
International Journal of Network Security, Vol.5, No.2, PP.213–219, Sept. 2007 213

A Genetic Algorithm for Cryptanalysis of DES-8

Hasan Mohammed Hasan Husein1, Bayoumi I. Bayoumi2, Fathy Saad Holail3,

Bahaa Eldin M. Hasan4, and Mohammed Z. Abd El-Mageed5

(Corresponding author: Hasan Mohammed Hasan Husein)

Research Development Center National Defense Council1

Department of Mathematics, Faculty of Science, Ain Shams University2

Head of C.R. Division, Research Development Center, National Defense Council3

C.R. Division, Research Development Center, National Defense Council4

Department of Computer Science, Faculty of Engineering, Al-Azhar University, Nasr City, Cairo, Egypt5

(Received Dec. 10, 2005; revised and accepted Jan. 10, 2006)

Abstract

Various cryptosystems exploit exhaustive techniques to
search, missing-the-mark, key space. Such search tech-
niques should be guided in order to be computationally
adequate. Here, a Genetic Algorithm, GA, is proposed for
the cryptanalysis of DES-like systems to find out the un-
derlying key. The genetic algorithm approach is adopted,
for obtaining the exact key by forming an initial popula-
tion of keys that belong to the key subspace. The pre-
mature convergence (local minimum) could be avoided
by dynamic variation of control parameters that can af-
fect the fitness function. In this paper a new method has
been developed for the first time to break DES with eight
rounds. Its performance is considerably faster than ex-
haustive search and differential cryptanalysis, DC. The
new method can be applied to a variety of DES-like sys-
tems instead of the available DC techniques.

Keywords: DES-like, differential cryptanalysis, genetic
algorithm, fitness function

1 Introduction

Genetic Algorithms (GA’s) had been explained by Hol-
land [4] as an adaptive heuristic search method that de-
pends on the evolutionary ideas of natural selection and
genetics. The basic goal of a genetic algorithm is to sim-
ulate the process of natural evolution, taking into con-
sideration the principle of survival of the fittest. It is
generally used in situations where the search space is rela-
tively large and cannot be traversed efficiently by classical
search methods. This is mostly the case with problems
whose solution requires evaluation of many apparently un-
related variables. As GA’s represent an intelligent map-
ping of a random search space to a guided search space
in which the problem solution could be found. The algo-

rithm performs the following steps:

1) Generate an initial population, randomly.

2) Compute the fitness for each individual in the current
population.

3) Define selection probability of each individual so that
it is proportional to its fitness.

4) Generate the next current population by probabilisti-
cally selecting the individuals from the previous cur-
rent population, in order to produce offspring via the
genetic operators represented by: selection, crossover
and mutation.

5) Repeat Step 2 until satisfactory solution is obtained.

Holland [3] has analyzed the influence of GA opera-
tors (selection, crossover and mutation) on the expected
number m(H, t) of schemata H when going from one gen-
eration t to the next t+1. A good discussion can be found
in [3]. Holland’s schemata theorem can be expressed as:

m(H, t + 1) ≥ m(H, t)
fH(t)

f̄(t)
[1 − Pc

δ(H)

l − 1
− o(H)Pm],

where fH(t) denotes the fitness value of the string repre-
senting schema H ; f̄(t) denotes the average fitness value
over all strings in the population; Pc and Pm denote prob-
abilities of crossover and mutation, respectively; l denotes
the schema length; δ(H) denotes length of schema H
measured as the distance between the first and the last
fixed string positions of schema H ; o(H) denotes order of
schema H , defined by the number of fixed string positions
of schema H .

This implies that the fitness function will grow up when
better offspring’s are used. This fact as well as the ability
of Genetic Algorithms to search efficiently huge spaces,
would afford GA’s as natural candidate for use in crypt-
analysis.



International Journal of Network Security, Vol.5, No.2, PP.213–219, Sept. 2007 214

Actually, they have been recently successfully applied
to the cryptanalysis of simple substitution, transposition,
and knapsack ciphers [7, 10, 11], respectively.

As DES-like systems have a large key space and it is
impossible to find out the encryption key using traditional
search algorithms then an evolutionary approach, based
on GA’s, should be examined.

2 Background of DES Cryptanal-
ysis

In a r-round iterated block cipher such as DES, the cipher-
text is computed by iteratively applying a round function
g to the plaintext such that

Ci = g(Ci − 1, Ki), i = 1, 2, . . . , r,

where C0 is the plaintext, Ki is a round key and Cr is the
ciphertext. The round function is usually based on using
S boxes, arithmetic operations, and bitwise XORing [1].

A Feistel cipher with block length of 2n and r rounds
is defined as follows.
The round function is:

g : GF(2)n × GF(2)n × GF(2)m × GF(2)n × GF(2)n

g : (X, Y, Z) = (Y, F (Y, Z) + X).

Thus, Given plaintext P = (PL, PR) and r round keys
K1, K2, . . . , Kr, the ciphertext C = (CL, CR) is com-
puted in each round as follows:

1) Set CL
0 = PL, CR

0 = PR;

2) Compute (CL
i , RL

i ) = (CR
i−1, F (CR

i−1, Ki) + CL
i−1) for

i = 1, 2, . . . , r;

3) Set, CL = CL
r , CR = CR

r , where the round key
Ki ε GF(2)m.

Definition 1. A DES-like iterated cipher is a Feistel ci-
pher, where F is defined as [5]:
F : GF (2)m → GF (2)n; F (X, Ki) = P (f(E(X) ⊕ Ki)),
where KiεGF (2)m; f : GF (2)m → GF (2)n, m ≥ n be a
weak round function; E : GF (2)n → GF (2)m be an affine
expansion mapping; And P : GF (2)n → GF (2)n be a
permutation.

Here a specialization of Definition 1 for DES [9] has
been used as follows:
Let Mn = mn|mn = b0b1 . . . bn−1, bi ε Σ2 where, mn is
an n-bit string; Σ2 = 0, 1 = GF(2).bi is the ith block
and mn ∈ GF(2)n is a message consisting of n-bit blocks.
Then, the DES cryptosystem χDES is given by:

χDES =< m56, m64, m64, TDES >

where, m56 is a 56-bit key, m64 is a 64-bit block of
either plain or cipher text and TDES is the encryp-
tion/decryption transformation such that

tk(m64) = TDES(m56, m64); k = 1, · · · , 10,

and tk is a composition given by:

tk = IP−1 ◦ T 8 ◦ T 7 ◦ . . . ◦ T 2 ◦ T 1 ◦ IP,

where IP is an initial permutation of the 64 bits and each
of the Tj, j = 1, · · · , 10 is a variation of an encryption
theme.

In 1990 Biham and Shamir [1] have developed a type
of cryptanalitic attack that can break DES-like cryptosys-
tems, and known as differential cryptanalysis, DC. They
described an n-round characteristic which allowed them
to push the knowledge of the plaintext by making use
of an XOR operation, to a knowledge of an intermediate
round. Every round characteristic has a particular plain-
text difference ΩP , a particular XOR of the data in the
nth round ΩT and a probability pΩ (in which ΩT when
random pairs whose plaintext difference is ΩP are used).
Any pair whose plaintext difference is ΩP and whose XOR
of the data in the nth round, using a particular key, is ΩT

is called a right pair with respect to that key and the
n-round characteristic. Any other pair is a wrong pair.
Therefore, the right pairs form a fraction pΩ of all possi-
ble pairs.

DC attempts to find out the round key Kn. Then for
two plaintext P, P ∗ of difference ΩP the cryptanalyst can
solve the following equation for Kn:

F−1(Cn, Kn) ⊕ F−1(Cn, Kn)−1 = ΩT .

The solutions are candidate round keys. The method
of DC can be summarized as follows [5]:

Step 1. Find a proper round characteristic with high
probability.

Step 2. Uniformly select a plaintext pair P, P ∗ with dif-
ference ΩP and get the encryption of this pair. De-
termine candidate round keys such that each of them
could have caused the observed output difference. In-
crement a counter of each candidate round key.

Step 3. repeat Step 2 until one round key is distin-
guished as being counted significantly more often
than other round keys. Take this key to be the actual
candidate round key.

Biham and Shamir found that, from experiments on
restricted versions of DES, the complexity of the attack
was approximately c/pΩ, where pΩ is the probability of
the characteristic being used, and c is a constant bounded
as 2 < c < 8. They used the signal to noise ratio S/N
to measure the efficiency of DC. Assume that m pairs
of chosen plaintexts are used in DC and that pΩ is the
probability of the characteristic used. Then about m×pΩ

pairs are right pairs, each of which actually can suggest
the right key value among other values. In some cases the
attacker can classify pairs for the plaintext as wrong pairs
using the intercepted ciphertexts. In this case such pairs
are discarded and should not be used in the analysis.

Let k be the number of possible values of the key we
are looking for, γ is the number of keys suggested by each



International Journal of Network Security, Vol.5, No.2, PP.213–219, Sept. 2007 215

non-discarded pair of plaintexts and λ is the ratio of non-
discarded pairs to all pairs. The average number of times
a random key is suggested can be given by:

S/N =
m × γ × λ

k
.

Thus S/N determine the number of times the right key
is counted over the number of times a random key is
counted, i.e.,

S/N =
k × pΩ

λ × γ
.

A necessary condition for the success of a DC attack is
S/N > 1 and the expected success of the attack increases
with that ratio. Actually, DC attacks need a large number
of right pairs that consume memory and time to suggest
the encrypted key. On the other hand, GA’s cannot be
directly applied on the population of keys represented in
the form of chromosomes. Therefore, DC is needed to
determine the right pairs. This is accomplished by exam-
ining - in each round - the input difference which causes
the correct output difference of each S-box. Such pairs
are needed to obtain the subkeys of the key.

In what follows GA’s have been exploited to calculate
the key of some DES-8 cryptosystems by two methods.

1) Using a number of DC generated right pairs, which
stored in order to be implemented with a proper char-
acteristic.

2) Generating right pairs genetically.

3 The Method of Stored Right
Pairs

First, the proper number of right pairs, with respect to the
key, along with the proposed characteristic are stored for
future processing. For each one of these right pairs there
exist a number of expected keys, for every S-box. The
GA is used to find out the output bits for each S-box,
in the last subkey. In any iteration, the S-box output
bits constitute the current chromosome of the GA. The
chromosome correctness is determined by making use of
the following theorem:

Theorem 1. The chromosome correctness Cr = nsr

np

(where nsr is the number of right pairs for the current
chromosome r and nP is the total number of stored right
pairs) can be successfully used as a fitness function of a
genetic algorithm.

Proof. Since Cr = nsr

np
, then it monotonically increases

with the increase of nsr and

lim
nsr→np

Cr → 1.

Taking f(S) = Cr, for the schema S, then the fitness f(S)
monotonically increases with the increase of nsr and

lim
nsr→np

f(S) = 1.

That is, f(S) is always less than 1 except when nsr = nP .
This guarantees that Holland’s schemata theorem is satis-
fied and the expected number m(S, t+1) of representative
schema S at time t + 1 is always greater than or equal
the number m(S, t) of S at the previous time t. Then
m(S, t + 1) ≥ m(S, t), which means that the number of
schemata is growing up and proves this theorem

Since the fittest chromosome is the one that satisfies
the entire number of right pairs nP , then the fittest chro-
mosome will make Cr reach as 1.

In average, Cr = 1
s
Σs

i=1Cr, where s is the chromosome
length that represents the schema S. the population size
should be greater than or equal s. The stored right pairs,
which have been prepared by DC are used to obtain some
key bits using algorithm SPCA, emphasized below.

3.1 The Algorithm SPCA (Stored Pair
Cryptanalysis)

Input: number of right pairs with respect to the expected
key along with the proper characteristic.
Output: some bits of that key.
Procedure:

1) Read the stored right pairs nP ;

2) For each S-box do

a. Create an initial population in which each indi-
vidual (chromosome) has number of bits equal
to the key input of the current S-box.

b. Evaluate the fitness Cr = nsr

np
for each individ-

ual r of the population in the current generation.

c. Apply crossover operation

d. Apply mutation operation, if needed.

e. Upon convergence take the fittest chromosome,
which may be an expected key in the current
S-box.

3) Put the correct bits in their positions in the last sub-
key.

4) Calculate the position of the unknown bits of the key.

5) Apply the exhaustive search on one pair to get the
remainder bits of the key.

3.2 Application of SPCA to DES-8

Here the cryptanalysis DES-8 is considered. For each one
of the eight S-boxes, the genetic algorithm, SPCA, is used
to find out a 6-bit chromosome. The emphasize is on the
first 8 rounds while the initial and final permutation are
omitted, since they are not important for the attack anal-
ysis. Such analysis is based on using a number of right
pairs, which were generated differentially and stored in
working area. By making use of the 5-round characteris-
tic, Figure 1, ΩP = 405C000004000000x, with probability



International Journal of Network Security, Vol.5, No.2, PP.213–219, Sept. 2007 216

1
10485.76 the analysis proceeds. Particularly, these pairs
are generated and stored, by satisfying the causing condi-
tion for S2, S5, S6, S7, and S8 S-boxes for the subkey K8.
Thus one can calculate correct 36 bits in K8, for S-boxes:
S1, S2, S5, S6, S7, and S8 using GA. Figure 2 shows the
reminder three rounds of the 5-round characteristic that
complete the eight rounds of DES-8 system. The right
pairs have been satisfied the condition

R′ = h′, L′ = H ′ ⊕ P (x0xx0000x)04000000x,

Where P is the permutation round.

p =

?P=405C0000 04000000x

F

F

F

F

F

?T=405C0000 04000000x

A’= 40080000x a’= 04000000x

p =
= P(0A000000x)

B’= 04000000x b’= 00540000x

= P(00100000x)

E’= 40080000x e’= 04000000x

p =

D’= 04000000x d’= 00540000x p =

C’= 00000000x c’= 00000000x

p = 1

4

1

4

1

64.64

16.10

64.64

16.10

Figure 1: The 5-round characteristic with probability
1

10485.76

For each right pair, ΩP = P ⊕ P ∗ there is a corre-
sponding ciphertext pair T and T∗, with the difference
T′ = T ⊕ T∗. The right half of T’ is R’, and the left is
L’ in Figure 2. For every S-box there is a corresponding
6 bits SK in K8 satisfying the causing condition.

F

F

F

T’= (L’, R’)

H’ h’

G’ g’

F’ f’= 405C0000x

= P(x0xx0000x)

L’ = H’ ? P(x0xx0000x) ? e’
R’ = h’

e’= 04000000x

Figure 2: The last 3 rounds of DES-8 system

4 The Method of Generated Right
Pairs

This method is based on a memoryless approach and it
exploits the idea that without storing any pair, the fitness
function can be used to generate right pairs that satisfy a
proper characteristic. After generating a proper number
of pairs we get a number of subkeys. According to the
following theorem the most frequent subkey will be the
target subkey.

Theorem 2. Let ΩP and ΩT be the input and output
pair of the underlying characteristic, respectively. Then
any pair P, P ∗ such that ΩP = P ⊕ P ∗, enciphered by a
DES-8, to T ′ = T ⊕ T ∗ is a right pair. Accordingly, such
right pair maximizes the fitness function given by:

Fitness(ΩT , T ′) = 1 −
Hd(ΩT , T ′)

n
,

where Hd(ΩT , T ′) is the Hamming distance between ΩT

and T ′ whereas n is the block length. This function can be
successfully used as fitness function for genetic algorithms
to break down DES-like systems.

Proof. IfP, P ∗is right pair then ΩT = T ′. Hence
Hd(ΩT , T ′) = 0. Also, when Hd(ΩT , T ′) decreases, the
expectation of the right pair increases.

Thus lim
T ′

→QFitness(ΩT , T ′) and the fitness, as such, in-
creases monotonically with the distances decrease. Then,
as in Theorem 1, it means that the number of schemata is
growing up with the fitness increase, and this proves the
theorem

The following algorithm, that can be used to generate
the required right pairs genetically.



International Journal of Network Security, Vol.5, No.2, PP.213–219, Sept. 2007 217

? P=19600000 00000000x

F

F

? T=00000000 19600000x

A’= 00000000x a’= 00000000x p = 1

B’= 00000000x b’= 19600000x

p =

E(03322C0000000000x)

64.64.64

10.8.14

234

1
?

Figure 3: The 2-round characteristic with probability ≈ 1
234

4.1 The Algorithm GPCA (Generated
Pair Cryptanalysis)

Input: difference of two plaintexts with respect to a
proper characteristic.
Output: some bits of that key. Procedure:

1) Create an initial population in which each individual
(chromosome) as the first plaintext.P .

2) For each chromosome do

a. Evaluate the second plaintext P ∗ = ΩP ⊕ P ,
where ΩP is the characteristic difference.

b. Obtain the ciphertext pair T ′ = T ⊕ T ∗.

c. Evaluate the Hamming distance Hd(ΩT , T ′).

d. Form a two dimensional table τ =< εS, ςS >,
where εS is an expected subkey and ςS is the
corresponding counter for it. Set all counters to
zero.

e. Compute the fitness function

Fitness(ΩT , T ′) = 1 − Hd(ΩT ,T ′)
n

, where n
is the system block length, for each individual
in the current population.

f. If the fitness value is greater than 0.5 then
test the causing condition with respect to all
S-boxes.

g. If the causing condition is satisfied then

i. Produce from table τ subkeys for each S-
box.

ii. Generate all possible bits that may appear
in the last round subkey (associated with all
S-boxes) by choosing one subkey, εS for the
underlying S-box from tableτ Denote such
bits by σ.

iii. For each σ, increment the corresponding
counter ςS.

3) Apply crossover operation.

4) Apply mutation operation, if needed.

5) Generate the next population.

6) Repeat step ii to obtain the counter of the maximum
value ςopt. Such counter is associated with σopt that
is probably a correct expectation for the last round
subkey.

4.2 Application of GPCA to DES-8

Here the cryptanalysis DES-8 is considered. For each one
of the eight S-boxes, the genetic algorithm, GPCA, is used
to find out a 64-bit chromosome. By making use the
2-round characteristic, ΩP = 1960000000000000x with
probability ≈ 1

234 (refer to Figure 3). Thus one can cal-
culate correct correct 18 bits in K8 for S-boxes S1, S2,
and S3. Hd(ΩT , T ′) measures ΩP and FP−1(T ′). The
causing condition is satisfied for the first three S-boxes.

5 Implementation and Perfor-

mance Evaluation

These results emphasize the effect of using GA in the
process of cryptanalysis. Such effect is indicated by ex-
amining the performance of SPCA and GPCA.

5.1 Effect of SPCA

The algorithm SPCA has been applied to break down
DES-8 by using the chosen plaintexts/ciphertexts attack.
In this case 1000 right pairs are computed ”differentially”



International Journal of Network Security, Vol.5, No.2, PP.213–219, Sept. 2007 218

and stored in a particular list structure. These pairs are
used as the input of SPCA which has been carried out
with the following parameters:

Number of right pairs = 100;
Population size = 5;
Chromosome length = 8;
Probability of crossover = 0.6;
Probability of mutation = 0.2;
Maximum generation = 100;
Seed of randomly = 0.8.

In this algorithm the value of the fitness function Cr

should satisfy the condition Cr ≥ 0.15. Otherwise the
underlying S-box is by-passed and the next S-box is con-
sidered. The algorithm performance is reported in Fig-
ure 4, which shows that increasing the number of right
pairs reduces the number of runs and consequently the
time required to obtain the correct key.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15

Runs

F
it

n
es

s
V

al
u

e

200 rp

500 rp

1000 rp

Figure 4: The computational results of SPCA when 200,
500 and 1000 right pairs are used for finding S1 geneti-
cally.

5.2 Effect of GPCA

Actually algorithm GPCA represents a “deepening” of
role of GA’s in cryptanalysis. In this case 1000 pairs are
generated “genetically” and employed as input to the al-
gorithm GPCA. The algorithm is executed with the fol-
lowing parameters:

Number of right pairs = 100;
Population size = 5;
Chromosome length = 8;
Probability of crossover = 0.6;
Probability of mutation = 0.2;
Maximum generation = 100;
Seed of randomly = 0.8.

Figure 5 shows the change of Fitness(ΩT , T ′), with in-
creasing the number of generations.

6 Conclusion

Actually the use of genetic algorithms can improve the
cryptanalysis of DES-like cryptosystems. For convenience

0


0.2


0.4


0.6


0.8


1


1
 3
 5
 7
 9
 11
 13
 15
 17
 19
 21
 23
 25


Generations


F
it
n
e
s
s
 V

a
lu

e
s



Figure 5: The results of GPCA when 200 right pairs are
used for finding S1 genetically.

these algorithms are applied on DES-8. In this case, the
following concluding remarks are pointed out.

1) GA’s can be either combined with differential crypt-
analysis methods or relied upon solely to break down
block-ciphered texts.

2) The problem of using a huge number of right pairs
can be solved by generating the right pairs geneti-
cally. Such generation process is carried out by ex-
ploiting the relation Y = ΩP ⊕ X . thus if ΩP is
available, then Y can be obtained when X is genet-
ically generated. The pair that satisfies the causing
of the underlying S-boxes may be an expected key.

3) Despite the fact that the time complexity of GA’s is
O(n3), where n is the input size, computing the right
pairs (needed for estimating the key) genetically is
faster than differentially. This because of the fact
that no right pair are stored and examined for the
former technique.

4) The mutation operation is used to accelerate the
break down process. In our experiments the best
value of mutation rate is about 0.25. Actually, other
improvements such as elitism can be added to accom-
plish the required cryptanalysis.

5) The performance evaluation of SPCA and GPCA in-
dicates that genetic algorithms can successfully re-
place the available cryptanalysis methods of DES-like
systems.

References

[1] E. Biham and A. Shamir, “Differential crypt analy-
sis of data encryption standard,” pp. 2-21, Springer-
Verlag, New York, 1993.



International Journal of Network Security, Vol.5, No.2, PP.213–219, Sept. 2007 219

[2] H. Feistel, “Cryptography and data security,” em
Scientific American, vol. 223, no. 5, PP. 15-23, May
1973.

[3] D. E. Goldberg, Genetic Algorithms in Search, Op-
timization and Machine Learning, Addison-Wesley
Publishing Company Inc., Reading, Massachusetts,
1989.

[4] J. H. Holland, Adaptation in Natural and Artificial
Systems, University of Michigan Press, Ann Arbor,
Mich., 1975.

[5] L. R. Knudsen, Block Ciphers- Analysis, Design and
Applications, Ph.D. Thesis, DAIMI PB-485, Aarhus
University, Denmark, 1994.

[6] L. R. Knudsen, “Truncated and higher order dif-
ferentials,” in International Workshop on Fast Soft-
ware Encryption-Second, LNCS 1008, pp. 196-211,
Springer Verlag, 1995.

[7] R. Mtthews, “The use of genetic algorithms in crypt-
analysis,” Cryptologia, vol. 17, no. 2, pp. 187-201,
1993.

[8] National Bureau of Standards, Data encryption
standard, Federal Information Processing Standard
(FIPS), Publication 46, National Bureau of Stan-
dards, U.S. Department of Commerce, Washington
D.C., Jan. 1977.

[9] J. Seberry and J. Pieprzyk, Cryptography: An Intro-
duction to Computer Security, Prentice Hall of Aus-
tralia Pty Ltd, 1989.

[10] R. Spillman, M. Janssen, B. Nelson, and M. Kepner,
“Use of genetic algorithms in the cryptanalysis of
simple substitution cipher,” Cryptologia, vol. 17, no.
1, pp. 31-44, 1993.

[11] R. Spillman, “Cryptanalysis of knapsack cipher using
genetic algorithms,” Cryptologia, vol. 17, no. 1, pp.
367-377, 1993.

Bahaa Hassan was born in Cairo,
Egypt on May 29, 1954; He received
the B. E. and M. E. degrees in electri-
cal engineering from Zagazig Univer-
sity in 1978 and 1987 respectively. He
received the Ph. D. degree in com-
puter and systems engineering from
Ain Shams University in 1994. He is

currently a General Manager in National Defense Council,
Cairo, Egypt. His current research interests include cryp-
tography and their applications, smart cards applications
and computer and network security.

Bayoumi Ibrahim Bayoumi was
corn in El-Sharkia, Egypt on August
14, 1946. He received his B.Sc. from
Faculty of Science, Ain Shams Univer-
sity, Egypt, June, 1967. M.Sc. from
Faculty of Science, Ain Shams Uni-
versity, Egypt, June, 1970.Ph.D. from
Leningrad state University, USSR,

September, 1974. Now he is Professor of Mathematics,
Faculty of Science, Ain Shams University, Egypt.

Fathy Saad Holail was born in
Cairo, Egypt on November 14, 1946.
He received the B. Sc., M. Sc., and
Ph.D. degrees in mathematics from
Cairo university, in 1970,1983 and
1985 respectively. During 1991 and
1992 he was a visiting scholar at Tsujii
Laboratory of Information system se-

curity, Department of electrical and electronic Engineer-
ing, Tokyo Institute of Technology, Japan. His Current
job is Head of C. R. Division, Research Development Cen-
ter, National Defense Council, Cairo, Egypt. His current
research interests includes design and implementations of
encryption algorithms also cryptanalysis of cryptographic
systems. He is a member of IACR, Mathematical Egyp-
tian society and language Engineering society at Egypt.

Hassan Mohammed Hassan Hus-

sein was born in Sharkia Egypt on
May 29, 1951. He received the B. Sc.,
M. Sc., and Ph. D. degrees in pure
mathematics from university of Cairo,
Zagazig, and Ain Shams in 1974, 1987,
and 2003 respectively. His Current
job is one of C. R. Division, Research

Development Center, National Defense Council, Cairo,
Egypt. His Current research interests includes Design and
Implementation of encryption algorithms also cryptanal-
ysis of cryptographic systems.

M. Zaki is the professor of soft-

 


ware engineering, Computer and Sys-
tem Engineering Department, Faculty
of Engineering, Al-Azhar University at
Cairo. He received his B.Sc. and
M.Sc. degrees in electrical engineer-
ing from Cairo University in 1968 and
1973 respectively. He received his Ph.

D. degrees in computer engineering from Warsaw Tech-
nical University, Poland in 1977. His fields of interest
include artificial intelligence, soft computing, and dis-
tributed system. (azhar@mailer.scu.eun.eg)


