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Abstract

This paper presents an effective method to integrate the
revocation mechanism into some group signature schemes
that are based on the strong RSA assumption. The mech-
anism enables the group manager to either update a group
member’s certificates, or revoke a group member. More
specifically, a generic method has been proposed for the
protocols of sign, verify, and revocation. We demonstrate
the effectiveness of the method by applying it to a well
known group signature scheme. The new construction has
better performance while enjoying an efficient revocation
mechanism.
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1 Introduction

A group signature scheme is a privacy-preserving cryp-
tographic construction introduced by Chaum and Heyst
in 1991 [16]. In such a scheme, a group member can
sign a message on behalf of the group without reveal-
ing its identity. Only the group manager can open
a signature and find its originator. In recent years,
group signatures have attracted a lot of researchers,
and many schemes have been proposed in the literature
[1, 2, 7, 8, 10, 11, 12, 13, 14, 15, 21]. A complete list
of bibliography of group signature schemes can be found
at [22]. In practice, a group signature could be used to
carry out anonymous authentication. That is, a signa-
ture verifier treats an anonymous signature as the proof
that a party is a legitimate member in a group. Such
applications have already been deployed in the Trusted
Computing Platform [9, 20].

A group signature scheme is tightly coupled with its
target applications compared with other cryptographic
primitives (e.g. encryption scheme). The model for group
signature schemes are context oriented. In this paper,
we follow the model due to Camenisch and Joth [10],
which is a relaxation to a strict definition proposed by
Bellare et al. [4]. This relaxation is mainly about the

group member revocation. To satisfy the requirements
of the Bellare’s model, it is impossible to revoke a group
member except that all valid group members can some-
how adjust the signing parameters or procedure, which
may not always be feasible or efficient in practice. For
the purpose of efficient revocation, many schemes (e.g.
[2, 8, 10, 21]) have adopted the so-called “verifier-local
revocation” technique, in which verifiers adjust their lo-
cal verification parameters to recognize corrupted group
members, and group members do not need to change the
signing procedures at all. A group signature scheme based
on this technique conforms to the relaxation mode by Ca-
menisch and Joth.

Among the group signature schemes in the literature,
there are some constructions that share similar group
member certificate structure, and whose security is based
on the same assumption [1, 12, 13]. However, these
schemes do not provide any revocation mechanism. In
this paper, we propose an effective method to integrate
the revocation mechanism into these constructions. We
also give an example to demonstrate the method.

The paper is organized as follows. Section 2 reviews the
definitions and security assumptions. Section 3 introduces
the proposed method. We apply this method to a well-
known group signature scheme to implement an efficient
revocation mechanism in Section 4. The paper concludes
in Section 5.

2 Definitions and Preliminaries

We adopt the model for group signature by Camenish and
Joth [10], a relaxation of the strict model by Bellare et al.
[4]. Only the core ideas of the model will be introduced
in this section. We refer the reader to [4, 5, 10] for a more
in-depth discussion.

Definition 1 (The model). A group signature scheme
includes a group manager and group members. The group
manager owns group master keys while each member
holds its group member key, or group member certificate.
The scheme consists of six protocols:
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• KeyGen: the group manager uses KeyGen protocol
to generate system parameters and its master key.

• Join: a party runs join protocol, together with the
group manager, to obtain a certificate to represent
its group membership.

• Sign: a group member anonymously sign a message
following sign protocol.

• Verify: a verifier uses verify protocol to check
whether a signature is originated from a member in
the group.

• Open: the group manager uses open protocol to find
the signer of a signature.

• Revoke: the group manager uses revoke protocol to
exclude a group member.

The security requirements for a group signature should
have following properties:

• Full-traceability. This property says that any valid
signature can eventually be traced back to a legitimate
group member. It should never happen that we cannot
find the signer of a valid signature. Full-traceability
has two implications: (1) a valid group member cer-
tificate can only be created by the group manager, (2)
a valid signature can only be generated by a legiti-
mate group member if the secrets of the member are
not exposed to any third party.

• Anonymity. This property says that if both the group
manager’s secrets and a member’s secrets are not ex-
posed, it is infeasible to find the signer of a signature,
or link the signatures by a signer.

The model in [4] defines Full-Anonymity which says
even a member’s secrets are exposed, it is still impossible
to decide the signatures by this member. Obviously,
under this strict model, we cannot revoke a member
by exposing its secrets. This property essentially pre-
cludes the possibility to revoke a group member explicitly.

Next, we review some definitions and widely accepted
complexity assumptions that we will use in this paper.

Definition 2 (Special RSA modulus). An RSA mod-
ulus n = pq is called special if p = 2p′ +1 and q = 2q′ + 1
where p′ and q′ also are prime numbers.

Definition 3 (Quadratic Residue Group QRn). Let
Z∗

n be the multiplicative group modulo n, which contains
all positive integers less than n and relatively prime to n.
An element x ∈ Z∗

n is called a quadratic residue if there
exists an a ∈ Z∗

n such that a2 = x (mod n). The set of
all quadratic residues of Z∗

n forms a cyclic subgroup of
Z∗

n, which we denote by QRn. If n is the product of two
distinct primes, then |QRn| = 1

4 |Z
∗

n|.

Property 1. If n is a special RSA modulus, with p, q,
p′, and q′ as in Definition 2 above, then |QRn| = p′q′ and
(p′ − 1)(q′ − 1) elements of QRn are generators of QRn.

Property 2. If g is a generator of QRn, then ga ( mod n)
is a generator of QRn if and only if GCD(a, |QRn|) = 1.

The security of our techniques relies on the following
assumptions, which are widely accepted in the cryptogra-
phy literature (see, for example, [3, 6, 18]).

Assumption 1 (Strong RSA Assumption). Let n
be an RSA modulus. The Flexible RSA Problem is the
problem of taking a random element u ∈ Z∗

n and finding
a pair (v, e) such that e > 1 and ve = u (modn). The
Strong RSA Assumption says that no probabilistic poly-
nomial time algorithm can solve the flexible RSA problem
with non-negligible probability.

Assumption 2. (Computational Diffie-Hellman
Assumption for QRn) Let n be a special RSA modu-
lus, and let g be a generator of QRn. Then given random
gx and gy, there is no probabilistic polynomial-time algo-
rithm that computes gxy with non-negligible probability.

Assumption 3. (Decisional Diffie-Hellman As-
sumption for QRn) Let n be a special RSA modulus,
and let g be a generator of QRn. For two distributions
(g, gx, gy, gxy), (g, gx, gy, gz), x, y, z ∈R Zn, there is no
probabilistic polynomial-time algorithm that distinguishes
them with non-negligible probability.

3 The Method to Implement Re-

vocation Mechanism

This section introduces the method to carry out the re-
vocation mechanism. We only outline the basic method-
ology without any real implementation. An exmple will
be provided in the next section.

3.1 Group Member Certificate

The group signature schemes [1, 12, 13] are constructed
over quadratic residue group QRn where n is a special
RSA modulus. The security of these schemes are based
on the strong RSA assumption. In these schemes, a group
certificate is in the form of (A, e), where

A = ge−1

(mod n),

e is a prime number. g is a generator of QRn, and e−1 is
the inverse of e modulo the order of QRn. g could have
some substructure such as g = axia0 (mod n) in [1].

3.2 Sign and Verify Protocols

To anonymously sign a message, a group member needs
to hide its identity. It uses ElGamal encryption scheme
[17] to compute

T1 = Ayw (mod n), T2 = gw (mod n),
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where y is the group manager’s ElGamal public key such
that y = gx (mod n). The group member also computes

T3 = T e
2 (mod n).

A signer proves to a verifier that T1, T2, T3 are con-
structed in such way that the hidden value A in T1 is e-th
root of g, and T3 is the e-square of T2. The building blocks
for the proof are statistical honest-verifier zero knowledge
protocols of knowledge related to discrete logarithm over
QRn [13, 18, 19]. They may include the protocols such as
the knowledge of the discrete logarithm, the knowledge of
equality of two discrete logarithms, the knowledge of the
discrete logarithm that lies in certain interval, etc.

3.3 Group Member Revocation

To exclude a group member, the group manager broad-
casts a revoked member’s ei to all verifiers. A verifier
checks

T ei

2
?
= T3 (mod n)

for all ei on the revocation list. If the equation holds for
one ei, it shows the signature comes from a revoked mem-
ber. This is a quite simple and efficient method (of course,
the list should be constrained to a reasonable size). This
method is also called “verifier-local revocation” [8]. It
needs to point out that the mechanism based on the re-
vocation list implements full revocation defined in [10], or
unconditional linkability defined in [2], i.e., all the signa-
tures by a revoked member can be identified. Therefore
a group signature scheme using this method only enjoys
anonymity, not full anonymity. This may seems a “weak
point” for all group signature schemes with verifier-local
revocation. However, the suitability of a feature really
depends on a specific setting. There are no absolute ar-
guments for the suitability of a feature in practice. For ex-
ample, the anonymous authentication technique deployed
in the Trusted Computing Platform, called Direct Anony-
mous Attestation, has adopted the verifier-local revoca-
tion method [20].

When the revocation list becomes large, the computa-
tion overhead may become unacceptable for verifiers. We
introduce the certificate redistribution method proposed
in [2]. We independently devised this method to imple-
ment key redistribution in the context of pervasive com-
puting to reduce the computation overhead of resource-
limited tiny electronic devices. To update a valid certifi-
cate, the group manager picks a random integer r such
that GCD(r, |QRn|) = 1, computing

A′

i = Ar
i = gre−1

= (gr)e−1

= g′e
−1

(mod n).

Due to property 2, g′ is another generator of QRn. The
group manager sends new certificates to valid group mem-
bers in secure way. The following operations then are
based on the new system parameters and updated group
member certificates. In this method, all the computation
are accomplished by the group manager.

The authors in [2] have ignored the effectiveness of the
method due to their arguments that the group manager
needs to perform O(n) cryptographic operations for ev-
ery revoked member. In fact, it is easy to observe that
any certificate redistribution method needs O(n) opera-
tions. The real issues are about (1) the total compu-
tation overhead, and (2) how to distribute computation
overhead among participants. In many applications, the
group manager may be server(s) with high computing ca-
pability. However, a group member could actually be
a crypto-processor or smart card with limited resources,
such as TPM (Trusted Platform module) in the Trusted
Computing Platform. In such settings, it is quite reason-
able to let powerful servers undertake most computation
task. In fact, some other certificate redistribution meth-
ods in [2, 10, 12] essentially push the computation to the
group members, and have higher total computing over-
head, which may not be desirable when the group mem-
bers are resource-limited.

Furthermore, the group manager can pre-compute all
certificates for group members offline. Only when the size
of the revocation list reaches a threshold, it publishes all
the new certificates for valid group members. The pre-
computation is a nice property which may be necessary
to improve the system performance in practice.

For an excluded group member, with existing certifi-
cate A that uses generator g′, updating to a new certifi-
cate means computing A′ = g′e

−1

= gre−1

based on ge−1

and g′ = gr without knowing r or e−1, which is equiva-
lent to solving the computational Diffie-Hellman problem
1. Therefore, we have the following theorem.

Theorem 1. If there exists an algorithm that can com-
pute an updated group member certificate without knowl-
edge of the group manager’s secret value, then there exists
an algorithm that solves the computational Diffie-Hellman
problem over QRn.

4 An Example

In this section we give an example to show the effective-
ness of the method in the previous section. The ACJT
scheme is a well-known group signature construction in-
troduced in 2000 [1]. It is a practical and provable secure
construction for large group. However, it does not pro-
vide the revocation mechanism. In the following we would
like to adopt the same notions as in the original paper.
Thus, readers can easily compare the new scheme with
the original one, seeing how our method carries out the
revocation mechanism.

We should notice that the ACJT scheme achieves
full anonymity without the revocation mechanism, while
the new scheme provides the revocation mechanism and
achieves only anonymity. Again, we make it clear that
this is an issue about how we are going to apply a group

1
g
′ or certain substructure of g

′ will be published by the group

manager according to a specific construction. Here we assume g
′ is

being published.
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signature scheme to a specific application. The system
parameters are listed as follows:

• A special RSA modulus n = pq, p = 2p′ + 1, q =
2q′ + 1, p, p′, q, q′ are all prime.

• Random elements a, a0, g ∈ QRn of order p′q′, i.e.,
these numbers are the generators of QRn.

• A random secret elements x ∈R Z∗

p′q′ , and y =
gx(mod n).

• Security parameters used in protocols: ε > 1, k, lp.

• Length parameters λ1, λ2, γ1, γ2. λ1 > ε(λ2 + k) + 2,
λ2 > 4lp, γ1 > ε(γ2 + k) + 2, and γ2 > λ1 + 2.

• Integer range Λ =]2λ1 −2λ2 , 2λ1 +2λ2 [ and Γ =]2γ1 −
2γ2 , 2γ1 + 2γ2 [.

• H : {0, 1}∗ → {0, 1}k is a strong collision-resistant
hash function.

• m ∈ {0, 1}∗ is a message to be signed.

• The public parameters is (n, a, a0, y, g).

• The secret parameters for the group manager is
(p′, q′, x).

4.1 Join Protocol

We adopt the same Join protocol as in the original
scheme. A group member’s certificate is in the form of
Ai = (axia0)

1/ei (mod n) where xi ∈ Λ is the secret of a
group member, and ei ∈R Γ is a random prime number.
axia0 can be seen as a generator of QRn due to property
1.

One important difference between the new scheme and
the ACJT scheme is that the Join procedure MUST be
confidential. That is, in the new scheme, (Ai, ei) MUST
be kept secret by the group manager and a group member
itself. In the ACJT scheme, it would not affect the secu-
rity property of the scheme if (Ai, ei) is publicly known.
This is also the reason that the ACJT scheme achieves
full anonymity.

4.2 Sign Protocol

• Generate a random value w ∈R {0, 1}2lp and com-
pute:

T1 = Aiy
w (mod n), T2 = gw (mod n),

T3 = T ei

2 (mod n).

• Randomly choose r1 ∈R ±{0, 1}ε(γ2+k), r2 ∈R

±{0, 1}ε(λ2+k), and r3 ∈R ±{0, 1}ε(λ1+2lp+k+1) and
computes

– d1 = T r1

1 /(ar2yr3) (mod n), d2 =
T r1

2 /gr3 (mod n), d3 = T r1

2 (mod n);

– c = H(g||y||a0||a||T1||T2||T3||d1||d2||d3||m);

– s1 = r1 − c(ei − 2γ1), s2 = r2 − c(xi − 2λ1), s3 =
r3 − ceiw (all in Zn).

• Output (c, s1, s2, s3, T1, T2, T3).

Remark 1. The main difference between the new sign
protocol and the original protocol is T3, d3. Our method
hides ei as T ei

2 , while the original protocol in fact uses an-
other ElGamal encryption to hide it as geihw. r4, d4, s4

in the original protocol are not needed in the new proto-
col, which roughly reduces thirty percent of computation
overhead.

4.3 Verify Protocol

• Compute

c′ = H(g||y||a0||a||T1||T2||T3||

ac
0T

s1−c2γ1

1 /(as2−c2λ1

ys3)||T s1−c2γ1

2 /gs3 ||T s1−c2γ1

2 T c
3 ||m)

• Accept the signature if and only if c = c′ and
s1 ∈ ±{0, 1}ε(γ2+k)+1, s2 ∈ ±{0, 1}ε(λ2+k)+1,s3 ∈
±{0, 1}ε(λ1+2lp+k+1)+1.

4.4 Revocation Protocol

To revoke a corrupted group member, the group man-
ager publishes ei on the revocation list. A revoked group
member can be identified by checking

T ei

2
?
= T3 (mod n).

In the meantime, the group manager picks a ran-
dom large integer r such that GCD(r, |QRn|) = 1, pre-
computes a′ = ar, a′

0 = ar
0, and the certificates

A′

i = Ar
i = (axirar

0)
1/ei = (a′xia′

0)
1/ei (mod n).

When the size fo the revocation list reaches a pre-defined
threshold, the group manager publish a′, a′

0 and sends the
new certificates to all valid group members in secure man-
ners. This carries out certificate redistribution. At the
same time, the revocation list is re-set to empty.

4.5 Security Properties of the New Pro-

tocol

Before discussing the security of the new scheme, we first
introduce a lemma that will be used shortly.

Lemma 1. Let n be an integer. Given values u, v ∈
Z∗

n and x, y ∈ Z such that GCD(x, y) = r, and vx ≡
uy (mod n), there is an efficient way to compute a value
z such that zk ≡ u (mod n), where k = x/r.
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Proof. Since GCD(x, y) = r, using the extended Eu-
clidean GCD algorithm, we can obtain values α and β
such that αx/r + βy/r = 1. Then we have

u ≡ uαx/r+βy/r

≡ uαx/ruyβ/r

≡ uαx/rvβx/r

≡ (uαvβ)x/r (mod n).

Therefore, setting k = x/r and z = uαvβ , we have zk ≡
u (mod n).

Full-traceability is achieved by zero knowledge prop-
erty of the Join protocol and coalition-resistance property
of the group certificate which both have been proved in
the original paper. We recall “coalition-resistance” prop-
erty here.

Theorem 2 (Coalition-resistance). Under
the strong RSA assumption, a group certificate
[Ai = (axia0)

1/ei (mod n), ei] with x ∈ Λ and ei ∈ Γ can
be generated only by the group manager provided that
the number K of certificates the group manager issues is
polynomially bounded.

Next, we address the zero knowledge property of the
new scheme. We recall the theorem in the original paper.

Theorem 3. Under the strong RSA assumption, the in-
teractive protocol underlying the group signature scheme
is a statistical zero-knowledge (honest-verifier) proof of
knowledge of a membership certificate and a correspond-
ing membership secret key.

Proof. Just as the original paper, we only address the
proof of knowledge part. We should show that a
knowledge extractor is able to recover the group cer-
tificate when it has found two accepting tuples un-
der the same commitment and different challenges from
a verifier. Let (T1, T2, T3, d1, d2, d3, c, s1, s2, s3) and
(T1, T2, T3, d1, d2, d3, c

′, s′1, s
′

2, s
′

3) be such tuples.

Since d2 ≡ T s1−c2γ1

2 /gs3 ≡ T
s′

1
−c′2γ1

2 /gs′

3 (mod n), we
have

T
(s′

1
−s1)+(c−c′)2γ1

2 ≡ gs′

3
−s3 (mod n).

If GCD((s′1 − s1) + (c − c′)2γ1 , s′3 − s3) = r, r 6= (s′1 −
s1)+(c−c′)2γ1 , By lemma 1, we can find a solution (u, v)
such that uv = g (mod n). This is infeasible under the
strong RSA assumption. Therefore, (s′1− s1)+ (c− c′)2γ1

has to divide s′3 − s3, then we have

w = (s′3 − s3)/((s′1 − s1) + (c − c′)2γ1)

such that T2 ≡ gw ( mod n). Due to the property of QRn,
T2 is the generator of QRn.

Since d3 ≡ T s1−c2γ1

2 T c
3 ≡ T

s′

1
−c′2γ1

2 T c′

3 (mod n), we have

T
(s′

1
−s1)+(c−c′)2γ1

2 ≡ T c−c′

3 (mod n).

Following the same method as above, under the strong
RSA assumption, c−c′ has to divide (s′1−s1). We obtain

ei = (s′1 − s1)/(c − c′) + 2γ1

such that T3 ≡ T ei

2 (mod n).
Based on the knowledge of w, ei, we can further recover

Ai, xi the same way as in the original proof. Therefore a
knowledge extractor can fully recover group certificate.

Unlinkability follows the same argument as the ACJT
group signature for T1, T2. Since we define a different T3 in
our protocols, we need to show this modification still keep
unlinkability property. Similar to the case in the ACJT
scheme, the problem of linking two tuples (T2, T3), (T

′

2, T
′

3)
reduces to decide the equality of the discrete logarithms
of T3, T

′

3 with base T2, T
′

2 respectively. This is assumed to
be infeasible under the decisional Diffie-Hellman problem.
Therefore, we have the following corollary.

Corollary 1. Under the decisional Diffie-Hellman
assumption for QRn, there exists no probabilistic
polynomial-time algorithm that can make the linkability
decision for any two arbitrary tuples (T2, T3), (T

′

2, T
′

3) with
non-negligible probability.

5 Conclusion

In this paper we have presented a generic method to in-
tegrate the revocation mechanism into some group sig-
nature schemes in the literature. We demonstrated its
effectiveness by applying this method to the well-known
the ACJT group signature scheme, and obtained a more
efficient, and practical group signature scheme. This is
in contrast to other efforts in [2, 11, 21], which result in
less efficient constructions. The same method can also be
applied to the group signature schemes in [12, 13].

It needs to point out that a group signature scheme
based on our method only achieves anonymity, not full
anonymity defined in the Bellare’s strict model. However,
in practice, anonymity is a more appropriate choice. Such
level of privacy protection has been discussed in many
research papers, for example, [2, 8, 9, 10, 21].
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