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Abstract

This paper reports a research work to address the problem
of the large number of alerts generated by the detectors
in an intrusion detection system. Some of these alerts
are redundant and have to be aggregated; others may fol-
low a certain attack pattern that should be correlated.
Generally, this operation is referred to as alert correla-
tion. A more detailed explanation of the alert correlation
is presented in the paper. Paper proposes a rule-based
approach to solve this problem. In the reported work, an
inference engine is implemented to derive the correlation
between the alerts using a scenario-based knowledge base
and to aggregate redundant alerts. Experimental results
based on sample alerts and scenarios are reported in this
paper.
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1 Introduction

Currently, overwhelming number of alerts that are gen-
erated in the Intrusion Detection System (IDS) by its
detectors is a source of confusion rather than help for
the network security officer. There are two tasks, which
should be performed on the generated alerts. One is to
reduce its redundancies, i.e. to aggregate the redundant
alerts generated by the detectors. The other one is to
analyze the relationships between the sequences of events
that are occurring in the system and to extract the possi-
ble attack strategies/patterns. Since this latter part has
to be performed based on the sequence and the occurrence
time of the alerts, it is referred to as the temporal alert
correlation.

In other words, temporal alert correlator intends to
connect the dots between the alerts along the time line
where they have been encountered. Goal of the temporal
alert correlation is to reduce the number of alerts gener-

ated by the detection unit and to convert them into sen-
sible high-level alerts (alert fusion, alert merging can be
a prerequisite for the alert correlation). This correlation
will lead to a reduction in the number of false positive
alarms. It will also provide a kind of broad and overall
view on the activities in the network. This information
can be a valuable strategic information for any network
administrator.

New alerts will provide information regarding the over-
all situation of the ongoing attack(s). This information
may include the current state of the attack progress; list of
correlated alerts that have led the system to the current
situation and if the attack is not yet completed. Later
on, based on the available scenarios, system can predict
goal(s) and targets of the attack. This requires an adap-
tive/learning system. After a survey on current literature
in this area, it was decided to proceed with the implemen-
tation of a rule-based inference engine to address both the
alert correlation and alert aggregation problem areas.

Before going any further, it seems necessary to provide
a definition for alert correlation. Kim et al. [4] refer to
Aromoso definition of the alert correlation and say: “Lit-
erally, intrusion correlation is defined that it refers to the
interpretation, combination, and analysis of information
from all available source about target system activity for
the purposes of intrusion detection and response”.

A brief description of some reported works in this area
are given in the following section.

2 Previous Works

Cuppens et al. [3] report a work that is part of MI-
RADOR project. They have designed a cooperative mod-
ule for the intrusion detection system that is called CRIM.
Cuppens et al. have defined two types of correlation of
the events: explicit correlation and implicit correlation.
As it is clear from their name, explicit correlation is a
type of correlation where it is possible for the network ad-
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ministrator to find some kind of correlation in the events.
However, the implicit correlation of the events requires a
kind of adaptive and machine learning based system to
find the hidden correlation between the events.

In Cuppens et al. approach, scenarios can be coded
into knowledge and stored in the expert system (rule-
based system) knowledge-base. The rule-based inference
engine or the expert system is responsible for tracking the
progress of the network status within the available scenar-
ios and producing the appropriate response. Extracting
scenarios is a major task in this approach and requires an
in depth knowledge of different attack methods.

In another paper, Cuppens et al. [2] focus on the intru-
sion scenarios. Their paper considers the intrusion sce-
nario to consist of a number of correlated events that
their sequence and collaboration will lead to the act of
intrusion. Work provides detailed description of scenar-
ios for several attacks including the Mitnick attack and
describes them in detail. Providing sample rules, in [1]
they emphasize on the rule-based presentation of the ille-
gal file access scenario. They defined alert correlation as:
“Action1 is correlated with Action2, if Action1 may en-
able the intruder to perform Action2.” They also provide
a definition for fusion process (the same as aggregation
process): “The process of merging the simple alerts gen-
erated by different IDS detecting for the same attack is
called fusion process.”

Ning et al. [6, 7] report a work in rule-based alert cor-
relation (and the graph theory) that uses prerequisite and
consequence of the attacks to correlate them. Once the
prerequisite of a certain attack is detected by the system,
it would be possible to predict the consequence of the at-
tack. In the same way, it might be able to merge them
and consequently detect a higher-level correlated attack.
Ning et al. [6, 7] use SQL commands for processing the
rules such as this one:

“SELECT DISTINCT c.HyperAlertID, p.HyperAlertID
FROM
PrereqSet p, ExpandedConseqSet c
WHERE
p.EncodedPredicate D c.EncodedPredicate
AND c.end time < p.begin time (Ning et al. [6, 7])”

Valdes et al. [8] have reported a work in probabilistic
alert correlation, where they calculate the similarity value
between the alerts. Both Valdes et al. [8] and Valeur et
al. [9] have followed the multi-phase analysis of the alert
system scheme. This approach is a fusion using a graph-
theoric approach and it is in two phases. During the first
phase, low-level alerts are aggregated and converted into
threads. In the second phase using the fused alerts from
the phase one, threads are correlated to provide a higher-
level view of the security state of the system. The current
work is inspired by this approach. Mathew et al. [5]
report a work for alert fusion using the graph-based ap-
proach.

2.1 Proposed Approach

Based on majority of the papers that authors of this paper
found and studied, the proposed method of approach for
the alert correlation is mainly a rule-based approach (us-
ing inference engine and working memory that constitutes
an Expert System). Major contribution of the reported
works is about using scenarios to represent the attack pat-
tern and the connection between the alerts. Extracting

scenarios is primarily a heuristic-based task that

has to be performed by the human expert.
Statistical methods are also used to analyze and cor-

relate network features. These methods require a train-
ing dataset for extracting the correlation information. In
this case, properties of the training dataset, e.g. the way
dataset is collected and the validity of it, are very im-
portant. In other words, training with these datasets is
similar to extracting scenarios, but with a difference. Sce-
narios are more suitable in modelling the attack patterns
and easier to prepare and maintain. However, this ap-
proach requires a great deal of expertise and experience
to extract the scenarios. Statistical approach, however,
is less dependent on the expertise or experience of the
professional in charge of training the system. Instead,
statistical approach is sensitive to the completeness and
the way training datasets are collected. It is also very
difficult to maintain the statistical-based systems.

In the case of using an statistical approach, it is dif-
ficult to keep such a system up to date, because adding
new attack patterns requires the system to be trained
again. After training the statistical-based alert correla-
tor, results have to be verified to make sure that the alert
correlator operates correctly. Preparing the test dataset
is an additional hard task for the system manager in this
approach.

Although rule-based systems requires expert knowl-
edge to operate, they are easier to implement and main-
tain. At the same time, rules can be in a text format un-
derstandable by the operator, and therefore, operator can
add new rules of his/her own to the system. Preparing a
comprehensive and up to date dataset can be a nightmare
for any company that produces statistical-based alert cor-
relator system. Therefore, a rule-based (expert system-
based) approach is selected for this work.

3 Structure of the System

The first field of each record in the knowledge-base is the
FactName that corresponds to the name of the fact/rule
or the name of the scenario or the term ‘Scenario’. The
FactValue field describes the value of the ‘FactName’ as
it is required in the definition of the fact clause. In the
case of defining a scenario rule, FactName/FactValue will
represent the consequence part of the rule. Parameterx

and Operatorx are the parameter(s) and the operator(s)
of the rule, respectively. Depending on the form of the
rule, some of them might be NULL or “*” (Star character
acts as a wildcard and means any value).
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The Certainty Factor (CF) field of the record will de-
termine the certainty over the correctness of that rule or
fact. The Certainty Factor field can be a numerical value
between 0 and 1, in the case of CF=0 this can be con-
sidered to be the same as NULL for the Certainty Factor
(implementation of this part is left for future). Finally,
ClauseTime field is a timestamp field that denotes time
of the event. Timestamp can be used to extract sequence
of the events.

Operatorx can be either one of the AND or OR logical
operations. Using database tables provides the benefit of
being able to use any database system to perform queries.
Queries can be easily performed using the SQL commands
by which it is possible to perform the Forward/Backward
chaining process. This method of implementation will
significantly reduce the programming time required for
completing the design.

Some may object to the performance of the inference
engine. Actually, this is a valid point with respect to
its performance. However, considering the low priority of
the correlation in comparison with other parts of the IDS
this drawback can be justified. In some occasions, the
correlation engine might be even used for offline queries.
Nevertheless, this approach is mainly a rapid prototyping
approach and many things such as converting the string-
based knowledge to a numerical format can improve its
performance. Once the string comparison is eliminated
from the code, the execution speed of the code will sig-
nificantly increase. This issue will be discussed in more
detail in Section 6.

Block diagram of the proposed expert system engine is
depicted in Figure 1. Working memory and knowledge-
base tables can be indexed on the RuleFact, Fact and
either of the Parameterx fields. During the inference
process, indexing will help us with forward and backward
chaining through the knowledge-base. The aim of adding
index to the tables is to increase the speed of the inference
process. However, system has not gone under a heavy
load yet and needs to be tested with a large dataset to be
certain of its performance.

Receiving a new alert, the inference engine will check it
with the current alerts stored in working memory (Fact-
Name/FactValue). If necessary, the alert will be aggre-
gated, otherwise it will be compared against the currently
loaded scenarios. If needed, new matching scenarios will
be loaded into the working memory. Later on, using the
recently updated working memory, the inference engine
will backtrack the included alerts and will follow the se-
quence of the events encountered with respect to different
loaded scenarios. Using the available scenarios, system
will produce a sequence of steps each corresponding to a
different received alert. Following this sequence, user can
track progress of the possible attacks.

Temporal alert correlation module is a part of a larger
IDS system that is being developed in the faculty of Com-
puter Science at the University of New Brunswick. Cur-
rently, this module is working in an offline manner wait-
ing for the rest of the IDS blocks to get ready. If decided

Figure 1: Block diagram of the expert system engine

not to add the contents of the working memory to the
knowledge-base then the working memory should be re-
moved (emptied). To do so, at the beginning of process-
ing each new event, system will first check the current
time. If the difference between the current time and the
last marked time was greater than a threshold (time win-
dow), system will erase all the older facts and scenarios
in the system. Then it will mark the current time as the
last marked time.

As it was emphasized earlier in the text, using database
engines will ease the coding of the expert system engine.
This is because there are many cases where multiple con-
ditions are going to be applied on different number of
fields and/or a group of fields that have to be sorted
with respect to different constraints/orders. In all of these
cases, a simple database query can replace a complicate
procedure that otherwise had to be hard coded. It might
not look very efficient with respect to the processing time
required, however, for the first prototype it is the best
solution. At the same time, alert correlation is not a fre-
quent event in the system and it is not expected to occur
frequently. Unless its output is required for a quick re-
sponse, it will not become a bottleneck for the system.
In case of using SQL scripts for the queries, Borland SQL
system, MS-SQL and MySQL database system are among
the available options.

In order to improve the execution time, instead of load-
ing the scripts from a file, system is using hard coded
C commands to send the SQL commands to the server.
It should be noted that the format of the rules in the
knowledge-base should be kept simple. Each rule should
not contain more than a few components (two or three
components only) otherwise system will become unneces-
sarily complex.

Presently, for presenting the facts, only Fact-
Name/FactValue fields are used. For the simplicity in
the process, formats used for the Facts and Scenarios are
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Figure 2: Contents of the knowledge-base table

the same. The Scenario format is as follows:

‘Scenario′, < ScenarioName >:

Parameter1← Parameter2 ⊗ Parameter3,

where FactName field holds the term ‘Scenario’, Scenari-
oName field holds the name for this scenario and Param-
eter 1 represents the consequence part of the rule. For
now operator ‘⊗’ can only be replaced by either ‘AND’ or
‘OR’ operators.

System is currently working in a simulated environ-
ment where events are saved in a text file and they will
be loaded into a table before the execution starts. Later
on, the result of the inference that is a sequence of events
will be extracted from the scenarios that is already saved
in a table called ‘Scenario’. This table represents output
of the system. Transient actions or responses are added to
the WorkingMemory table in the form of new facts. Later
on, adding new facts can be converted into an actual ac-
tion. Introduction of the transient rules to the system
enables the system to follow a sequence of rules within
one clock cycle (one inference cycle).

4 Experimental Results

The general form of the knowledge-base records is in the
form of if-then-else clauses. Using wildcards (‘*’) can be
very helpful in making general rules. In order to provide
a better understanding of the way inference engine works,
the following example for the eventbase, knowledge-base
and the scenario tables are provided.

Considering the knowledge presented in Figure 2,
this knowledge contains three different scenarios General,
General1, and General2, respectively. Any given event
can make one or more of these scenarios to fire. As an
example, the first line of the General scenario in the text
file can be stated as follows:

Scenario,General,OverFlow,*,*,PortScan,80,*,*,*,*,1.0

The first item ‘Scenario’, indicates that this is a sce-
nario rule and its name is ‘General’ (FactName). Parame-
ter1 represents the consequence and its value is a wildcard
that means OverFlow on all ports/any port. Operator1
contains a wildcard but it is going to be ignored by the

system. Parameter2 indicates a PortScan alert on port
80 (Parametervalue1). Since Parameter3 is a wildcard,
Parameter3 together with its value and operator2 will be
ignored by the system. CF is currently inactive so this
field will be ignored as well. The final field is the Clause-
Time that indicates the timestamp of the rule. Contents
of the eventbase are presented in Table 1. Contents of the
text file will look like this:

PortScan,80,*,*,*,*,*,*,*,*,*,0.0

PortScan,80,*,*,*,*,*,*,*,*,*,0.0

OverFlow,TCP,*,*,*,*,*,*,*,*,*,0.0

PortScan,80,*,*,*,*,*,*,*,*,*,0.0

PortScan,80,*,*,*,*,*,*,*,*,*,1.0

DoS,*,*,*,*,*,*,*,*,*,*,0.0

PortScan,80,*,*,*,*,*,*,*,*,*,0.0

Specifically for the knowledge-base, the ClauseTime
field shows the sequence of the events in the scenario. In
the first line of the Table 1 for example, Fact/FactName =
PortScan/80 means that this alert is generated to report
a PortScan on port 80. Finally, result of the inference
process that is saved in the cenario table, is presented in
Figure 3.

As it is clear from Figure 3, only those steps in the sce-
narios are executed that their prerequisite is present. The
final consequence is each scenario presents a prediction for
attackers next move. New timestamps indicate the selec-
tion time during the inference process. WorkingMemory
table is presented in Figure 4.

From the contents of the working memory it is seen
that the system can successfully aggregate the redundant
PortScan, 80 alerts. The two copies of the alert are due
to the difference in their ClauseTime (timestamp) that
makes them individually unique.

The reader should note that both of these scenarios are
examples to show the execution of the inference engine
and not necessarily effective and correct rules/scenarios
for the real attack.

One of the major benefits in using the rule-based sys-
tems is the format of the rules. The human readable
format of the knowledge-base or the rule-base will help us
with maintaining and debugging the knowledge-base. Due
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Table 1: Events that are presented to the EventBase table. Where FName=FactName, FVal=FactValue,
P=Parameter, PV=ParameterValue, Op=Operator and CT=ClauseTime.

FName FVal P1 PV1 Op1 P2 PV2 Op2 P3 PV3 CF CT
PortScan 80 * * * * * * * * * 0.0
PortScan 80 * * * * * * * * * 0.0
OverFlow TCP * * * * * * * * * 0.0
PortScan 80 * * * * * * * * * 0.0
PortScan 80 * * * * * * * * * 1.0

DOS * * * * * * * * * * 0.0
PortScan 80 * * * * * * * * * 0.0

Figure 3: A sample instance of the scenario table

to its string-based rule definition, using the rule-based
system will slow down the execution of the code. Text file
processing, string parsing and the volume of data trans-
fer will affect the performance of the system and will re-
duce its speed. This problem is going to slowdown search
for the appropriate rules and facts within the knowledge-
base. In order to eliminate aforementioned problem, it
is intended to find an appropriate data structure that
can address the problem and prevent the slowdown of
the search process.

5 Conclusions

The proposed approach is to use tables to accommodate
rules. Here, every field of the table can represent a part
of the rule, e.g. name, operation, operands, etc. Using
the table will enable the system to speed up the search
process and to avoid the overhead that is caused by the
text processing. At the same time, names and other string
parts of the rule can be presented in a numerical form.
This part will require a preprocessing to parse and convert
the general form of the rules e.g. name (param1, param2)
into a numerical form. As another way for implementing
this conversion, it can be considered to have rules stored in
the text format in a table and later on, the preprocessing
can convert them into the numerical format.

This preprocessing will both increase the search speed
and will reduce the size of the information stored in the
tables. Since the preprocessing is required only when the
knowledge-base is updated and can be an offline process,
it will not enforce any processing load over the system.
For the time being, this part is not yet implemented.

There is an additional factor influencing the perfor-

mance and execution time of the system. This factor is
the length of the rule chain in the inference process. It
is important to avoid using long sequences in the knowl-
edge presentation within the knowledge-base. The longer
is the knowledge chain in the knowledge-base, longer will
be the execution time for the inference process.

Finally, as stated in Section 2.1, similar to any other
expert system, this approach can only deal with the
known attack scenarios. In order to make it operational
it requires a number of attack scenarios stored in its
knowledge-base to become operational. Extracting these
scenarios (knowledge) is the responsibility of the net-
work security experts. Knowledge engineer will prepare
these scenarios in an appropriate format suitable for the
knowledge-base. It is required that a human expert in net-
work security or a hacker to study the current strategies
for intrusion and to prepare them as intrusion scenarios.
The goal for the system is to connect the dots even if they
are implicitly connected.

6 Future Work

The Certainty Factor (CF) is a numerical value that
presents our certainty over the rule or the fact associated
with it. CF is introduced as a parameter to the system
to add the uncertainty into the inference process. Imple-
menting the CF in the inference system, the certainty of
the results over the inferred decision can be calculated.
However, currently this feature is not yet used in the in-
ference process.

It would be very effective if the concept of ‘Demon’ can
be implemented in our expert system engine. Demons
can provide us with a vital and effective feature in the
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Figure 4: A sample instance of the WorkingMemory table

system that is asynchronous response to new and unex-
pected events in the system. In other words, Demons
can provide an appropriate response for exceptions in the
inference process in a timely manner.

Actions/Responses are outputs from the inference en-
gine. Once the inference process reaches to a conclusion
or a demon fires, the generated fact in the working mem-
ory can also become an output for the system. This
output can be a hyper-alert, urgent response command
or any other action that might be needed. These ac-
tions/responses can themselves be a rule or a fact stored
in the knowledge-base.

Intension is to start extracting/collecting attack sce-
narios to fill the knowledge-base of the system. Scenario
extraction is the next phase of the work that requires ex-
tensive research about the attack scenarios.
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