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Abstract

The widespread adoption of IEEE 802.11 wireless net-
works has brought its security paradigm under active re-
search. One of the important research areas in this field
is the realization of fast and secure implementations of
cryptographic algorithms. Under this work, such an im-
plementation has been done for Advanced Encryption
Standard (AES) on fast, efficient and low power Field
Programmable Gate Arrays (FPGAs) whereby compu-
tational intensive cryptographic processes are offloaded
from the main processor thus results in achieving high-
speed secure wireless connectivity. The dedicated re-
sources of Spartan-3 FPGAs have been effectively utilized
to develop wider logic function which minimizes the crit-
ical paths by confining logic to single Configurable Logic
Block (CLB), thus improving the performance, density
and power consumption of the design. The resultant de-
sign consumes only 4 Block RAMs and 487 Slices to fit
both AES cores and its key scheduling.
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1 Introduction

Cryptography is a fundamental component of any secure
system enabling protection of sensitive information. How-
ever, the performance of a secure system is affected due
to computationally intensive cryptographic transforma-
tions. Efficient hardware implementation was therefore,
one of the evaluating criteria for AES [11]. The choice of
development platforms for embedding cryptographic ap-
plications is made considering many factors like the pro-
cessing power and speed besides, obviously the cost. With
the ever increasing computational power vis-a-vis decreas-
ing costs, reconfigurable devices like FPGAs have become
attractive platforms for embedding cryptographic appli-
cations. Because of outperforming merits, which distin-
guish FPGAs from other development platforms, there is
an increasing trend of their deployment in a number of

cryptographic applications. Under our current research
work, an efficient FPGA based implementation of AES,
especially for the modes involving feedbacks, has been re-
alized. In our sequential design, the functionality for a
single round of AES was developed and implemented in
hardware, which was then iteratively used to execute all
the rounds. For the last round, however, MixColumns
function has been bypassed. The sequential designs are
compact and best suited for small form factor with low
power applications.

We present an outline of our paper first in Section 2,
we define new security paradigm for wireless networks.
Section 3 gives a brief summary of AES and Section 4
deals with Counter Mode with Cipher Block Chaining
Message Authentication Code (CCM). Section 5 presents
the system architecture adopted in our implementation.
Comparison of our implementation with those done earlier
has been presented in Section 6. Section 7 concludes the
paper setting directions for further work.

2 New Security Paradigm for

Wireless Networks

The IEEE standard 802.11 introduced Wired Equivalent
Privacy (WEP) for Wireless LANs [9]. The prime objec-
tive of WEP was to defend confidentiality of data from
eavesdroppers. Other objectives were to guard against
covert modification (i.e., integrity) and provision of ac-
cess control. WEP utilized the RC-4 encryption algo-
rithm. However, certain flaws were exposed in WEP’s
intended security goals by researchers from the Univer-
sity of California at Berkeley and Zero Knowledge Sys-
tems [12] after which it was realized that a strong se-
curity mechanism was needed. The RC-4 encryption al-
gorithm was not necessarily weak; it was the flawed key
exchange that compromised the WEP. The new security
mechanism thus defined thereafter [7], uses two main de-
velopments; Wi-Fi Protected Access (WPA) and Robust
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Security Network (RSN). WPA provides important data
encryption enhancements to address WEP vulnerabilities,
which include a per-packet key mixing function, a Mes-
sage Integrity Check (MIC) to prevent packet forgeries, an
extended initialization vector with sequencing rules, and
finally, a re-keying mechanism. The other development
i.e. RSN uses dynamic negotiation of authentication and
encryption algorithms. Together, these implementations
provide a framework for strong user authentication. De-
ployment of IEEE 802.11i on legacy WLAN client devices
and Access Points, however, remains a challenge as the
existing hardware does not offer the required computa-
tional power required to support the new security mecha-
nisms. In IEEE 802.11i, the security protocol built around
AES is called Counter Mode with Cipher Block Chaining-
Message Authentication Code (CBC-MAC) Protocol or
CCMP. CCMP defines a set of rules that use the AES
block cipher to enable the encryption and protection of
IEEE 802.11 frames of data. CCMP encrypts/decrypts
data at the MPDU (MAC Protocol Data Unit) level as is
shown in Figure 1.
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Figure 1: IEEE 802.11i encryption decryption

3 AES Encryption Algorithm

Rijndael algorithm [4] has been selected as the new Ad-
vanced Encryption Standard (AES) algorithm [5] by the
National Institute of Standards and Technology (NIST)

[13]. AES is a symmetric block cipher having variable
key and fixed data length. The key lengths can be inde-
pendently chosen as 128, 192 or 256 bits, which result in
10, 12 and 14 rounds of operation respectively. The data
length is however fixed to 128 bits. The input as well
as intermediate data can be considered as a matrix with
four rows and four columns called state. Each element of
the matrix is composed of eight bits, therefore enabling
efficient implementation of AES on 8 bit platforms also.
The AES algorithm has four basic transformations.

1) SubByte Transformation - a nonlinear transforma-
tion applied to the elements of the matrix. This first
step in each round is a simple substitution, when
implemented as a Look Up Table (LUT). It operates
independently on each byte of state using S-box. The
byte, s[i, j] become s‘[i, j] through a defined substi-
tution table.

2) ShiftRows Transformation - a cyclical shift operation
with constant offsets, applied to the rows of the ma-
trix. This second step in each round is permutation
of rows by left circular shift; the first (leftmost, high
order) i elements of row i are shifted around to the
end (rightmost, low order).

3) MixColumns Transformation - the third step is a re-
source intensive transformation on the columns of
state under which the four elements of each column
are multiplied by a polynomial, essentially diffusing
each element of the column over all four elements of
that column.

4) AddRoundKey Transformation - performs modulo 2
(XOR) operation with the round key, which is ob-
tained from the initial key by a key expansion proce-
dure.

The encryption flow starts with the addition of the initial
key to the plaintext. Then the iteration continues for (Nr
- 1) rounds (Nr being the total number of rounds). In
last round the MixColumn step is bypassed as shown in
Figure 2.

4 CCM Protocol

CCM is a new mode of operation of a block cipher that
combines the existing Counter (CTR) and CBC-MAC
modes. It uses encryption algorithm to generate en-
crypted and authenticated data at the same time [6].
CCM mode was created especially for use in IEEE 802.11i,
which is 128 bit AES based. It is intended for packet envi-
ronments with no attempt to accommodate streams. The
AES CCM process is shown in Figure 3.
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Figure 2: Block diagram of AES encryption process
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Figure 3: AES-CCM process

5 System Architecture and Imple-

mentation

The AES-CCM process requires two AES cores. In order
to achieve higher throughput, two separate AES cores,
one for CBC-MAC and the other for Counter Mode are
developed. The design is continuation of our previous
work [2], but has been optimized to quarter of round ap-
proach for meeting the reduced area and power require-

ments of IEEE 802.11i. All data paths are 32-bit wide.
A 128-bit register is used to store data and each 32-bit is
processed at every clock cycle.

5.1 AES Architecture

In an effort to achieve higher throughput, various archi-
tectures have been adopted for AES. A few recent efficient
implementations are based on pipelined AES architecture
[8, 21], offering throughput greater than 30 Gbps. How-
ever, these are not viable candidates for applications in-
volving feedbacks in their mode of operations and is there-
fore meant for applications with non-feedback modes i.e.
Electronic Code Book (ECB) and Counter mode only.
The latency generated by pipelined systems cannot be
tolerated by feedback mode of operation. To provide sup-
port for the feedback modes, sequential implementation
of AES algorithm has been used in our work. By reducing
the critical paths and applying efficient design methodolo-
gies, improvement in the performance has been achieved.
The design architecture is shown in Figure 4 with four
AES transformations duly indicated.
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Figure 4: AES datapath

Our design is characterized by adoption of a scaleable
architecture, programming the cryptographic functions
in Verilog and utilization of reusable hardware functions
to avoid duplications. Implementation of byte permuta-
tion, used in ShiftRows operation and bitwise addition
modulo 2 (XOR) functions, on FPGA are computation-
ally easy. However, the MixColumns function that in-
volves matrix multiplication in GF(28) and Byte Substi-
tution are resource intensive when implemented as com-
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binational logic; the former generates critical paths and
the latter consumes more than 75% of utilized FPGA re-
sources. Implementations of four AES transformations
are explained in succeeding subparagraphs.

5.1.1 SubBytes Step

This is implemented as a simple Look Up Table (LUT),
which obviously uses a large number of gates. Efficiency
entails deployment of large embedded memories for S-box.
Each S-box uses 2048 bits of memory and allows 8 bit
processes. Implementation of 16 S-boxes for AES requires
32kb memory.

Dedicated embedded memory blocks are ideal for im-
plementing S-box. Our design uses the special feature
of Xilinx Spartan-3 FPGA [18] offering multiple block
RAMs, organized in columns. Each block RAM con-
tains 18kb of fast static RAM [19]. The Xilinx Spartan-3
xc3s50pq208-5 has 4 block RAMs. These block RAMs
can either be used as Single or Dual port RAM. The sin-
gle Dual port can also be configured as per block RAM
only as shown in Figure 5, therefore utilizing each Dual
port RAM block as two single port RAMs. With quarter
of round approach, we are processing 32 bits at a time
which require 4 S-boxes, realizable in only 2 block RAMs.
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Figure 5: One block RAM becomes two independent
single-port RAMs

5.1.2 ShiftRows Step

The ShiftRows transformation can be expressed as an ar-
rangement of the matrix using an address expression for
each element. The address expression calculates row de-
pendant circular shift of rows. The circular shift opera-
tion uses routing only, which entails some routing delays
but no dedicated hardware resources in term of gates are
required.

5.1.3 MixColumns Step

The MixColumns transformation maps one column of the
input state to a new column state. The transformation
is based on a four-byte input. Multiplication is costly
both in terms of area and delay. To architecturally opti-
mize the multiplication, our design uses the mathematical
properties of multiplication by a fixed constant in GF(28)
optimally using combinational logic circuit. Multiplica-
tion used in MixColumn transformation is given as:

{03} • B(x) = (x + 1)B(x) and {02} • B(x) = xB(x),

where

B(x) = b0 + b1x + b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7
.

The resultant multiplications are

{03} • B(x) = (b0 ⊕ b7) + (b0 ⊕ b1 ⊕ b7)x + (b1 ⊕ b2)x
2

+(b2 ⊕ b3 ⊕ b7)x
3 + (b3 ⊕ b4 ⊕ b7)x

4

+(b4 ⊕ b5)x
5 + (b5 ⊕ b6)x

6 + (b6 ⊕ b7)x
7

(1)

and

{02} • B(x) = b7 + (b0 ⊕ b7)x + b1x
2 + (b2 ⊕ b7)x

3

+ (b3 ⊕ b7)x
4 + b4x

5 + b5x
6 + b6x

7

(2)

Implementations of above equations are simple being
XOR operations. The optimized hardware implementa-
tion considers its four byte input as a polynomial over
GF(28) and is capable of performing a multiplication of
the input with the constant polynomial. This zero clock
cycle parallelism reduces the entire MixColumns to com-
binational logic.

5.1.4 AddRoundKey Step

The key scheduling, presented in Figure 6 uses on the
fly key generation. The initial key is 128-bit and the
round keys are expanded from the initial key by XOR-
ing of previous column. For columns that are in mul-
tiple of four, the process involves Shift operation (Rot),
byte substitution (S-box) and a round constant (Rcon)
addition. On the fly key generation method produces the
keys needed for the round at every clock cycle and does
not store all the keys in the register, thus decreasing the
resources needed for overall design.

5.2 Efficient FPGA Resources Utilization

The architectural optimizations discussed in Section 5.1
reduced the hardware overheads both in S-box and Mix-
Column, but the critical paths were still high and reduced
the over all performance and increased the power con-
sumption of the design. Modern generation of FPGAs
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Figure 6: Key scheduling

haves several interesting features [1, 16], which can be uti-
lized to improve the performance, density and power con-
sumption of the design by reducing the critical paths. A
further improvement is made by confining the logic within
single CLB, where possible. Xilinx specialized tools like
CORE Generator can also be effectively utilized to further
improve the performance.

5.2.1 Wider Logic Function

The Spartan-3 FPGAs are based on a 4-bit input LUTs.
One possible way to implement functions that are wider
than 4-bit inputs is to cascade the multiple LUTs. For ex-
ample, a 16-bit input function could be built by combining
the outputs of two LUTs into a third LUT. Without spe-
cial resources and implementation techniques, logic func-
tions would consume seven LUTs as well as add three
levels of logic delays plus two levels of routing delays.
Unfortunately this method adds logic delays plus an ad-
ditional routing delay between the LUTs.

The Spartan-3 FPGA architecture includes dedicated
multiplexers (MUX) within the CLBs. These specialized
multiplexers are effectively utilized in our implementation
for deploying wide input functions to improve the perfor-
mance and density of design.The critical paths in the de-
sign are minimized by using logic wider than 4-bit input
and confining it to a single CLB. To increase design speed
and density, we use Spartan-3 FPGAs dedicated MUXs
named F5MUX, F6MUX, F7MUX and F8MUX in CLB
[18]. These MUXs are used to replace additional levels
of LUT-based logic and produce the function wider than
4-bit without cascading the LUTs. Each slice is identical
with respect to logic and MUX resources.

In our design the F5MUX in Slice S0 to S3 is used to
develop a 9-bit wide logic function within each slice. The

F5MUX combines the two LUTs in a slice. If the two
LUTs contain independent functions, the select input of
F5MUX becomes the ninth input of the function (four
inputs from each LUT plus one select input). The slice
S0 and S2 have F6MUX. The output of each previously
F5MUX connected to input of F6MUX which result in
a 19-bit wide logic function. To further widen the logic,
the output of two F6MUX is combined using F7MUX
present in slice S1, the resultant is a 39-bit input wide
logic function as shown in Figure 7.

A significant benefit of the dedicated multiplexers is
the dedicated routing that connects between levels, the
connections from the LUTs to the MUXs and between
the MUXs is dedicated and has zero routing delay. The
combination of LUTs and dedicated multiplexers results
very efficient implementation wider logic without any de-
lay.Thus by using the wider input logic functions the logic
is confined within single CLB, which minimize critical
paths of the design to great extent.

5.2.2 Logic Optimization with Core Generator

The CORE Generator tool [20] is a component of the
Xilinx Foundation series software used in our design. It
enables us to configure a parameterized design for Xil-
inx devices. It produces an optimized, predefined set of
building blocks for common functions and enables faster
design completion. The CORE Generator takes full ad-
vantage of Xilinx’s core friendly FPGA architecture such
as LUTs and other resources already available on FPGA.
It also enables relative location constraints and expert
logic mapping and floor planning to optimize performance
of a design and delivers a high level of performance and
area efficiency.

For our S-box, it generates an Electronic Data Inter-
change Format (EDIF) netlist (EDN file), a Verilog tem-
plate (VEO) file with a Verilog (V) wrapper file, a netlist
file (NGC), and an output file (NDF). The CORE gen-
erator EDIF file provided during the synthesis, contains
all the path timings. Based on the surrounding logic, it
efficiently alters the timing constrains. The critical paths
confined with in design and results in better performance.
Without adding the CORE Generator EDN file to the
design Xilinx post PAR (place and route) result in lower
clock frequency. However, when we added the CORE
Generator EDN file to the synthesis process, the clock fre-
quency increase significantly because of additional path
optimization performed by it. The resultant optimized
design is compact with minimize interconnects, improved
performance and reduction in power requirements.

5.2.3 Manual Place & Route

However, for routing we have specified area constraints
so that the design placement and routing is performed
with minimal lengths for routes. By doing so, we restrict
Xilinx Synthesis tool from automatically routing design
components using long wires. This way we reduce the
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Figure 7: Wide input logic function

delay contributed by routing interconnects.

5.3 AES CBC-MAC Core

In AES CBC-MAC, the first AES core is working in ci-
pher feedback mode. It XORs the new input to previously
encrypted data. The core is used to calculate the MIC for
the authenticity of data. The process starts with encrypt-
ing the first block and then successively XORs subsequent
blocks and encrypts the result. The final MIC is one 128-
bits block. The Header Analyzer supplies the input values
Flag, Data Length (DLen) and nonce required to calculate
the first blocks for CBC-MAC. The Nonce is the combi-
nation of Packet Number (PN) and Media Access Control
(MAC) address as shown in Figures 8 & 9. This value is
stored in register and then each 32-bit from this register
is processed by the core using AES transforms. Once the
first block has been prepared, XORing the current block
with previously encrypted block computes the MIC one
block at a time. If the last block is not exactly 128-bit,
it is padded with zeros. The final output is one 128-bit
block, but the CCM requires only a 64-bit MIC, so the
low order 64-bit of final output is discarded.

5.4 AES Counter Mode Core

In AES Counter Mode, the second core is used to gen-
erate the Ciphertext for the IEEE 802.11i architecture.
Once the MIC is calculated by AES CBC-MAC core, it
is appended to the plaintext data. The Header Analyzer
supplies inputs values Flag, DLen, nonce and counter, re-
quired to calculate the Initial Value (IV) for AES CTR.
The Nonce is the combination of PN and MAC address,

the counter starts at 1 and counts up as counter mode
proceeds, as shown in Figures 8 & 9 it encrypts the initial
value (IV) and then XORs this data with the next plain-
text block and so on to produce encrypted data. This
value is stored in register and then each 32-bit from this
register is processed by the core using AES transforms.

5.5 Core Encryption and Decryption

Process

The Encryption and the Decryption processes of the
crypto core are shown in Figures 8 & 9, respectively. The
Encryption process uses AES CBC-MAC core to generate
the MIC and the AES Counter core for the encryption of
data. The Key Scheduler provides the fresh Temporal Key
(TK) for every new session. In AES-CCM, decryption is
almost identical to encryption. It first decrypts the data
using AES Counter Mode core and calculates the MIC us-
ing AES CBC-MAC to compare both the results for data
integrity.

6 Implementation Results and

Comparison

The design has been authored in Verilog HDL and its
Synthesis done with Xilinx XST. Xilinx ISE Foundation
6.3i has been used for performing mapping, placing and
routing. For functional simulation and testing, Model-
Sim 6.0 has been used. The Synthesis tool was configured
to optimized for the area and high effort consideration.
The targeted device was Spartan-3 xc3s50pq208-5 with
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Figure 8: CCM encryption process
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Figure 9: CCM decryption process

Table 1: Implementation result

CORE Slices BRAM Frequency Throughput

AES-CTR 143 2
AES-CBC 151 2 247MHz 687.30Mbps
Key Scheduler 193 0
Total 487 4
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detailed specifications at [18]. Our design occupies 487
Slices for both AES cores and key scheduler (63nd 4 Block
RAMs. Operating at frequency of 247 MHz, throughput
of 687.30 Mbps has been achieved. The detail device uti-
lization is shown in Table 1. The core has a latency of
46-clock cycles.

There exist few reported implementations of AES-
CCM both in academia and industry. The two commer-
cially available compact cores, one by CAST [3] utilizes
Spartan-3 x3s200-5 FPGA using 414 slices (support one
mode of operation at a time) working at a frequency of
147MHz , the other one by SiWork [14] utilizes 835 Slices
of Virtex2 FPGA, working at a frequency of 100 MHz
produces a throughput of 582 Mpbs. The implementa-
tion by Y. Mitsuyama et al. [10] is on ASIC, working
at a frequency of 85 MHz and has a throughput of 54
Mbps. The implementation by K. Vu et al. [17] and N.
Sklavos et al. [15] are using Spartan-II and Virtex de-
vices and has a throughput of 258.8 Mbps and 177 Mps
respectively. The comparison with previously discussed
implementations clearly indicates that our implementa-
tion of AES-CCM is more efficient both in term of speed,
throughput and device utilization on Spartan-3 device.

7 Conclusion

The field of cryptography is perpetually changing; new
algorithms, new techniques of implementation are con-
stantly being derived. Keeping in view the present sce-
nario of FPGA implementation of AES-CCM, the pa-
per gives great insight into an efficient and low power
implementation of AES block cipher to satisfy the se-
curity requirement of IEEE 802.11i Architecture. Our
implementation makes headway in the midrange band-
width applications as it provides the flexibility of lower
power consumption and cost, employing AES in feedback
modes. Offering encryption rate of 687.30Mbps for CCM,
it not only meets current IEEE 802.11a/b/g operating
data requirements, but also high speed of emerging wire-
less standard like IEEE 802.11n. The core provides pri-
vacy, integrity, authenticity and replay protection of data
and is also applicable to other IEEE wireless standard
like 802.15 and 802.16 and can also be adopted for IPSec
implementation.

Future work includes further resource optimization to
achieve lower power and higher throughput.
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