring is a map e : G1×G1 → G2.
Define two secure hash functions H and H1, where
H : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Z∗

q .

PKG choose a random number s ∈ Z∗
q and sets

Ppub = sP . Then, the public parameters of the sys-
tems are params = {G1, G2, e, q, P, Ppub, H, H1}, and
the master-key s is kept secretly by PKG.

Extract: When the sender group S submits their iden-
tity information IDS = {IDS1

, IDS2
, . . . , IDSn

} and
authenticates themselves to PKG, PKG runs the fol-
lowing steps to generate the secret keys for the sender
group S.

Step 1: PKG first chooses n random numbers
x1, x2, . . . , xn ∈ Z∗

q such that

s = x1 + x2 + · · · + xn mod q.

Step 2: For i = 1, 2, . . . , n, PKG computes Xi =
xiH(IDS) and Yi = xiP . Then, PKG sends Xi to
Si ∈ S via a secure channel and broadcasts Yi among
S.

Step 3: Each Si ∈ S can verify the validity of all
Y1, Y2, · · · , Yn by checking the equality

Ppub = Y1 + Y2 + · · · + Yn.

Then, he can verify the validity of the secret key Xi

by checking the equality

e(Xi, P ) = e(H(IDS), Yi).

If it holds, the secret key can be accepted, otherwise
rejected. Since the DDHP is easy in G1, the correct-
ness follows.

When the intended receiver R submits his iden-
tity information IDR and authenticates himself to
PKG. PKG uses the master-key s to compute XR =
sH(IDR), then sends XR as the secret key to R via
a secure channel. When R receives XR, he can easily
verify its validity by checking the equality

e(Ppub, H(IDR)) = e(P, XR).

Authenticate: For sending a deniable authentication
message m to the intended receiver R, each Si ∈ S
performs the following steps:
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Step 1: Each Si ∈ S chooses a random number
ki ∈ Z∗

q , computes Ki = kiP and broadcasts Ki to
all other senders in S.

For simplicity, we denote the sum of n random num-
bers k1, k2, . . . , kn is k = k1 + k2 + · · ·+ kn mod q in
below.

Step 2: After receiving all Kj (j = 1, 2, . . ., n

and j 6= i) from other senders, Si ∈ S computes
parameters K and h with the following equations:

K = K1 + K2 + · · · + Kn = (k1 + k2 + · · · + kn),

P = kP,

h = H1(IDS‖IDR‖K‖m),

where “‖” is the concatenation symbol.

Step 3: Each Si ∈ S uses his secret key Xi computes
σi, where

σi = kiPpub + hXi = kiPpub + hxiH(IDS)

and sends σi to the dealer Sd. The dealer Sd is chosen
from the sender group S in advance.

Step 4: The dealer Sd verifies the validity of σi by
checking that

e(σi, P ) = e(Ppub, Ki)e (H(IDS), Yi)
h

.

If it holds, σi can be accepted, since

e(σi, P ) = e (kiPpub + hxiH(IDS), P )
= e(Ppub, kiP )e(hxiH(IDS), P )
= e(Ppub, Ki)e(H(IDS), xiP )h

= e(Ppub, Ki)e(H(IDS), Yi)
h.

Step 5: The dealer Sd computes all collected σi (i =
1, 2, . . . , n) as

σ =
n∑

i=1

σi =
n∑

i=1

(kiPpub + hxiH(IDS))

= kPpub + hsH(IDS).

In the end, the dealer Sd computes α, β, where

α = e(H(IDR), σ), β = H1(α‖m),

and sends (K, β) with m to the intended receiver R.

Verify: Upon receiving (K, β) and m from S, R will run
the following steps to verify it.

Step 1: R first computes h′ = H1(IDS‖IDR‖K‖m)
and α′ as

α′ = e(XR, K + hH(IDS)).

Step 2: R then checks whether H1(α
′‖m) = β. If it

holds, the intended receiver R accepts it; otherwise,
R rejects it.

4 Security Analysis

In this section, we discuss the security of our proposed
protocol. Fundamentally, the security of the proposed
schemes is based on the BDHP and the one-way hash
function assumptions.

Statement 1 (Completeness). If both the sender group
S and the intended receiver R follow the protocol, the in-
tended receiver R is always able to identity the source of
the message.

Proof. Because the deniable authentication code α′ and
α are identical by computing the following equality

α′ = e(XR, K + hH(IDS))
= e(sH(IDR), K + hH(IDS))
= e(H(IDR), sK + shH(IDS))
= e(H(IDR), skP + shH(IDS))
= e(H(IDR), kPpub + hsH(IDS))
= e(H(IDR), σ)
= α.

So
H1(α

′‖m) = H1(α‖m).

Hence if both the sender group S and the intended
receiver R follow the protocol, the intended receiver R is
always able to identity the source of the message.

Statement 2. The dealer Sd can authenticate each
(Ki, σi) provided by Si ∈ S, but cannot obtain each
Si ∈ S’s secret key or the sender group S’s secret key.

Proof. To prove this statement, we first briefly show that
(Ki, σi) provided by Si ∈ S is secure against existen-
tial forgery. Suppose that there is an adversary A who
can output an existential forgery of (Ki, σi) with a non-
negligible probability. Then, by the forking lemmas due
to Pointcheval and Stern [12], A may get two forgeries for
the same message m within a polynomial time. Let the
two forgeries for m be (Ki, σi) and (Ki, σ

′
i) for h 6= h′.

We will have

σi = kiPpub + hxiH(IDS)
σ′

i = kiPpub + h′xiH(IDS).

Then, the secret key Xi of Si ∈ S can be recovered by the
following

Xi = xiH(IDS) =
1

h − h′
(σi − σ′

i),

which also means that given H(IDS), Yi = xiP , there
exists an adversary A who can solve the CDHP instance
Xi = xiH(IDS). Therefore, we can conclude that forging
(Ki, σi) is as hard as solving the CDHP in G1.

According to the result above, we can be sure that the
dealer Sd can authenticate (Ki, σi), but can’t derive the
secret key Xi = xiH(IDS) from (Ki, σi). At the same
time, since the sender group S’s secret key is

sH(IDS) = X1 + X2 + · · · + Xn.
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Without knowing all Xi, the dealer Sd also can’t obtain
the sender group S’s secret key. Therefore, the statement
follows.

Statement 3. Only the intended receiver R can authen-
ticate the source of message m.

Proof. Since the deniable authentication message (K, β)
and m are transmitted over an insecure channel, anyone
can obtain it. However, only the intended receiver R,
with his secret key XR, can compute the implied deniable
authentication code α from e(XR, K+hH(IDS)). On the
other hand, the deniable authentication code

α = e(XR, K + hH(IDS))

= e(H(IDR), P )ks · e(H(IDR), H(IDS))sh,

includes the static shared secret key e(H(IDR),
H(IDS))s, which is only shared by S and R, R there-
fore can authenticate the source of message m, after he
computes the deniable authentication code α.

We also notice that, even though the deniable au-
thentication code α has leaked, our proposed protocol is
still secure. Since the random number k is unknown to
all, nobody, except the intended receiver R, can derive
the static shared secret key e(H(IDR), H(IDS))s from
α = e(H(IDR), P )ks · e(H(IDR), H(IDS))sh. In addi-
tion, the deniable authentication code α in our proposed
protocol is binding with the message m, the adversary
cannot use it to forge other deniable authentication mes-
sages. Therefore, from this view of point, our proposed
protocol seems to be more secure than other protocols
[3, 9, 10, 13, 14].

Statement 4. Our proposed protocol is deniable.

Proof. Since the deniable authentication code

α = e(XR, K + hH(IDS))

= e(H(IDR), P )ks · e(H(IDR), H(IDS))sh,

can be computed by both the sender group S and the in-
tended receiver R, R can construct another authenticated
message m′, which is different from m. R can compute
K ′, h′, α′, β′ such that

K ′ = k′P

h′ = H1(IDS‖IDR‖K‖m′)

α′ = e(XR, K ′ + h′H(IDS))

= e(H(IDR), P )k′s · e(H(IDR), H(IDS))sh′

β′ = H1(α
′‖m′).

Obviously, (K ′, β′) is indistinguishable from the ac-
tual message computed by S. Therefore, it follows that
our proposed protocol achieves the property of deniabil-
ity.

Based upon the analysis in Statements (1)- (4), we can
conclude that:

Theorem 1. Our proposed group oriented Identity-based
deniable authentication protocol is secure and can work
correctly. �

5 Conclusion

In this paper, we have extended the general deniable au-
thentication protocol to group oriented deniable authen-
tication protocol and developed a new group oriented
Identity-based deniable authentication protocol based on
the bilinear pairings. In our proposed protocol, the sender
is no longer a single person but a sender group, only all
senders in the sender group can collectively send a deni-
able authentication message to an intended receiver. By
analysis, our proposed protocol is also more secure than
other existing protocols, because the leakage of deniable
authentication code α in our proposed protocol doesn’t
affect the protocol security.
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