
International Journal of Network Security, Vol.5, No.1, PP.51–61, July 2007 51

Establishing Authenticated Channels and Secure
Identifiers in Ad-hoc Networks∗

Bartlomiej Sieka1,2 and Ajay D. Kshemkalyani2

(Corresponding author: Bartlomiej Sieka)

Semihalf, Cracow, Poland (Email: tur@semihalf.com)1

Computer Science Department, University of Illinois at Chicago2

Chicago, IL 60607-7053, USA (Email: ajayk@cs.uic.edu)

(Received Oct. 27, 2005; revised and accepted Dec. 31, 2005 & Mar. 12, 2006)

Abstract

In this work, we describe a method for establishing au-
thenticated channels in a wireless ad-hoc network. The
presented protocol is fully self-organized, and it also pro-
vides an identification framework. The two main contri-
butions are (1) a fully self-organized protocol that estab-
lishes an authenticated communication channel between
nodes of a wireless ad-hoc network and (2) a secure iden-
tifier framework that is resilient to impersonation. The
authenticated channel provided by the protocol can then
be used to establish a secret communication channel be-
tween nodes. The authentic identifiers established can
be used to associate network (and upper) layer identifiers
to prevent spoofing. They can also serve as a reliable
basis for reputation management protocols. The paper
analyzes the proposed approach in terms of security and
complexity (both communication and storage).
Keywords: Ad-hoc networks, authentication, key estab-
lishment, secure identifiers

1 Introduction

1.1 Preliminaries

The problem of creating a secure communication channel
in a wireless ad-hoc network is important. The existence
of such a channel between two nodes is the foundation of
all secure interaction between them. A secure channel is
defined as having the following attributes.

• The channel is immune to eavesdropping (secrecy).

• Any alteration to a transmitted message is detected
by the receiver, and the communication parties are
mutually authenticated (integrity).

• The channel operation can not be disrupted by a ma-
licious entity (availability).

∗A preliminary version of this work appeared in [22].

We consider only the first two attributes – channel se-
crecy and channel authentication. Note that the prob-
lem of providing an authenticated channel underlies the
problem of providing a secret channel. In most practical
scenarios, channel secrecy is provided by the symmetric
cryptography. This approach requires that the two com-
municating parties share a common secret (the secret key)
and thus a method of providing that secret key material
is necessary. This is achieved by key establishment pro-
tocols which can be classified as follows.

Key transport. One party generates the key and trans-
ports it securely to the other party. This very need to
securely transport the key makes this approach not
suitable for ad-hoc networks.

Key agreement. Both communicating parties must
contribute to the generation of the secret key. It is
then used to secure transmission between them.

Current key agreement protocols typically rely on the
existence of a small-size authenticated channel ([4]). For
example, consider a scenario where public key cryptogra-
phy is used. Here, the authenticity of the public key needs
to be verified by some out-of-band communication chan-
nel. Even though the size of such a out-of-band channel
is very small compared to the size of the authenticated
(and possibly secure) channel that results from the use
of cryptographic methods, observe that such a channel
must itself be authenticated. The main purpose of the
out-of-band communication is to authenticate the identi-
fier of the communication party, i.e., to know the identity
of the sender. Thus it is important to provide an au-
thenticated channel before providing other services and
protocols, such as secure routing, in ad-hoc networks.

1.2 State of the Art

The existing protocols to establish secure channels can be
classified into three approaches.

International Journal of Network Security, Vol.5, No.1, PP.51–61, July 2007 52

1) Protocols using prior context. It is easier to secure
ad-hoc networks if the nodes share some prior con-
text before the network operation begins. A promi-
nent family of protocols using this approach are the
protocols that assume an off-line secret key pre-
distribution phase. Such protocols have received a lot
of research attention recently, especially in the con-
text of sensor networks ([10, 12, 13, 14, 15, 19]). As
this approach requires that the nodes have a shared
prior context before the deployment, it is not always
practical and we seek to provide a full self-organized
solution that is free of this drawback.

2) Trusted third party protocols. These protocols rely on
the existence of a trusted third party (TTP), such as a
Certificate Authority, a base station, or a designated
node. This approach implies centralization of vital
network services and thus is not well suited for the
ad-hoc (peer-to-peer) setting.

3) Self-organizing protocols using out-of-band channels.
The most natural approach to take for ad-hoc net-
works is self-organization. In this approach, there
are no special nodes, no infrastructure, no centralized
configuration point, no shared prior context. Unfor-
tunately, many protocols proposed have a limiting
assumption, that there exists an out-of-band authen-
ticated communication channel. A widely referred
work on using out-of-band channels to initialize se-
crets is due to Stajano and Anderson [23]. Bal-
fantz et al. [3] propose a pre-authentication protocol
that can be used to bootstrap secure communication
in an ad-hoc wireless network. They use a privi-
leged side channel to perform the out-of-band pre-
authentication protocol. They use location-limited
channels, meaning that they are available in close
physical proximity of communicating parties.

A very interesting thread of research is presented
by the group from the Swiss Federal Institute of
Technology at Lausanne ([7, 9, 17]). They propose
the use of public certificate chains for authentica-
tion with probabilistic guarantees. However, it seems
difficult to bootstrap the initial certificate repository
of a node without an authenticated channel of some
sort. Also, Capkun and Hubaux in [8] assume that
there exist security associations for a percentage of
nodes, and then propose BISS – an optimization to
an existing routing protocol that results in a secure
routing scheme. Authors in [11] propose a secu-
rity scheme based on identity-based and threshold
cryptography. They assume that authentic identifiers
have been bootstrapped in the network prior to the op-
eration of their scheme. Khalili et al. in [18] propose
the use of identity-based cryptosystems with thresh-
old cryptography for key distribution in ad-hoc net-
works. Their ID-based approach assumes that there
exists a public master key known to a set of nodes. It
appears to be difficult to perform this step, especially

so that the nodes can be assured about the authen-
ticity of that public key. An interesting proposal ad-
vocating the use of the tamper-proof hardware is the
UGSP protocol described in [2]. The authors propose
a key establishment protocol that requires the user
to interface a hardware token with the mobile device
that he wishes to use for communication.

1.3 Contribution

In an ad-hoc peer-to-peer setting, an authenticated chan-
nel is a necessary prerequisite for key establishment proto-
cols, that are used to build secure communication chan-
nels. The authenticated channel can also be used as a
building block for a secure routing algorithm. Once a
secure routing is in place, we can implement any other
network services.

The main contribution of this paper is a self-organized
protocol to establish authenticated channels in a peer-
to-peer network, without assuming any network services
and using only an unsecured and untrusted channel. This
protocol has none of the drawbacks of the three categories
of protocols (1)–(3) described in Section 1.2, and meets
the following requirements R1 – R3.

R1. There is no requirement to share a prior context.

R2. No trusted third party is needed.

R3. No out-of-band authenticated channels, privileged
side channels, prior security associations, prior boot-
strapping of authenticated identifiers, a priori known
public master key, or tamper-proof hardware are
used.

Although the protocol is simple, its importance stems
from the fact that it is the first general protocol to satisfy
requirements R1 – R3, and it can serve as the base for
the development of further protocols exhibiting all the
requirements R1 – R3. The protocol to implement the
authenticated communication channel uses an unsecure
communication medium, as shown in Figure 1. Any net-
work service, including secure routing and forwarding, can
use such authenticated channels. However, even with au-
thenticated channels, the authenticity of communicating
parties must be considered in the context of their identi-
ties. Therefore, as part of our solution, we also address the
issue of the identity model of the network, proposing the
use of secure identifiers. This is the second contribution of
this paper. We propose to use the hash of the public key
for the identifier of a node. Although this idea has been
used before (e.g., [20, 21]), the hash of the public key as a
secure identifier has always been used in the context of a
specific protocol. For example, [21] employs a very similar
method to secure binding update messages in the mobile
IPv6. However, that proposal is very closely tied to a very
particular application. On the other hand, our approach
does not make strict assumptions about the properties of

International Journal of Network Security, Vol.5, No.1, PP.51–61, July 2007 53

Higher level services

Broadcast communication medium

Secure communication channel

Higher level services

Broadcast communication medium

Authentication & secure ids

Encryption

Routing and forwarding

Figure 1: Layering diagram showing the placement of the authentication and secure identifiers protocol

adjacent protocol layers, thus being suitable for incorpo-
ration in many contexts. We solve the problem of provid-
ing secure identifiers in a protocol-independent manner.
Any higher layer protocol (see Figure 1), including rout-
ing and forwarding, can use these secure identifiers.

Bobba et al. [5] presented the cyclic dependency be-
tween secure routing and security services, as shown in
Figure 2. They then proposed a self-organized approach
for bootstrapping security for the routing layer. Their
approach breaks the cyclic dependency by proposing a
secure routing protocol that does not depend on any se-
curity services. Thus, their approach removes edge (1) to
remove the cyclic dependency. Their solution is embed-
ded in the routing protocol and does not establish secure
identifiers for the higher layers. We take a complemen-
tary route to breaking the cyclic dependency: we aim
at removing dependency edge (2) in Figure 2, by show-
ing how to implement security services without relying
on the routing. Bobba et al. [5] had stated that “Re-
moving dependency (2) would be impractical because it
would require that the nodes implementing security ser-
vices be reachable by all other nodes in the network by
a fixed set of routes.” However, our approach (see also
[22]) does remove dependency (2) because we do not rely
on the existence of a routing protocol in our approach;
hence the nodes need not be reachable by a set of routes.

Section 2 gives a formal statement of the problem. Sec-
tion 3 presents the solution protocol for a peer-to-peer
ad-hoc wireless network. Section 4 performs a security
analysis. Section 5 gives the complexity analysis. Sec-
tion 6 discusses further aspects of the solution. Section 7
gives concluding remarks.

2 Objectives

Our goal is to devise a means for authenticated commu-
nication within a peer-to-peer ad-hoc network. As the
authenticity of communication is very closely related to
the identity of communicating parties, we also aim at a
method for providing network identifiers.

The problem is formalized as follows. Given a set of
nodes, we want them to be able to establish an authen-

�

�

Security services

- key establishment

- message integrity

- message confidentiality

- source authentication

Secure routing

Figure 2: Dependency cycle between secure routing and
security services. Figure is adapted from [5] to reflect our
approach of removing dependency (2) to break the cycle.

ticated network (AN for short). More formally, for any
given node j in the AN we want the following property.

Key Property : ∀i ∈ AN,PKj
i = PKi

i . (1)

PKj
i is the public key of node i as known by node j.

Note that PKi
i can be seen as the authentic public key

of node i. In other words, the above property states that
all nodes in the AN know the authentic public keys of all
other nodes in the AN. The authenticity of the public key
must be considered in the context of the entity that is in
the possession of the corresponding private key. Hence we
define PK to be an authentic public key of node i if and
only if (a) node i possesses the corresponding private key
and (b) the identity of node i can be verified to be bound
to that key. We do not require that the node i generates
both the public and private keys. In case they are gener-
ated by some other party, we implicitly assume that there
exists a trust relationship between the key generator and
that node. It should be noted that this assumption is very
subtle and should be carefully verified when considering
a larger context.

The problem stated above is essentially that of boot-
strapping the network. We assume that network layer
functions are not yet available, i.e., nodes do not forward

International Journal of Network Security, Vol.5, No.1, PP.51–61, July 2007 54

packets and do not implement any routing algorithm.

3 The Key Agreement Protocol

To determine a suitable identity model we emphasize a
quote from [18]: “in an ad-hoc network there may be
no a priori reason to distinguish between the different
nodes” (Section 2.2, last sentence). In this spirit we pro-
pose that the identifiers are self-appointed. We start by
assuming that every node has a pair 〈 private key, public
key 〉. We propose that the node identifier be a hash of
the node’s public key. For example, for node i we have
idi = hash(PKi) where idi is the assumed identifier of
the node, and PKi is its public key. This approach has
been described in [20, 21]. Observe that if the Key Prop-
erty in Equation (1) holds, then all the nodes in the AN
know each other’s identifiers.

The following notation is used to describe protocol
messages. When the contents of the message are relevant,
we use MSG(contents) to denote the message, where
contents lists the actual fields of the message. When we
want to refer to a given message more generally, we use
the shorter TYPE notation, where TYPE is a place-holder
for the type of message in question (e.g., JOIN or ACCEPT
or UPDATE). The type of message is usually the first field
of its contents – it can be an integer number or a string
and must be unique across different message types. PKi

and SKi are used for node i’s public and private key, re-
spectively. To indicate that the integrity of the message
M is protected by a digital signature, we use the notation
SSK(M) where SK is the private key used for signing.
The symbol denotes radio broadcast when describing
the flow of messages.

The protocol uses the following data structures. Each
node maintains a key table that gives the mapping be-
tween the identifiers and public keys, as well as some addi-
tional information. Each node j in the network maintains
the following data for each other node i.

• idi: Node identifier. In our approach, the identifier
is a hash value of the public key of the node, i.e.,
id = hash(PK). Note that the node identifier is a
fixed-length sequence of bits.

• PKi: Public key of the node.

• seqi: An integer that gives the sequence number
copied from the last JOIN message from i.

• timei: An integer that gives the local time when the
most recent message from node idi was seen.

Node j initializes its key table with one row containing
its identifier and public key. Note that both the seqj and
timej are not relevant in this case. Table 1 illustrates the
format of a node’s key table. The number of entries in
the key table of node j is denoted as Nj .

The protocol description uses variables KeyTablej and
KeyTableDeltaj . KeyTablej denotes two columns of

Table 1: A key table maintained by a node j

node id PK seq time
1 id1 PK1 seq1 time1

2 id2 PK2 seq2 time2

.
j idj PKj seqj timej

.
Nj idNj PKNj seqNj timeNj

node j’s key table: the PK column and the seq column.
KeyTableDeltaj denotes the set of those (PK, seq) en-
tries from j’s key table, that have been modified since the
last time a UPDATE message was sent by node j.

The proposed protocol to build an AN is outlined in
Figure 3 and is organized around the following two main
scenarios.

Node Join: A node outside of an AN wants to join AN.
This node may or may not be a member of some
other AN . If it is a member of another AN , then the
joining scenario is equivalent to a merge of the two
networks. The entire network AN can be viewed as
having been formed from a succession of subnetwork
merges. In each merge, one node initiates the pro-
tocol for the joining of two (or more) sub-networks
by sending a JOIN message. The nodes that receive
a JOIN respond with an ACCEPT message. This is
illustrated in Figure 4. A single JOIN may trigger
more than one ACCEPT, one from each node within
radio coverage. Note that the nodes that send the
ACCEPT messages in response may belong to different
ANs in the general case. Such cases are analyzed in
Section 5.

Let the sub-network of the node that initiates
the JOIN be denoted as ANjoin, and let the sub-
network(s) that accept this initiated merge be de-
noted as ANaccept. When |ANjoin| = 1, we have the
special case when a single node wants to join an ex-
isting AN on awakening or recovering.

Key Update: The contents of the key table change over
time. Entries can be added as a result of receiving
the JOIN, the ACCEPT, or the UPDATE message. Upon
a change in the key table, the node should notify
others by broadcasting the UPDATE message itself.
For node j the following message should be used.
j MSG(UPDATE, idj ,KeyTableDeltaj ,-
SSKj (UPDATE, idj ,KeyTableDeltaj)).

The protocol models the following seven events: Send
JOIN, Receive JOIN, Send ACCEPT, Receive ACCEPT, Send
UPDATE, Receive UPDATE, and Key Timeout. The first six
correspond to the send and receive of the three types of
messages used, and the seventh corresponds to a time-
out for maintaining the soft-state key table. Send JOIN,

International Journal of Network Security, Vol.5, No.1, PP.51–61, July 2007 55

When node i wants to join another AN :
it broadcasts the JOIN message:
i MSG(JOIN, idi, seqi, KeyTablei, SSKi

(JOIN, idi, seqi,KeyTablei)).

When node j ∈ AN receives the JOIN from node i and determines that i can join the AN :
j enters i’s data into its key table and broadcasts the ACCEPT message:
j MSG(ACCEPT, idj , seqi, PKi,KeyTablej , SSKj (ACCEPT, idj , seqi, PKi,KeyTablej)).
Then j broadcasts the UPDATE message:
j MSG(UPDATE, idj ,KeyTableDeltaj , SSKj (UPDATE, idj ,KeyTableDeltaj)).

When node i that has sent a JOIN receives the corresponding ACCEPT message:
i updates its key table.
Then the node broadcasts an UPDATE message:
i MSG(UPDATE, idi,KeyTableDeltai, SSKi(UPDATE, idi,KeyTableDeltai)).

When node j inside the AN receives a UPDATE message:
j updates its key table using KeyTableDelta.
If new entries are added to its key table,

the node broadcasts the UPDATE message:
j MSG(UPDATE, idj ,KeyTableDeltaj , SSKj

(UPDATE, idj ,KeyTableDeltaj)).

Figure 3: Outline of protocol to establish authenticated channels

JOIN

ACCEPT

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

��
������		
��

��
�		
��

��
����

�

� �

�

�

��
�		
��

��
����

�

Figure 4: A graphical depiction of the main steps of the
JOIN scenario. Note that all the messages are broadcast
– arrows are only used to indicate the actual recipients.

Receive JOIN, Receive ACCEPT, Receive UPDATE, and Key
Timeout trigger other actions. The processing for each of
these seven events is described below. Using a reactive
interrupt-driven formulation, this processing is summa-
rized in Figure 3.

1) Send JOIN: This event pertains to a node in ANjoin.
When a node i wants to join another AN, it should
generate a pair of keys (PKi, SKi), where PKi is the
public key and SKi is the corresponding secret key
and then broadcast the JOIN message. If it has al-
ready generated this pair before, but is now joining a
new AN due to mobility or other reasons, it does not
have to regenerate a different key pair. The seqi field
of the message is a sequence number that is guaran-
teed to be increasing with time for a given node and
the idi is the hash of the public key generated.

2) Receive JOIN: This event pertains to a node that is
not a member of ANjoin. When a node j receives
a JOIN message, it should first verify the validity of
the digital signature of the message. If the signature
is invalid, the message should be discarded and no
further action should be taken. If the signature is
valid, j should compute the hash value of the public
key idi = hash(PKi) and check if there exists an
entry with idi for node i in its (i.e. j’s) key table.

a. If the idi entry does not exist, then the new
entry should be added with the computed idi

and both PKi and seqi values copied from the
JOIN message. The timei field should be set
to node j’s local time. The node should then
broadcast the ACCEPT message, and also broad-
cast the UPDATE message (see event 5).

International Journal of Network Security, Vol.5, No.1, PP.51–61, July 2007 56

b. If the idi entry does exist, let k be the index
of that entry in the key table; hence idi = idk.
Also the corresponding public key and sequence
number are denoted by PKk and seqk, respec-
tively. There are three cases.

i. PKi 6= PKk: There is a collision in the
hash function. The JOIN message should
be discarded. Dealing with collisions is dis-
cussed in Section 6.

ii. PKi = PKk and seqi < seqk: This might
indicate an attempt to mount a replay at-
tack. (Note that the JOIN messages are not
subject to the regular network routing and
forwarding, hence this case does not indi-
cate routing loops or other network-layer
problems.) This can also mean that node i
sequence counter has wrapped around. The
JOIN message should be discarded.

iii. PKi = PKk and seqi ≥ seqk: This may
indicate that the node i is sending spuri-
ous JOIN messages. The sequence number
seqk should be updated to seqi, the ACCEPT
message should be broadcast, and then the
UPDATE message should be broadcast (see
event 5).

3) Send ACCEPT: This event pertains to a node that is
not a member of ANjoin. On receiving a JOIN mes-
sage from node i (Event (2)), when a member node
j determines that i can be admitted to its AN with-
out an identifier conflict, it broadcasts the ACCEPT
message. The KeyTablej field of the message should
contain all the (PK, seq) pairs from the key table of
node j.

4) Receive ACCEPT: This event pertains to the specific
node in ANjoin that sent the JOIN message. After
broadcasting the JOIN message, when the node in
ANjoin receives a corresponding ACCEPT message, it
is considered to be a member of the AN join+accept

network. The node should check the signature of the
message and drop the message if the check fails. If
the signature is valid, the node should add entries
from the KeyTable field of the ACCEPT message to
its key table. Then the node broadcasts an UPDATE
message so that any other AN also within its range
can learn of ANaccept.

A node that did not send the JOIN message should
drop any ACCEPT message received.

5) Send UPDATE: This event pertains to a node that is a
member of the ANjoin or ANaccept. New entries are
added to the node’s key table in the following cases.

Event 2a: node in ANaccept sends UPDATE.

Event 2(b)iii: node in ANaccept sends UPDATE.

Event 4: node in ANjoin sends UPDATE.

Event 6: node in ANjoin or ANaccept sends UPDATE.

When new entries are added to the node’s key table,
the node should broadcast the UPDATE message. The
KeyTableDelta field of the message should contain
all the (PK, seq) pairs that have been updated since
the last time the UPDATE message was sent.

6) Receive UPDATE: This event pertains to a node that
is a member of ANjoin or ANaccept. When a node re-
ceives the UPDATE message, it should check the signa-
ture of the message. The message should be dropped
and no further action should be taken if the signa-
ture is invalid, otherwise the node should add entries
from the KeyTableDelta field to its key table. It
then executes actions associated with Send UPDATE,
see event (5). A node outside of the AN should drop
the UPDATE message.

7) Key Timeout: Each node should maintain a times-
tamp associated with every entry in its key table
(field time in the key table). Node i should update
the timestamp to its current time for entry j every
time it receives a message sent by node j. Note that
the message need not be addressed to node i. An en-
try should be deleted from the key table if the times-
tamp is older than a specified tunable value. The de-
fault can be set to a high value to minimize overhead
under normal operation. This timeout mechanism
implements a soft-state key table.

4 Security Analysis

The protocol assumes no prior context shared between
nodes and succeeds in allowing the nodes to perform some
mutually desired interaction. This is similar to meeting
a stranger who introduces himself as “X”. One cannot
trust the stranger but needs to build trust over time, as-
sociating its level and other attributes with the name “X”.
If over time, all the interactions allow us to achieve our
goals, and the person has been well-behaving until then,
we do not care much about what that person’s real name
is. The initial communication phase and the subsequent
process of associating trust are important.

Analogously, in the absence of prior context and lack
of infrastructure, we cannot do better that to trust the
other communication party with what he says. In our
protocol, the initial trust is restricted to the identity (and
the public key), as communicated by the other party. Un-
der this assumption, a man-in-the-middle attack looses its
meaning. Consider a malicious node that is in between
us and some other node and just relays that node’s com-
munications to and from us. Since all the messages are
signed, the attacker has no other choice than to use his
own private key and the corresponding public key as the
identifier (otherwise messages we receive would fail the
integrity check). From our perspective, all the messages
appear as coming from the attacker, since his identity can
be bound to the message by checking of the message sig-
nature. If such interactions are satisfactory to us, then it

International Journal of Network Security, Vol.5, No.1, PP.51–61, July 2007 57

is really irrelevant who the sender of the message is.
In our identity model, impersonating a node is equiva-

lent to being able to generate a signature using that node’s
private key. The facts that each message carries a digital
signature, and that a node’s identity is bound to its pub-
lic key, make impersonation attacks impossible. Further,
the replay and reflection attacks against the joining phase
are thwarted by the use of sequence numbers.

All practical applications will require the identifier to
be bound to some other higher-level information (e.g., a
person name, an IP address, a MAC address, an organi-
zation name). The existence of an authenticated channel
provided by our protocol allows those higher-level associa-
tions to be established securely using cryptographic tech-
niques (both symmetric and public key schemes can be
used).

A specific example of a higher level data that can be
associated with the identity of the node is its reputation.
Mechanisms for managing reputations, such as those for
peer-to-peer and ad-hoc networks ([1, 6, 16, 24]), can be
combined with our protocol to provide mechanisms to in-
crease (or decrease) the trust level between nodes. To our
knowledge, the reputation management schemes rely on
the existence of a secure outside communication channel,
which our protocol provides.

In the Sybil attack ([25]), a malicious entity gains con-
trol of multiple network identities and leverages that con-
trol to perform some unauthorized action. Sybil attack
is mostly applicable against reputation management pro-
tocols, quorum-based systems and systems where certain
functions require cooperation of a given number of nodes
(e.g., threshold cryptography). Consider now the Sybil
attack in the context of the higher-level information men-
tioned above. In principle, there is nothing that would
prevent an entity from generating multiple public, private
key-pairs and thus assuming multiple identities. This is
due to the assumed characteristics of the communication
medium, i.e. its unreliability and its broadcast nature.
Thus, mechanisms on higher levels must be used to ad-
dressing the Sybil attack threat, for example, reputation
management approaches mentioned above.

All the attacks considered so far (man-in-the-middle,
impersonation, replay, reflection, Sybil) are active at-
tacks. They require the potential attacker to perform
some action, to take part in the communications by send-
ing messages. Let us now consider a passive attack. In
such a scenario, the attacker is only listening to the com-
munications without performing any actions. In particu-
lar, consider the passive eavesdropping attack, i.e., discov-
ering the contents of communications that are intended to
be secret, except for the authorized parties. Observe that
the proposed protocol results in nodes knowing each oth-
ers’ authentic public keys. With this, the nodes can safely
set up a communication channel protected by symmetric
cryptography. Thus the proposed protocol provides re-
silience to passive eavesdropping attacks.

The approach presented in this work exhibits good se-
curity properties, as it is immune to various attacks. It

should be noted that most of the work presented in the
literature (see Section 1.2) presents comparable guaran-
tees. With only few exceptions (e.g., [18] vulnerable to
the man-in-the-middle attack), the prior protocols are
also safe against the attacks analyzed above. However,
the approach presented here provides security with less
restrictive assumptions, meeting requirements R1 – R3.

5 Complexity Analysis

Let N be the number of entries in the sender’s key table
and M be the number of fresh entries in the sender’s key
table. The sizes of the data fields and messages used in
the protocol are given in Tables 2 and 3. We use nota-
tion |JOIN| to denote the size of the JOIN message; simi-
larly for the other messages. N is a parameter for JOIN
and ACCEPT messages, M is a parameter for UPDATE mes-
sages. Assuming a 1536-bit public key, the number given
in Table 2 is for the compressed public key, used in trans-
mission. Note that as we use hashes of the public keys as
the identifiers, we save on message size for the higher layer
protocols. To analyze the protocol complexity, we assume
that the nodes are static, and that there is steady traffic
among the nodes after bootstrapping. The latter assump-
tion rules out churn in the key tables by preventing aging
of entries.

Table 2: Sizes of data fields

data field size (bytes)
id 4

PK 64
seq 4
SSK 97

We define a joiner as a node from ANjoin that initi-
ates the protocol and an acceptor as a node from ANaccept

that receives the JOIN message and responds with ACCEPT.
Usually i will be used to describe a joiner and j will be
used to describe the acceptor. Let Bi denote the set of
nodes in the neighborhood of node i (i.e., the nodes within
i’s radio range) at the time i individually joins another
AN . Let |Bi| be denoted by bi. We assume that there
is one joiner in each merge operation. This does not lose
generality because we can simply require a singleton node
that is not part of a larger AN but wants to join, to re-
main silent until it hears no bootstrapping messages. Fig-
ure 5 depicts merge scenarios described in the following
sections.

5.1 Simple Scenario

Consider a node join, where a single node i (i.e., ANjoin =
{i}) wants to join the ANaccept. Here we assume a sin-
gle AN within radio range of the joiner. Node i triggers

International Journal of Network Security, Vol.5, No.1, PP.51–61, July 2007 58

��������	

��������	�

��������	�

����

�

������

�

������

����

������

�

������

������

����

Figure 5: Three merge scenarios. Scenario A is a sim-
ple case where a single node joins an existing AN (Sec-
tion 5.1). Scenario B shows a single node joining multi-
ple AN s (Section 5.2), and Scenario C depicts two AN s
merging together (Section 5.3).

Table 3: Sizes of the messages used

message size (bytes)

JOIN 1 + 4 + 4 + (64 + 4)N + 97 = 68N + 106

ACCEPT 1 + 4 + 64 + (64 + 4)N + 97 = 68N + 166

UPDATE 1 + 4 + (64 + 4)M + 97 = 68M + 102

the protocol by broadcasting the JOIN message; the re-
sult is ANjoin+accept that is one node larger in size than
ANaccept. The JOIN message triggers bi ACCEPT mes-
sages. Each of the bi nodes also broadcasts an UPDATE
message, and eventually all nodes in ANaccept receive
an UPDATE and broadcast an UPDATE. Thus, there are
|ANaccept| UPDATE messages. Finally, node i also broad-
casts an UPDATE after receiving the first ACCEPT. The num-
ber of messages broadcast for this merge is

1 + bi + (|ANaccept|+ 1). (2)

The number of bytes transmitted for this merge is

1 · |JOIN(1)|+ bi · |ACCEPT(|ANaccept|)|+
|ANaccept| · |UPDATE(1)|+ 1 · |UPDATE(|ANaccept|)|.

5.2 Merging with Multiple ANs

A single joiner node has x disjoint ANs in its radio
range. The ANs are disjoint because they are outside
each other’s radio range. Assuming the unit disk radius
model, observe that x ≤ 6 as at most six equilateral tri-
angles can have their apex at the center of the circular
radio coverage of the joiner. Let the adjacent ANs be
identified by superscripts. There will be one JOIN and bi

ACCEPTs. The joiner will perform x UPDATEs. The num-
ber of UPDATEs performed in ANy

accept, where y ∈ [1, x],
is given as (|ANy

accept|)(1 + (x − 1)). For each node in
each ANy

accept, there is one UPDATE broadcast in response
to the joiner’s JOIN message, and each of the other x− 1
UPDATE broadcasts is triggered by the UPDATE broadcast
by the joiner in response to the UPDATE the joiner received
from other ANs. The number of messages broadcast for
this merge is

1 + bi + x + (
∑

y∈[1,x]

|ANy
accept| · x). (3)

The number of bytes transmitted for this merge, assuming
each node in radio range that responds with an ACCEPT
belongs to an AN of uniform size |ANaccept|, is given by

1 · |JOIN(1)|+ bi · |ACCEPT(|ANaccept|)|+∑

y∈[1,x]

|UPDATE(|ANy
accept|)|+

∑

y∈[1,x]

(|ANy
accept|)(|UPDATE(1)|+

∑

z∈[1,x]\y
|UPDATE(|ANz

accept|)|).

International Journal of Network Security, Vol.5, No.1, PP.51–61, July 2007 59

The third term represents the byte count in the UPDATE
messages broadcast by the joiner across its x broadcasts.
In the fourth term,

∑
y∈[1,x](|ANy

accept|) represents the
count of nodes in all the x ANs which accept the JOIN of
the joiner. Each such node broadcasts:

• one UPDATE because of the joiner joining the AN .
The byte count of this UPDATE is UPDATE(1).

• one UPDATE for each of the other x − 1 ANs,
because the joiner receives and forwards the
UPDATE(|ANz

accept|) from each other AN z that it
joins. The total byte count of these UPDATE mes-
sages broadcast by this one node in ANy

accept is∑
z∈[1,x]\y |UPDATE(|ANz

accept|)|.

5.3 Merging Two ANs

Both ANjoin and ANaccept have size larger than 1. This
scenario can occur if ANjoin is mobile and the joiner
moves within range of ANaccept. We assume there is a
single joiner node in ANjoin. The number of messages
broadcast for this merge is

1 + bi + (|ANaccept|+ |ANjoin|). (4)

The number of bytes transmitted for this merge is

1 · |JOIN(|ANjoin|)|+ bi · |ACCEPT(|ANaccept|)|+
|ANaccept| · |UPDATE(|ANjoin|)|+

|ANjoin| · |UPDATE(|ANaccept|)|.

5.4 Overall Bootstrapping Cost – Broad-
casts

For each of the scenarios in Sections 5.1, 5.2, and 5.3, let
n be |AN | after the JOIN operation completes. For the
scenario in Section 5.1, the total number of broadcasts
T (n) is expressible by the following recurrence relation
derived using Equation (2).

T (n) = n + 1 + bi + T (n− 1). (5)

For the scenario in Section 5.2, using Equation (3), the
total number of broadcasts can be given by

T (n) ≤ 7 + bi +
∑

y∈[1,6]

|ANy
accept| · 6 +

∑

y∈[1,x]

T (ny),

where
∑

y∈[1,x]

ny = n− 1. (6)

For the scenario in Section 5.3, using Equation (4), the
total number of broadcasts can be given by

T (n) = n+1+ bi +T (n1)+T (n2), where n1 +n2 = n−1.
(7)

In all three cases of Equations (5), (6), (7), the recurrence
relations can be solved to show that

T (n) = O(n · (n + 1)/2 +
∑

i∈[1,n]

bi) = O(n2).

5.5 Overall Bootstrapping Cost – Mes-
sage Space

The logic to compute the total message space to bootstrap
an AN uses the “number of key table entries broadcast”
as a metric, and is as follows. The key table entry for
node i enters each node’s key table.

• When node j first learns i’s key, it broadcasts an
UPDATE and no more UPDATEs will contain i’s key ta-
ble entry.

• Node j broadcasts i’s key table entry in an ACCEPT
each time it receives a JOIN, and only after i’s key
table entry begins to exist in its own key table. The
total number of JOINs received by j is bounded by
|AN |/2 · b, where b is the average of the values bk.

Skipping the intermediate steps, we can show that the
total number of times a node i’s table entry is broadcast,
which gives the message space cost for bootstrapping that
node i’s entry in the entire network, is bounded by

|AN |+ b · |AN |/2 = |AN | · (1 + b/2).

The total message space complexity is thus

O(|AN |2 · (1 + b)) key table entries.

If b is O(1), the total message space complexity for boot-
strapping the entire network becomes O(|AN |2). This
is a reasonable assumption assuming uniform node den-
sity, irrespective of the size of the AN . The number of
neighbours of any one node can then be expected to be a
function of the transmitting radius.

6 Discussion

The proposed protocol establishes an authenticated com-
munication channel between nodes in a wireless ad-hoc
network. It also provides nodes with reliable identifiers
that are resistant to impersonation attacks. The imper-
sonation attacks are thwarted by the fact that the binding
between the public key and the identity of the node can
be easily verified by any member of the network. To ef-
fectively impersonate a node would require access to its
secret private key used for signing the messages. Note
that the existence of an authenticated channel allows the
creation of a secret channel, thus making our protocol
a basis for a solution immune to eavesdropping attacks.
Observe also that the use of public key signatures results
in one more valuable property, i.e., non-repudiation.

We now consider the identity model assumed. It is pos-
sible that two nodes will generate the same public key.
However, the probability of such an event is extremely
small, i.e. 1/21536, assuming a 1536-bit public key (re-
call that the size given in Table 2 is for the compressed
public key, used in transmission). Furthermore, even if
public keys are different, a collision in the hash function
is still possible. However – by the birthday paradox – if

International Journal of Network Security, Vol.5, No.1, PP.51–61, July 2007 60

we assume 32-bit identifiers, then there would have to be
an average of 1.2 ∗ 216, i.e. about 7.86 ∗ 104 nodes in the
network for the probability of collision to exceed 1/2. If
we assume 64-bit identifiers, then about 5.15 ∗ 109 nodes
are required for the probability of a collision to exceed
1/2.

The proposed protocol has the following features.

• As the identifiers provided by our protocol are im-
mune to impersonation attacks, they can be used in
a reputation management system.

• If a higher level of security is desired, a secret com-
munication channel can be built between nodes in the
AN. This allows for inter-AN messages to be sent in
encrypted form.

• It is possible that two nodes can select the same iden-
tifiers, but chances of this are very small. Note that
these extremely rare occurrences can be dealt with
by introducing a new message DENY that is sent by
a node in the AN when it detects a collision. The
joiner node should generate a new key pair in case of
a collision.

• One might simplify our protocol so that it does not
result in security associations (known public keys)
between all pairs. Then the approach of [8] for secure
routing despite incomplete set of security associations
can be used.

While there exist key agreement proposals for ad-hoc
networks with lower message overhead and better space
and computation requirements, none of them exhibit all
the properties of our proposed protocol. To our knowl-
edge, this is the first general method for establishing au-
thenticated channels that satisfies the three requirements
(R1) – (R3) listed in Section 1.3. In particular, this pro-
tocol is fully self-organized. In that respect, it differs
from the family of identity-based cryptosystems, where
a trusted third party is required to compute the private
key in the setup phase. While the logic of the protocol
may appear easy to follow, the significance is that it es-
tablishes a baseline protocol meeting requirements (R1) –
(R3). It is general enough to be incorporated in various
protocol settings. This proposal should be considered as
a first humble step in the process of finding completely
self-organized solutions to the problem of securing ad-hoc
networks.

7 Conclusions

This paper made two contributions.

• First, it proposed a fully self-organized protocol that
establishes an authenticated communication channel
between nodes of a wireless ad-hoc network. The
protocol does not rely on the existence of a Trusted
Third Party, the nodes do not need to share a prior
common context, and no out-of-band communication

channel is required. The protocol is independent of
the upper layer protocols, and in particular, it is not
an extension to any existing routing protocol. The
resulting authenticated channel can be further used
to establish a secret communication channel between
nodes.

• Second, the protocol also provides a secure identifier
framework that is resilient to impersonation. The
authentic identifiers provided by the protocol can be
used to associate network (and upper) layer identi-
fiers to prevent spoofing. They can also serve as a
reliable basis for reputation management protocols.

The protocol can be extended to handle multiple in-
dependent authenticated networks. This would be useful
in a scenario where more than one ANs need to share
the same bandwidth. It also allows for one node to be the
member of multiple ANs. This is useful from the applica-
tion perspective and also facilitates the implementation of
some network functions such as firewalling and tunneling
between different AN s.

References

[1] K. Aberer and Z. Despotovic, “Managing trust in
a peer-to-peer information system,” in 10th Inter-
national Conference on Information and Knowledge
Management, pp. 310-317, Atlanta, Georgia, USA,
2001.

[2] N. Arora and R. K. Shyamasundar, “UGSP: Secure
key establishment protocol for ad-hoc networks,” in
First International Conference on Distributed Com-
puting and Internet Technology (ICDCIT), pp. 391-
399, Bhubaneswar, India, 2004.

[3] D. Balfanz, D. Smetters, P. Stewart, and H. Wong,
“Talking to strangers: Authentication in adhoc wire-
less networks,” in Symposium on Network and Dis-
tributed Systems Security (NDSS ’02), San Diego,
California, USA, 2002.

[4] S. Blake-Wilson and A. Menezes, “Authenticated
Diffie-Hellman key agreement protocols,” in Se-
lected Areas in Cryptography (SAC’98), pp. 339-361,
Kingston, Ontario, Canada, 1998.

[5] R. B. Bobba, L. Eschenauer, V. Gligor, and W. Ar-
baugh, “Bootstrapping security associations for rout-
ing in mobile ad-hoc networks,” in GLOBECOM’03,
IEEE Global Communications Conference, pp. 1511-
1515 , San Francisco, California, USA, 2003.

[6] S. Braynov and T. Sandholm, “Incentive compatible
mechanism for trust revelation,” in 1st International
Conference on Autonomous Agents and Multiagent
Systems, pp. 310-311, Bologna, Italy, 2002.

[7] S. Capkun, L. Buttyán, and J.-P. Hubaux, “Self-
organized public-key management for mobile ad hoc
networks,” IEEE Transactions on Mobile Comput-
ing, vol. 2, no. 1, pp. 52-64, 2003.

International Journal of Network Security, Vol.5, No.1, PP.51–61, July 2007 61

[8] S. Capkun and J. P. Hubaux, “BISS: building secure
routing out of an incomplete set of secure associa-
tions,” in 2nd ACM Workshop on Wireless Security
(WiSe’03), pp. 21-29, San Diego, California, USA,
2003.

[9] S. Capkun, J.-P. Hubaux, and L. Buttyán, “Mobility
helps security in ad hoc networks,” in 4th ACM In-
terational Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc 2003), pp. 46-56, Annapo-
lis, Maryland, USA, 2003.

[10] C. Castelluccia and J. H. Yi, DoS-resistant Self-
keying Mobile Ad-hoc Networks, Technical Report
RR-5373, INRIA-Rhone-Alpes, Nov. 2004.

[11] H. Deng and D. P. Agrawal, “TIDS: threshold and
identity-based security scheme for wireless ad hoc
networks,” Ad Hoc Networks, vol. 2, no. 3, pp. 291-
307, 2004.

[12] W. Du, J. Deng, Y. S. Han, and P. Varshney, “A
pairwise key pre-distribution scheme for wireless sen-
sor networks,” in 10th ACM Conference on Com-
puter and Communications Security (CCS), pp. 42-
51, Washington, DC, USA, 2003.

[13] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K.
Varshney, “A key management scheme for wireless
sensor networks using deployment knowledge,” in IN-
FOCOM, pp. 586-597, 2004.

[14] W. Du, J. Deng, Y. S. Han, P. Varshney, J. Katz, and
A. Khalili, “A pairwise key pre-distribution scheme
for wireless sensor networks,” ACM Transactions on
Information and System Security, vol. 8, no. 2, pp.
228-258, 2005.

[15] L. Eschenauer and V. D. Gligor, “A key-management
scheme for distributed sensor networks,” in ACM
Conference on Computer and Communications Se-
curity, pp. 41-47, 2002.

[16] M. Gupta, P. Judge, and M. Ammar, “A reputation
system for peer-to-peer networks,” in 13th Interna-
tional Workshop on Network and Operating Systems
Support for Digital Audio and Video, pp. 144-152,
Monterey, California, USA, 2003.

[17] J.-P. Hubaux, L. Buttyán, and S. Capkun, “The
quest for security in mobile ad hoc networks,” in
2nd ACM Interational Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc 2001), pp.
146-155, Long Beach, CA, USA, 2001.

[18] A. Khalili, J. Katz, and W. A. Arbaugh, “Toward
secure key distribution in truly ad-hoc networks,” in
IEEE Workshop on Security and Assurance in Ad-
Hoc Networks, pp. 342-346, 2003.

[19] D. Liu, P. Ning, and R. Li, “Establishing pairwise
keys in distributed sensor networks,” ACM Transac-
tions on Information and System Security, vol. 8, no.
1, pp. 41-77, 2005.

[20] G. Montenegro and C. Castelluccia, “Crypto-based
identifiers (CBIDs): Concepts and applications,”
ACM Transactions on Information and System Se-
curity, vol. 7, no. 1, pp. 97-127, 2004.

[21] G. O’Shea and M. Roe, “Child-proof authentication
for MIPv6 (CAM),” SIGCOMM Computer Commu-
nication Review, vol. 31, no. 2, pp. 4-8, 2001.

[22] B. Sieka and A. D. Kshemkalyani, “Fully self-
organized key agreement for ad-hoc wireless net-
works,” in IEEE Consumer Communications and
Networking Conference (CCNC 2006), pp. 80-85, Las
Vegas, NV, USA, 2006.

[23] F. Stajano and R. J. Anderson, “The resurrecting
duckling: Security issues for ad-hoc wireless net-
works,” in 7th International Workshop on Security
Protocols, pp. 172-194, Cambridge, UK, 1999.

[24] B. Yu and M. Singh, “An evidential model of dis-
tributed reputation management,” in 1st Interna-
tional Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 294-301, Bologna, Italy, 2002.

[25] Q. Zhang, P. Wang, D. S. Reeves, and P. Ning, “De-
fending against sybil attacks in sensor networks,” in
Second International Workshop on Security in Dis-
tributed Computing Systems (SDCS), pp. 185-191,
2005.

Bartlomiej Sieka has founded Semi-
half, a software development company
specialising in embedded systems and
computer security. He received a
Ph.D. in Computer Science from the
University of Illinois at Chicago in
2006. He received a M.S. in Computer
Science from the Jagiellonian Univer-

sity in Cracow, Poland in 1999 and a M.S. in Computer
Science from the University of Illinois at Chicago, USA,
also in 1999. His research interests include computer net-
work security with particular emphasis on wireless, ad-
hoc, and peer-to-peer networks.

Ajay Kshemkalyani is an Associate
Professor at the University of Illinois
at Chicago since 2000, before which he
spent several years at IBM Research
Triangle Park working on various as-
pects of computer networks. He re-
ceived a Ph.D. in Computer Science
from The Ohio State University in

1991, and a B.Tech. in Computer Science and Engineer-
ing from the Indian Institute of Technology, Bombay, in
1987. His research interests are in computer networks,
distributed computing, and algorithms.

