
International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 187

A Survey of Modelling and Analysis Approaches
for Architecting Secure Software Systems

Lirong Dai1 and Kendra Cooper2

(Corresponding author: Lirong Dai)

Department of Computer Science and Software Engineering, Seattle University1

P.O. 222000, Seattle, WA, USA, 98122 (Email: daia@seattleu.edu)

Department of Computer Science The University of Texas at Dallas2

MS 31, P.O. 830688, Richardson, TX, USA, 75083 (Email: kcooper@utdallas.edu)

(Received Dec. 5, 2005; revised and accepted Jan. 10 & Mar. 3, 2006)

Abstract

There has been a growing interest in investigating
methodologies to support the development of secure sys-
tems in the software engineering research community. Re-
cently, much attention has been focused on the modelling
and analysis of security properties for systems at the soft-
ware architecture design level. The potential benefits of
this architecture level work are substantial: security flaws
can be detected and removed earlier in the software de-
velopment life-cycle. This reduces development time, re-
duces development cost, and improves the quality of the
resulting system.
As a result of this attention, a wide variety of approaches
have been proposed in the literature. At this point, a sur-
vey for researchers involved in the problem of systemat-
ically modelling and analyzing software architecture de-
sign that have security properties would be of value to
the community. This paper presents such a survey; it
includes a discussion of semi-formal, formal, integrated
semi-formal and formal, and aspect-oriented approaches.
Comparison criteria are defined including: the kinds of
notations used to model the security properties (e.g., Petri
nets, temporal logic, etc.), whether the approach supports
the manual or automated analysis of security properties,
the specific security property modelled (e.g., authenti-
cation, role-based access control, etc.), and the kind of
example system that has been used to illustrate the ap-
proach (information, distributed, etc.).

Keywords: Aspect-oriented, formal methods, security,
software architecture, unified modelling language

1 Introduction

Systematical engineering security into software applica-
tions is an important and difficult problem [1, 11, 27] The
importance of the problem can be seen from the number of
security incidents reported to the Computer Emergency

Readiness Team Coordination Center (CERT/CC) and
their associated costs.The CERT/CC data from 2003 re-
ports 137,529 incidents; the cost of electronic crimes is
reported at 666 million dollars [7]. Most of these inci-
dents, which can involve from one to thousands of sites,
result from software vulnerabilities. The CERT/CC data
indicate the number of these incidents continues to rise.
The difficulty of the problem stems from its breadth, as
it covers many areas such as authentication, auditing, au-
thorization, confidentiality, integrity, and non-repudiation
(security standard ISO 7498-2) [20], where authentica-
tion verifies the claimed identity of a user or provider,
auditing ensures that user activity is properly recorded
and reviewed, authorization moderates information use
and provision, confidentiality means information is pro-
vided only for proper use as appropriate to the sensitivity
of the information, integrity makes certain that informa-
tion is used in ways that allow only necessary changes,
and non-repudiation ensures the identity of a user is ir-
refutably verified and recorded as protection against their
later denying participation. Each of these can be fur-
ther categorized. For example, authentication may in-
clude peer entity authentication and data origin authen-
tication; confidentiality may include connection confiden-
tiality, connectionless confidentiality, selective field con-
fidentiality, and traffic flow confidentiality, etc., as pre-
sented in Figure 1.

Security needs to be considered during each phase
of the software development life-cycle, including require-
ments specification and analysis, architecture design, de-
tailed design, implementation, testing, and deployment.
The software architecture of a system is the structure
of the system which comprises software elements, these
elements’ externally visible properties, where externally
visible properties refer to their provided services, per-
formance characteristics, fault handling, shared resource
usage, and so on, and the relationships among those el-
ements [2]. Software architecture focuses on designing

International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 188

Non-repudiation
Authentication
 Confidentiality
Authorization
 Integrity

Data Origin

Authentication

Peer Entity

Authentication

Traffic Flow

Confidentiality

Connection

Confidentiality

Selective Field

Confidentiality

Connectionless

Confidentiality

Non-repudiation

at Receipt

Non-repudiation

at Origin

Connectionless

Selective Field

Connection with

Recovery

Connection

Selective Field

Connection

without Recovery

Role Based

Access

Control

Security

Auditing

Log for

Audit

......

......

......

......

......

Mandatory

Access

Control

Figure 1: Elements of security

and specifying the overall system’s gross organization and
global control structure; protocols for communication,
synchronization, and data access; assignment of function-
ality to design elements; physical distribution; composi-
tion of design elements; scaling and performance; and se-
lection among design alternatives etc.

As the first design phase, it is widely recognized that
decisions made at the architecture design stage have a
strong impact on the quality of the final product [28].
Hence, to provide a positive impact, architecture designs,
which reflect architectural decisions, should be analyzed
so that design flaws can be detected and removed. Discov-
ering and fixing defects at the architecture design stage
is more cost- and time-effective compared to performing
such work after the system is implemented, as fixing de-
fects at the implementation stage would necessarily cause
the revision and reconstruction of numerous design, im-
plementation, and testing artifacts. Therefore, the ar-
chitectural design and analysis of security properties is
a very important step in the software development life-
cycle. The architectural design of security properties en-
ables the realization of a system’s security non-functional
requirements; the analysis of security properties provides
architects with objective results to evaluate design alter-
natives.

Recently,numerous approaches have been proposed to
support the modelling and analysis of security properties
in software architecture designs. Given the diversity of the
approaches, a survey paper is needed for researchers who
are investigating the systematic design and analysis of se-
curity properties. Here, we present such a survey in which
the approaches are classified into four broad categories:
semi-formal (i.e., mainly using semi-formal methods in
the approach), formal (i.e., mainly using formal methods

in the approach), integrated semi-formal and formal (i.e.,
using a combination of semi-formal and formal methods),
and aspect-oriented (i.e., security non-functional proper-
ties are modelled as aspects) approaches. The remain-
der of the paper is organized using these four categories.
Section 2 presents a survey of semi-formal approaches,
Section 3 presents formal approaches, Section 4 presents
integrated semi-formal and formal approaches, and Sec-
tion 5 presents aspect-oriented approaches. A discussion
of the survey is in Section 6; conclusions are presented in
Section 7.

2 Semi-formal Security Modelling
and Analysis Approaches

Unified Modelling Language(UML)[26], a well-known no-
tation, is a language for specifying, visualizing, construct-
ing, and documenting designs of software systems. UML
provides graphical notations to express the design of soft-
ware systems with semi-formal syntax and semantics,
and an associated language, the Object Constraint Lan-
guage(OCL), for expressing logic constraints. UML con-
tains two basic diagram types: structure diagrams and
behavior diagrams. Structure diagrams depict the static
structure of the elements in the system, including class,
composite structure, component, deployment, object, and
package diagrams. Behavior diagrams depict the dynamic
behavior of the elements in the system, including ac-
tivity, statechart, use case, communication, interaction
overview, sequence, and timing diagrams. UML seman-
tics are defined using a meta-model that is described in a
semi-formal manner using three views: the abstract syn-
tax, well-formedness rules, and modelling element seman-

International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 189

tics. The abstract syntax is provided as a model described
in a subset of UML, consisting of a UML class diagram
and a supporting natural language description. The well-
formedness rules are provided using the OCL and natural
language (i.e., English). The UML meta-model is defined
as one of the layers of a four-layer meta-modelling ar-
chitecture, which includes meta-metamodel, meta-model,
model, and user objects. This section presents several ap-
proaches, which use UML to model and analyze security
non-functional properties.

2.1 MAC-UML Framework

The MAC-UML Framework [12] addresses the issue of in-
corporating Mandatory Access Control (MAC) into UML
design artifacts, including use case, class, and sequence
diagrams. The approach focuses on providing support for
the definition of clearances and classifications for relevant
UML elements.

In the approach, the concept of security assurance rules
for a UML design is proposed. The basis of such security
assurance rules is that UML use case diagrams, class dia-
grams, and sequence diagrams are abstracted into a set of
UML elements. For example, there is a UML use case set
UC = {uc1, uc2 . . .}, UML actor set AC = {ac1, ac2 . . .},
UML class set C = {c1, c2 . . .}, and UML method set
M = {m1, m2 . . .}. Each UML element is assigned a
clearance (CLR) or classification (CLS) from the par-
tially ordered set

∑
= {⊥ = σ1, σ2 . . . , σs} where the

order relation σi < σj(i < j) means the security level
σj has a higher security concern than that of σi. Nota-
tions ac.CLR, uc.CLS, c.CLSmin, c.CLSmax and m.CLS

represent the CLR of actor ac, the CLS of use case uc,
the min and max CLS of class c, and the CLS of method
m, respectively. Then, three tiers of MAC security as-
surance rules are defined to assess the question of how
to attain security in a design. Tier 1 security assurance
rules represent the creation of use case diagrams with ac-
tors, use cases, actor-use case associations, actor and use
case inheritance, and use case inclusion and extension re-
lationships. For example, one of these security assurance
rules can be interpreted as: For every actor acm that is
associated with the use case uci (as a behavior of the ap-
plication), the CLR of the actor acm must dominate the
CLS of the use case uci. Formally, it can be represented
as: ∀ actor acm and use case uci, acm is securely (MAC)
associated with uci ↔ acmCLR ≥ uci.CLS.

Correspondingly, security assurance rules for actor in-
heritance, use case inheritance, use case inclusion, and
use case extension have also been defined. Tier 2 security
assurance rules emphasis on defining the classes that are
utilized by each use case: for a class c (intended) to be
used in a sequence diagram to serve the goal (i.e., real-
ize the functionality) of use case uc, the CLS of the uc

must dominate the minimum CLS of c. Tier 3 security
assurance rules are a refinement of Tier 2 security assur-
ance rules to support method calls between the different
entities (use case and objects) in a sequence diagram. Fi-

nally, algorithms are defined for assessing whether a UML
design as a whole satisfies the security assurance rules by
conducting a comprehensive analysis of the entire design.

The security problem addressed in the approach is
mandatory access control (refer to Figure 1). The exam-
ple system used is a Survey Institution which performs
and manages public surveys. In the system, after the raw
data of the survey is collected, staff with different priv-
ileges will manipulate the database, where senior person
can add a survey header into the database, and another
staff person (senior or junior staff) will add questions into
that survey, and also have the ability to categorize ques-
tions and add a new question category if needed. How-
ever, there are some special questions that have more sen-
sitive content, which only senior staff are allowed to per-
form data entry. The strength of the approach is that
it bridges the gap between software engineering and an
organization’s security personnel. With the enforcement
and assessment of three tiers of security assurance rules,
the MAC capability can be incorporated into a UML de-
sign, where access violations through inheritance, inclu-
sion, and extension can be detected. The approach can
be applied to systems where MAC is one of the priority
concerns. Such systems can be a distributed system, or
an information system. The limitation of the approach is:
since security assurance rules in the approach are only ex-
plored on a subset of UML diagrams (i.e., use case, class,
and sequence diagram), the approach is only applicable to
a system design that uses these three kinds of diagrams.
In addition, security analysis of the approach is based on
the semi-formal UML, where the relationship inheritance,
inclusion, and extension are not formally defined. To ob-
tain more rigorous analysis results, a formal specification
of the system design is desired.

2.2 SecureUML

SecureUML [23] is a modelling language that defines a
vocabulary for annotating UML based models with infor-
mation relevant to access control. It is based on the role-
based access control model (RBAC), with additional sup-
port for specifying authorization constraints. SecureUML
defines a vocabulary for expressing different aspects of ac-
cess control, like roles, role permissions, and user-role as-
signments. Due to its general access-control model and
extensibility, SecureUML is well suited for business anal-
ysis as well as design models for different technologies.
The structure of the modelling language conforms to the
reference model for model driven systems. Model-driven
software development is an approach where software sys-
tems are defined using models and constructed, at least
in part, automatically from these models. A system can
be modelled at different levels of abstraction or from dif-
ferent perspectives. The syntax of every model is defined
by a meta-model.

The SecureUML meta-model is defined as an exten-
sion of the UML meta-model. The concepts of RBAC
are represented directly as meta-model types, including

International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 190

User, Role and Permission as well as relations between
these types. Instead of defining a dedicated meta-model
type to represent protected sources, every UML model el-
ement is allowed to take the role of a protected resource.
Additionally, the type ResourceSet is introduced, which
represents a user defined set of model elements. A Permis-
sion is a relation object connecting a role to a ModelEle-
ment or a ResourceSet. The semantics of a Permission are
defined by the ActionType elements used to classify the
Permission. Every ActionType represents a class of secu-
rity relevant operations on a particular type of protected
resource, for example, a method with the security relevant
action executes, or an attribute with the action changes.
ActionTypes give the developer a vocabulary to express
permissions at a level close to the domain vocabulary. The
set of ActionTypes available in the language can be freely
defined using ResourceType elements. A ResourceType
defines all action types available for a particular meta-
model type. The connection to the meta-model type is
represented by the attribute BaseClass, which holds the
name of a type or a stereotype. The set of resource types
and their action types, and the definition of their seman-
tics on a particular platform, define the resource type
model for the platform. An AuthorizationConstraint is
a part of the access control policy of an application. It
expresses a precondition imposed on every call to an op-
eration of a particular resource, which usually depends
on the dynamic state of the resource, the current call,
or the environment. AuthorizationConstraint is derived
from the UML core type Constraint. Such a constraint
is attached either directly or indirectly, via a Permission,
to a particular model element representing a protected
resource.

The security problem addressed in the approach is role-
based access control (refer to Figure 1). Enterprise Jav-
aBeans (EJB) has been used in the approach. EJB is used
in the industry for developing distributed systems. It is
an industry standard with strong security support, which
is implemented by a large number of application servers.
The access control model of EJB is RBAC, where the
protected resources are the methods accessible by the in-
terfaces of an EJB. An access control policy is mainly real-
ized by using declarative access control. This means that
the access control policy is configured in the deployment
descriptors of an EJB component. The security subsys-
tem of the EJB environment is responsible for enforcing
this policy on behalf of the components. The strength of
the approach is that it developed a modelling language
to build on the access control model of RBAC, with ad-
ditional support for specifying authorization constraints
in the context of a model-driven software development
process to generate access control infrastructures. The
approach helps to realize the RBAC capabilities in UML.
The approach is suitable for distributed systems that in-
corporate RBAC model, such as an online banking sys-
tem. However, the limitation of the approach is: cur-
rently, the approach only focuses on UML static design
models, which are relatively close to the implementation.

It is worth considering whether the efficiency of the de-
velopment process of secure applications can be improved
by annotating models at a higher level of abstraction (e.g.
analysis) or by annotating dynamic models, e.g. UML
state machines.

2.3 Separating Modelling of Application
and Security Concerns

Separating Modelling of Application and Security Con-
cerns (SMASC) is an approach proposed to model sys-
tem’s functional requirements separately from security re-
quirements using UML use case, class, and object collab-
oration diagrams [15]. The motivation of the approach
is to make a secure application system more maintain-
able with minimal impact on application concerns from
changes to security concerns or vice versa. In the ap-
proach, the system is viewed through multiple views: a
functional requirement view in UML use case diagram; a
static view in UML class, and a dynamic view in UML
object collaboration modelling. The system’s functional
requirements are modelled in “non-secure” business use
cases. Security concerns are captured in security use cases
and security objects, where security use cases are realized
through message communications among security objects.
The security use cases and objects can also be used in dif-
ferent application systems. Similarly, in the static model
of the system, security concerns are separated from busi-
ness concerns by modelling non-secure application classes
separately from security service classes, and in the dy-
namic model, security concerns are separated from busi-
ness concerns by modelling non-secure application objects
separately from security objects. Therefore, the system’s
use cases, classes, and objects are divided into business
layer and security layer. Security requirements are consid-
ered optional features meaning that if the security feature
is required in a given application, then the appropriate se-
curity requirement condition is set to true, otherwise it is
set to false. When the system requires security services,
the security use cases are extended from the non-secure
business use cases at extension points, which is a location
where a use case extends another use case if the specified
condition holds. The security use cases can have parame-
ters, whose values are passed from the business use cases
that they extend. Consequently, security classes and ob-
jects that realize the security feature can be added into
the system’s static and dynamic model.

The security problem addressed in the approach in-
clude integrity and non-repudiation (refer to Figure 1).
The example system is an e-commerce application, where
security concerns are separated from business concerns
by modelling non-secure e-commerce application classes
in the e-commerce business layer and secure classes in se-
curity layer. The strength of the approach is that it pro-
vides a way to capture security requirements in security
use cases and encapsulate such requirements in security
objects separately from the application requirements and
objects. The approach reduces system complexity caused

International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 191

by mixing security requirements with business application
requirements, thus to increase the system’s maintainabil-
ity and components’ reusability. However, one issue of the
approach is that usually, security property is a pervasive
property for a system which may crosscut many design
model elements; therefore, clear separation of business
and security model elements would not be a trivial task
in this object-oriented approach.

3 Formal Security Modelling and

Analysis Approaches

Formal methods [4] are referred to the variety of mathe-
matical modelling techniques that are applicable to spec-
ify, develop, and verify computer system (software and
hardware) design. A system’s formal specification is the
use of notations derived from formal logic to describe as-
sumptions about the world in which a system operates,
requirements that the system is to achieve, and a design
to meet those requirements. Formal methods provide a
way that a system can be formally specified whereby its
desired properties can be reasoned about rigorously. For-
mal methods have been used to represent software archi-
tectures, where they provide a formal, abstract model for
systems; thus, a means of describing and analyzing soft-
ware architectures and architectural styles is available.
This section presents several approaches that use formal
methods to model and analyze security properties.

3.1 Software Architecture Model

Software Architecture Model (SAM) [17] is a general for-
mal framework for visualizing, specifying, and analyzing
software architectures. In SAM, a software architecture
is visualized by a hierarchical set of boxes with ports con-
nected by directed arcs. These boxes are called compo-
sitions. Each composition may contain other composi-
tions. The bottom-level compositions are either compo-
nents or connectors. Various constraints can be speci-
fied. This hierarchical model supports compositionality
in both software architecture design and analysis, and
thus facilitates scalability. Each component or connec-
tor is defined using Petri net. Thus, the internal logi-
cal structure of a component or connector is also visual-
ized through the Petri net structure. Textually, a SAM
software architecture is defined by a set of compositions
C = C1, C2, . . . , Ck (each composition corresponds to a
design level or the concept of sub-architecture). Each
composition Ci = {Cmi, Cni, Csi} consists of a set Cmi of
components, a set Cni of connectors, and a set Csi of com-
position constraints. An element Cij = (Sij , Bij), (either
a component or a connector) in a composition Ci has a
property specification Sij (a temporal logic formula) and
a behavior model Bij (Petri net). Each composition con-
straint in Csi is also defined by a temporal logic formula.
The interface of a behavior model Bij consists of a set of
places (called ports) that is the intersection among rel-

evant components and connectors. Each property spec-
ification Sij only uses the ports as its atomic proposi-
tions/predicates that are true in a given marking if they
contain appropriate tokens. A composition constraint is
defined as a property specification, however it often con-
tains ports belonging to multiple components and/or con-
nectors. A component Cij can be refined into a lower-level
composition Cl, which is defined by h(Cij) = Cl(h is a hi-
erarchical mapping relating compositions). The behavior
of an overall software architecture is derived by compos-
ing the bottom-level behavior models of components and
connectors. SAM provides both the modelling power and
flexibility through the choice of different Petri net models.
In SAM, software architecture properties are specified us-
ing a temporal logic. Depending on the given Petri net
models, different temporal logics are used.

In [31], SAM is applied to support the formal design of
software architecture for secure distributed systems. The
security problem addressed is general information confi-
dentiality (refer to Figure 1). The Petri net model used is
the Predicate Transition Nets. The linear-time temporal
logic is selected to formally specify security policies, the
Chinese Wall policy, where Basic objects are individual
items of information (e.g. files), each concerning a single
corporation; Company datasets define groups of objects
that refer to the same corporation; Conflict of interest
classes (COI) define company datasets that refer to com-
peting corporations. Subsequently, the definition of the
sensitive dataset and secure distributed control architec-
ture are provided. Finally, a new concept called the de-
pendence relation for the Petri net model is defined, which
gives source and sink of every work flow in the model and
the dominating elements. Given an architecture model
of a distributed system, a set of rules have been given to
reconstruct the software architecture and enforce the se-
curity policy in the workflow level for a software architec-
ture by examining the flow of sensitive datasets between
tasks.

The strength of the approach is that it integrates two
formalisms, Petri nets and temporal logic, to specify soft-
ware architectures. The properties of the software archi-
tecture (e.g., information flow, deadlock, etc.) specified
in Petri nets can be proved using temporal logic. Con-
sequently, model checking techniques can be employed to
realize the automated verification of software architecture
properties. In addition, the approach provides a hierar-
chical architecture specification model, which enables it-
erative model checking in a bottom-up fashion. However,
one issue of the approach is because of the limitation of
model checking, the approach is generally not applicable
to infinite state systems.

3.2 Multi Security Level Architecture

A modelling method for the Multilevel Security (MLS)
architecture of the Defense Advanced Research Projects
Agency’s (DARPA’s) Polymorphous Computing Archi-
tecture (PCA) program is proposed in [16]. PCA is a

International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 192

multi-processor architecture that allows a processor to
morph during operations to provide the best type of pro-
cessor for the job at hand. The goal of MLS-PCA is to
create a high assurance security infrastructure for multi-
processor distributed applications, which means that the
trusted aspects of the system needs to be verified, at
a high level, under a certification program, such as the
DoD’s Trusted Computer Security Evaluation Criteria or
its replacement, the Common Criteria (CC). In the pro-
posed architecture, each single level Avionics Application
Process (AAP) is front-ended by an Encryption Process-
ing Element (EPE). All communication by an AAP must
go through an EPE. All communication between EPEs
is encrypted and authenticated. Keys are distributed to
the EPEs by the Network Security Element (NSE) based
on a security policy set up by mission control. The NSE
enforces both Mandatory Access Control (MAC) and Dis-
cretionary Access Control (DAC). There is a unique key
for each element of the security policy. For example, there
is a key for each security level and compartment in the
MAC security lattice, as well as for each pair in the DAC
matrix. The NSE generates a session key between two
AAPs by XORing the relevant policy keys with a one-
time random key. The session key is then distributed
to each of the AAP’s EPE, where this session key must
be distributed encrypted. All connections between two
AAPs are simple. This allows a low level process to send
information up to a high level process, but not vice versa.
Another type of connection, called a coalition, that con-
sists of AAPs at a common security level and using a
common key is also allowed. In addition, the EPEs are
also transparent to the AAPs, preventing the EPEs them-
selves from being used as a covert channel. High levels of
evaluation require formal models and analysis. The se-
lected formal method is Alloy [29]. The language is based
on set theory and the first-order logic, similar to Z, with
the standard set operators and quantifiers. A state is
defined by sets and relationships among them. An opera-
tion will transform a state to a new state, i.e., the sets are
modified. Alloy also allows the specification of invariants.

The security problem addressed in the approach is au-
thentication (refer to Figure 1). With the use of formal
method Alloy and its analysis tool in the approach, one
can check the correctness of software architecture spec-
ification, using an inductive argument to claim that if
an initial state is legal and all operations produce legal
states, the system cannot be in an illegal state and the
specification is correct. The approach also can be used to
determine if a software architecture specification is over-
constrained or under-constrained. The approach forces
designers to look at the details of the architecture at an
early stage of development, thus problems are detected
and verification provides evidence that the requirements
are maintained. One issue of the approach is: as in the
analysis of an Alloy specification, a solution is obtained
in a specific scope, therefore, the analysis of the approach
is correct, but not complete.

3.3 Security Check

Security check is a technique proposed in [25] to entail
taking small units of a system, putting them in a “se-
curity harness” that exercises relevant executions appro-
priately within the unit, and then model checking these
tractable units. The technique is inspired by unit verifica-
tion. The basic semantic framework used in the modelling
is discrete time labeled transition systems. A discrete-time
transition labeled transition system (DTLTS) is a tuple
< S, A →, sI > where: S is a set of states; A is a visible
action set; → is the transition relation; and sI is the start
state. The distinguished elements τ and ι correspond to
the internal action and clock-tick (or idling) action. A
DTLTS encodes the operational behavior of a real time
system. States may be seen as “configurations” the sys-
tem may enter, while actions represent interactions with
the system’s environment that can cause state changes.
The transition relation records which state changes may
occur: if < s, a, s′ > is a transition relation, then the
transition from state s to s′ may take place whenever ac-
tion a is enabled. τ is always enabled; other actions may
require “permission” from the environment in order to be
enabled. Also, transitions except those labeled by ι are as-
sumed to be instantaneous. While unrealistic at a certain
level, this assumption is mathematically convenient, and
realistic systems, in which all transitions “take time”, can
be easily modelled. If a DTLTS satisfying the maximal
progress property is in a state in which internal compu-
tation is possible, then no idling (clock ticks) can occur.
DTLTSs model the passage of time and interactions with
a system’s environment. Finally, DTLTSs may be min-
imized by merging semantically equivalent but distinct
states. The properties prove in security check are safety
properties, including quasiliveness or bounded response
which is a reasonable weakening of classical liveness. Both
these classes of properties are inherent in any security
property specification. While safety deals with properties
of the form “nothing bad will happen” (i.e., the private
key can never be revealed), liveness deals with assured-
response or in a temporal setting bounded-response (i.e.,
the system will always respond in “t” time units even
when under a DOS attack). Security check works by tak-
ing the property to be proved on the system and suitably
crafting a “test process” based on that property (safety
or liveness). The “unit”, or modules inside the system
to which the property is applicable, is isolated, all the
behavior of the process not relevant to the property in
question is “sealed” off and this transformed “unit” is
first minimized and then run in parallel with the test pro-
cess. Then it is checked if the test process terminates by
emitting a pre-designated “good” or a “bad” transition.
Depending on the transition the test process emitted it
can be decided if a property is satisfied by the system or
not.

The security problem addressed in the approach is
to improve the intrusion detection capabilities for dis-
tributed system. The security check approach offers a

International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 193

means of coping with state explosion of a system. The ap-
proach also enables to detect system vulnerabilities even
when the attack behavior is not known. And for known
attack patterns the approach can provide models of sus-
picious behavior which can then be used for intrusion de-
tection at a later stage. One issue of the approach is
since modelling checking techniques have been used; the
approach is more suitable to finite state systems.

3.4 CVS-Server Security Architecture

An outline of a formal security analysis of a CVS-Server
architecture is presented in [5]. The analysis is based
on an abstract architecture (enforcing a role-based access
control on the repository), which is refined to an imple-
mentation architecture based on the usual discretionary
access control provided by the POSIX environment). The
Concurrent Versions System (CVS) is a widely used tool
for version management in many industrial software de-
velopment projects, and plays a key role in open source
projects usually performed by highly distributed teams.
CVS provides a central database (the repository) and
means to synchronize local modifications of partial copies
(the working copies) with the global repository. CVS can
be accessed via a network; this requires a security ar-
chitecture establishing authentication, access control and
non-repudiation. The proposed architecture aims to pro-
vide an improved CVS server, which overcomes the short-
comings of the default CVS server. The first aim of the
work is to provide a particular configuration of a CVS
server that enforces a role-based access control security
policy. The second aim is to develop an “open CVS-Server
architecture”, where the repository is part of the usual
shared file system of a local network and the server is a
regular process on a machine in this network. While such
an architecture has a number of advantages, the correct-
ness and trustworthiness of the security mechanisms be-
come a major concern, which leads to use formal methods
to analyzing the access control problem of complex system
technology and its configuration. The formal method Z
has been chosen as the specification formalism. The mod-
elling and theorem proving environment Isabelle/HOL-Z
2.0 is used, which is an integrated documentation, type-
checking, and theorem proving environment for Z specifi-
cations.

The security problem addressed in the approach is role-
based access control (refer to Figure 1), which is modelled
and analyzed in the context of a CVS system. Therefore,
the RBAC addressed in the approach is not generic to
other applications.

4 Integrated Semi-formal and

Formal Modelling and Analysis
Approaches

This section presents the approaches that use a combi-
nation of semi-formal and formal methods to model and
analyze security non-functional properties.

4.1 UML/Theorem Prover Approach

An extensible verification framework for verifying UML
models for security requirements is presented in [21]. In
particular, it includes various plug-ins performing differ-
ent security analysis on models of the security extension
UMLsec. Then an automated theorem prover binding
is used to verify security properties of UMLsec models
that make use of cryptography (such as cryptographic
protocols). The UMLsec is an extension to UML that al-
lows the expression of security relevant information within
the diagrams in a system specification. UMLsec is de-
fined in the form of a UML profile using the standard
UML extension mechanism. The analysis routine in the
verification framework supports the construction of au-
tomated requirements analysis tools for UML diagrams.
The framework is connected to industrial CASE tools us-
ing data integration with XMI and allows convenient ac-
cess to this data and to the human user. Advanced users
of the UMLsec approach should be able to use this frame-
work to implement verification routines for the constraints
of self-defined stereotypes, in a way that allows them to
concentrate on the verification logic (rather than on user
interface issues). The usage of the framework proceeds
as follows: the developer creates a model and stores it in
the UML 1.4/XMI 1.2 file format; the file is imported by
the UML verification framework into the internal Meta-
data Repository (MDR). MDR is an XMI-specific data-
binding library that directly provides a representation of
an XMI file on the abstraction level of a UML model
through Java interfaces (JMI). This allows the developer
to operate directly with UML concepts, such as classes,
statecharts, and stereotypes. Each plug-in accesses the
model through the JMI interfaces generated by the MDR
library. The plug-ins may receive additional textual in-
put and they may return both a UML model and textual
output. The plug-ins include static and dynamic check-
ers. The static checker parses the model, verifies its static
features, and delivers the results to the error analyzer.
The dynamic checker translates the relevant fragments of
the UML model into the automated theorem prover in-
put language. The automated theorem prover is spawned
by the UML framework as an external process; its re-
sults are delivered back to the error analyzer. The er-
ror analyzer uses the information received from the static
checker and dynamic checker to produce a text report for
the developer describing the problems found, and a mod-
ified UML model, where the errors found are visualized.
Besides the automated theorem prover binding presented

International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 194

in this paper there are other analysis plug-ins including
a model-checker binding and plug-ins for simulation and
test-sequence generation.

The security problem addressed in the approach is au-
thentication (refer to Figure 1). The approach has been
applied to a security-critical biometric system, where the
control access to protected resources, such as a user’s bio-
metric reference data, needs to be ensured. Therefore, a
cryptographic protocol is needed to protect the commu-
nication between the user biometric data reader and the
host system. The protocol uses message counter in the
transmission messages, thus to detect attacks. With the
application of the approach, a flaw in the protocol, which
allows attackers to misuse those message counters, has
been detected. However, security properties that can be
analyzed in the approach are limited to those which can
be represented in first-order logic.

4.2 UML/Promela Approach

The UML/Promela approach [6] is proposed to investigate
an appropriate template for security patterns that is tai-
lored to meet the needs of secure systems development.
In order to maximize comprehensibility, the well-known
notation UML is used to represent structural and behav-
ioral information. Furthermore, the verification of secu-
rity properties is enabled by adding formal constraints
to the patterns. The enhanced security pattern template
presented herein contains additional information, includ-
ing behavior, constraints, and related security principles,
that addresses difficulties inherent to the development of
security-critical systems. The security needs of a system
depend highly on the environment in which the system
is deployed. By introducing and connecting general se-
curity properties with a pattern’s substance, the devel-
oper can gain security insight by reading and applying
the pattern. Furthermore, behavioral information and
security-related constraints are included in the security
pattern template. The developer can use this informa-
tion to check if a specific design and implementation of
the pattern is consistent with the essential security prop-
erties. The augmented security pattern template includes
fields’ applicability, behavior, constraints, consequences,
related security pattern, supported principles, and thus
enhances the communication of security-specific knowl-
edge that is related to a concrete application. Finally, a
UML formalization framework that is developed to sup-
port the generation of formally specified models defined
in terms of Promela [19], the language for the Spin model
checker, thus to analyze the security pattern related re-
quirements.

The security problem addressed in the approach is au-
thorization (refer to Figure 1). The approach has been
applied to an example system, where security properties,
such as access violations from external requests to the sys-
tem’s internal entities, can be verified. These properties
are instantiated in terms of linear time temporal logic to
enable the analysis with Spin model checker. However,

the approach currently focuses on the security property
analysis against requirements. It needs to be extended in
order to support the architecture level design and analysis
of security properties.

5 Aspect-Oriented Security Mod-
elling and Analysis Approaches

The principle of separation of concerns has long been a
core principle in software engineering. It helps software
engineers with managing the complexity of software sys-
tem development. This principle refers to the ability to
identify, encapsulate, and manipulate those parts of soft-
ware that are relevant to a particular concern (concept,
goal, purpose, non-functional properties, etc.). However,
many concerns of a system tend to crosscut many de-
sign elements at the design level; their implementation
tends to crosscut many code units. Aspect-Oriented Soft-
ware Development (AOSD) [13] technologies have been
proposed to enable the modularization of such crosscut-
ting concerns. In AOSD, a system’s tangling concerns or
pervasive properties are encapsulated in model element
called an aspect. Subsequently, a weaving process is em-
ployed to compose core functionality model elements with
these aspects, thereby generating an architecture design.
This section presents aspect-oriented approaches which
have been proposed to model and analyze security non-
functional properties.

5.1 Aspect-Oriented Secure Application

An experience report based on developing security solu-
tions for application software is presented in [30]. The
programming language AspectJ [22] is used for this pur-
pose. The engineering of application level security re-
quirements are considered in this report, where the se-
curity concern covers many aspects, including authenti-
cation, auditing, authorization, confidentiality, integrity
and non-repudiation. Security is a pervasive requirement
for an application. Modularizing security concerns is a
difficult task, and where and when to call a given security
mechanism in an application has not been addressed ad-
equately either. Furthermore, the crosscutting nature of
security not only relates to the diversity of specific places
where security mechanisms are to be called: some security
mechanisms also require information that is not localized
in the application. An example used in the report de-
scribes a Personal Information Management (PIM) sys-
tem. A PIM system supports the human memory by
keeping track of personal information, including a per-
son’s agenda, contact information of friends and business
contacts, the tasks he has to fulfill, etc. A palm pilot is
a typical example of a PIM system. In this system, the
security requirement is the enforcement of access control.
The design of this application is captured in a UML class
diagram, where a class called PIMSystem is the center of
the model. Through this class, the system can represent

International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 195

and manage three different types of information: appoint-
ments, contacts and tasks. Two security access rules are:
for appointments and tasks, the owner can invoke all their
operations; other persons are only allowed to view them;
for contacts, only owners can perform their operations.
Finally, the report focuses on implementing these rules as
aspects in AspectJ.

The security problem addressed in the approach is au-
thorization (refer to Figure 1). The approach provides a
way to implement authorization properties as crosscut-
ting concerns in the aspect-oriented programming lan-
guage AspectJ. However, it did not address the problem
of aspect-oriented design of security properties.

5.2 Formal Design Analysis Framework

Formal Design Analysis Framework (FDAF) [8, 9, 10], is
an aspect-oriented approach proposed to support the de-
sign and automated analysis of non-functional properties
for software architectures. In the FDAF, non-functional
properties are represented as aspects. At the architecture
design level, aspect represents either a property that per-
meates all or part of a system, or a desired functionality
that may affect the behavior of more than one architec-
ture design elements, such as security aspects. Security
aspects, including data origin authentication, role-based
access control, and log for audit, have been defined in
the FDAF. The definition of these security aspects uses
UML diagrams. The definition for a security aspect in-
cludes its static view and dynamic view. The static view
of a security aspect is defined using UML class diagram,
presenting the attributes and operations need to be used
in order to include the desired functionality in a system.
It may also include OCL invariants, pre-conditions, and
post-conditions regarding the weaving constraints of the
security aspect. The dynamic view of a security aspect
is defined in UML sequence diagram, describing the dy-
namic behavior of the security aspect, including the in-
formation about when and where to use the operations
defined in the security aspect’s static view. The FDAF
proposes a UML extension to support the modelling of se-
curity aspects in UML. This extension assists architects
in weaving an aspect into a design and updating an as-
pect in a design. The syntax and semantics for this UML
extension have been defined. The FDAF uses a set of
existing formal analysis tools to automatically analyze a
UML architecture design that has been extended with se-
curity aspects. Architecture designs are documented us-
ing extended UML class diagram and swim lane activity
diagram in the FDAF. The automated analysis of an ex-
tended UML architecture design in existing formal analy-
sis tools is achieved by formalizing part of UML into a set
of formal languages that have tool support. The trans-
lation into a formal language with existing tool support
leverages a large body of work in the research community.
The formalization approach used is the translational se-
mantic approach [18]. In translational semantics, models
specified in one language are given semantics by defining

a mapping to a simpler language, or a language, which
is better understood. Algorithms for mapping UML class
and swim lane activity diagrams to a set of formal lan-
guages have been defined, verified with proofs, and im-
plemented in the FDAF tool support, thus automated
translation from UML to this set of formal languages are
realized. Formal languages that UML can be formalized
in the FDAF for the analysis of security properties include
Promela [19] and Alloy [29], where Promela’s analysis tool
is used to analyze data origin authentication and log for
audit security aspect design and Alloy’s analysis tool is
used to analyze role-based access control security aspect
UML design.

The example system selected in the FDAF is the Do-
main Name System (DNS) [24], which is a real-time, dis-
tributed system. The security problem addressed includes
data origin authentication, role-based access control, and
log for audit (refer to Figure 1). There three security
aspects have been modelled in the DNS, where data ori-
gin authentication is used to ensure the source of data,
role-based access control is used to ensure the access con-
trol of the DNS database, and log for audit is used to log
DNS messages. The strength of the approach is it inte-
grates the well-known semi-formal notation UML and a
set of existing formal notations into an aspect-oriented ar-
chitectural framework to support the design and analysis
of non-functional properties, such as security and perfor-
mance. A limitation of the approach is that the analysis
of a UML based architecture design uses existing formal
tools, the limitations of these tools affect the analysis re-
sults provided in terms of accuracy, useful analysis data
extraction, and interpretation of the results.

6 Discussion

A summary of the approaches in the survey is presented in
Table 1. The approaches in this survey support modelling
of one or more security properties at the architecture de-
sign level; many also support their automated analysis.
The comparison criteria defined for this survey are: iden-
tifying the specific security property addressed (e.g., role-
based access control, authentication, etc.), modelling no-
tation(s) used, whether or not automated security prop-
erty analysis is supported, and the kind of example sys-
tem the approach has been applied to. Each of these
criteria is useful, as the results can be used to guide the
selection of an appropriate approach and identify possi-
ble areas for future research. For example, if one needs to
model (but perhaps not analyze) role-based access con-
trol for a distributed system, then UML can be selected
as the modelling notation. However, if there is a need for
a more rigorous, automated analysis of the security prop-
erty, then a formal method would be more suitable, such
as Z or Alloy. If one needs to model confidentiality for in-
formation system, then Petri nets and temporal logic are
candidate notations, as these have been already been suc-
cessfully used to model this property. This is not to say

International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 196

Table 1: Overview of approaches to design and analyze security properties

Security Modelling Analysis Example
Property Notations System

UML-MAC Mandatory UML Supported Information System
Framework Access Control
SecureUML Role-Based UML Not Distributed System

Access Control supported Using EJB
SMASC Integrity, UML Not E-Commence

Non- supported Application System
Repudiation

Software Confidentiality Petri Nets, Temporal Not Information System
Architecture Logic supported Using Chinese Wall
Model Policy
Multi Level Authentication Alloy Automated Real-Time System:
Security analysis MLS-PCA
Architecture
Security Intrusion Discrete Time Automated Distributed System
Check detection Labeled Transition analysis

System
CVS-Server Role-Based Z Automated Distributed system:
Security Access Control analysis CVS
Architecture
UML/Theorem Authentication UML, Automated Biometric system
Prover First-Order Logic analysis
Approach
UML/Promela Authorization UML, Liner Time Automated Distributed System
Approach Temporal Logic analysis
Aspect Authorization UML Not Information System:
Oriented supported Personal Information
Secure Management System
Application

Data Origin UML, Formal Automated Real-Time,
Authentication, languages (Promela, analysis Distributed System:

FDAF Role-Based Alloy) Domain Name
Access Control, System
Audit

International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 197

that other notations could not be used to model confiden-
tiality. Actually, it opens a wide variety of possible future
research topics that investigate the use of different nota-
tions, tailored notations, and perhaps identifying a set of
notations that are suitable for modelling a comprehensive
collection of security properties. It is also important to
note that the validation of the approaches presented in
the literature has typically been made using one example
system. Additional validation of the approaches used to
model and analyze security properties for the architecture
design is necessary.

7 Conclusions

This paper presents a survey of current approaches in
the literature that have been proposed to address the
problem of modelling and analyzing security properties
in architecture designs. These approaches are classi-
fied as semi-formal approaches, formal approaches, inte-
grated semi-formal and formal approaches, and aspect-
oriented approaches. The study showed that the well-
known and easy-to-understand modelling language UML
has been used in a variety approaches to model security
non-functional properties. Furthermore, the automated
analysis of non-functional properties needs formal meth-
ods, such as Architecture Description Languages, Petri
nets, temporal logic, etc. Several proposed approaches
have used a combination of semi-formal UML and for-
mal methods in their work, thus to achieve the modelling
efficiency provided by UML and the rigorous analysis pro-
vided by formal methods. Model checking and theorem
prover based approaches have been also used as tools in
the analysis.

Although a survey such as this is not exhaustive, we
believe it will be useful to the research community in-
volved in the architectural design and analysis of secure
systems by providing a snap-shot of the current state-
of-the-art. The wide variety of notations used indicates
research is needed to investigate the use of different no-
tations, tailored notations, and perhaps identifying a set
of notations that are suitable for modelling and analyz-
ing a comprehensive collection of security properties in
software architectures.

References

[1] B. Arbaugh, “Security: Technical, social, and legal
challenges,” Computer, vol. 35, issue 2, pp. 109-111,
Feb. 2002.

[2] S. Balsamo, M. Marzolla, and A. D. Marco, “Ex-
perimenting different software architectures perfor-
mance techniques: A case study,” in Proceedings of
the Fourth International Workshop on Software and
Performance, pp. 115-119, 2004.

[3] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice (2nd Edition), Addison-
Wesley, 2003.

[4] J. P. Bowen, R. W. Butler, D. L. Dill, R. L. Glass, D.
Gries, and A. Hall, “An invitation to formal meth-
ods,” Computer, vol. 29, issue 4, pp. 16-29, 1996.

[5] A. Brucker, and B. Wolff, “A case study of a formal-
ized security architecture,” Electronics Notes in The-
oretical Computer Science, vol. 80, pp. 1-18, 2003.

[6] B. Cheng, S. Honrad, L. Campbell, and R. Wasser-
mann, Using Security Patterns to Model and Analyze
Security Requirements, Technical Report MSU-CSE-
03-18, Department of Computer Science, Michigan
State University, 2003.

[7] Computer Emergency Readiness Team Coordination
Center (CERT/CC) 2004 E-Crime Watch, available
at http://www.cert.org/about/ecrime.html

[8] K. Cooper, L. Dai, and Y. Deng, “Performance
modelling and analysis of software architectures: an
aspect-oriented UML based approach,” Journal of
Science of Computer Programming, System and Soft-
ware Architectures, vol. 57, no. 1, pp. 89-108, July
2005.

[9] L. Dai, Formal Design Analysis Framework: An
Aspect-Oriented Architectural Framework, The Uni-
versity of Texas at Dallas, Ph.D. Dissertation, 2005.

[10] L. Dai, K. Cooper, and E. Wong, “Modelling reusable
security aspects for software architectures: a pat-
tern driven approach,” in Proceedings of the 17th In-
ternational Conference on Software Engineering and
Knowledge Engineering, pp. 163-168, July 2005.

[11] N. Davis, W. Humphrey, S. T. Jr. Redwine, G. Zibul-
ski, and G. McGraw, “Processes for producing secure
software,” IEEE Security & Privacy Magazine, vol.
2, no. 3, pp. 18-25, May-June 2004.

[12] T. Doan, S. Demurjian, T. C. Ting, and A. Ket-
terl, “MAC and UML for secure software design,” in
Proceedings of the 2004 ACM Workshop on Formal
Methods in Security Engineering, pp. 75-85, 2004.

[13] R. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-
Oriented Software Development, Addison Wesley
Professional, 2005.

[14] D. Garlan and M. Shaw, “An introduction to soft-
ware architecture: advances in software engineering
and knowledge engineering,” World Scientific Pub-
lishing, vol. 1, pp 1-40, 1993.

[15] H. Gomaa and M. Eonsuk Shin, “Modelling com-
plex systems by separating application and security
concerns,” in Proceedings of the Ninth IEEE Inter-
national Conference on Engineering Complex Com-
puter Systems, pp. 19-28, 2004.

[16] B. Hashii, “Lessons learned using alloy to formally
specify MLS-PCA trusted security architecture,” in
Proceedings of the 2004 ACM Workshop on Formal
Methods in Security Engineering, pp. 86-95, 2004.

[17] X. He, H. Yu, T. Shi, J. Ding, and Y. Deng, “For-
mally analyzing software architectural specifications
using SAM,” Journal of Systems and Software, vol.
71, no. 1-2, pp. 11-29, 2004.

[18] A. H. M. Hofstede, and H. A. Proper, “How to
formalize It? Formalization principles for informa-
tion system development methods,” Information and

International Journal of Network Security, Vol.5, No.2, PP.187–198, Sept. 2007 198

Software Technology, vol. 40, no. 10, pp. 519-540,
1998.

[19] G. J. Holzmann, The Spin Model Checker: Primer
and Reference Manual, Addison-Wesley, 2003.

[20] ISO 17799 - The Information Security Standard: In-
formation technology, Code of practice for informa-
tion security management, 2000.

[21] J. Jurjens, “Sound methods and effective tools for
model-based security engineering with UML,” in
Proceedings of the 27th International Conference on
Software Engineering, pp. 322-331, 2005.

[22] R. Laddad, AspectJ in Action: Practical Aspect-
Oriented Programming, Manning Publications, 2003.

[23] T. Lodderstedt, D. Basin, and J. Doser, “Se-
cureUML: A UML-based modelling language for
model-driven security,” in Proceedings of the 5th
International Conference on The Unified Modelling
Language, pp. 426-441, 2002.

[24] P. V. Mockapetris, Domain Names - Concepts and
Facilities, IETF STD0013, November, 1987.

[25] A. Ray, “Security check: a formal yet practical
framework for secure software architecture,” in Pro-
ceedings of the 2003 Workshop on New Security
Paradigms, pp. 59-65, 2003.

[26] J. Rumbaugh, I. Jacobson, and G. Booch, The Uni-
fied Modelling Language Reference Manual, 2nd Edi-
tion, Addison-Wesley, Reading, MA, 2004.

[27] J. Saltzer and M. Schroeder, “The protection of infor-
mation in computer systems,” Proceedings of IEEE,
vol. 63, no. 9, pp. 1278-1308, 1975.

[28] M. Shaw and D. Garlan, Software Architecture: Per-
spectives in an Emerging Discipline, Prentice Hall,
1996.

[29] Software Design Group, the Alloy Analyzer, archived
at http://alloy.mit.edu, 2002 - 2005.

[30] B. Win, W. Joosen, and f. Piessens, “Develop-
ing secure applications through aspect-oriented pro-
gramming,” Aspect-Oriented Software Development
(ISBN: 0321219767), pp. 633-651, 2005.

[31] H. Yu, X. He, S. Gao, and Y. Deng, “Formal software
architecture design of secure distributed systems,” in
Proceedings of the Fifteenth International Conference
on Software Engineering and Knowledge Engineering
(SEKE’03), pp. 450-457, 2003.

Lirong Dai is an Assistant Professor in the department
of Computer Science and Software Engineering at Seattle
University. She received her Ph.D. in Computer Science
in 2005 from The University of Texas at Dallas. Dr. Dai’s
research areas include software architecture development,
realization, design, and analysis of non-functional require-
ments at the architecture design level, aspect-oriented
software development (aspect modelling techniques,
methods, tools, aspects in software architecture, etc.

Kendra Cooper is an Assistant Professor in Computer
Science at the University of Texas at Dallas. She received
her Ph.D. in Electrical and Computer Engineering in 2001
from The University of British Columbia. Dr. Cooper’s
research investigates requirements engineering and soft-
ware architecture in component-based software engineer-
ing methodologies from agile-, aspect-, and goal-oriented
perspectives using combinations of empirical studies and
formal methods.

