
International Journal of Network Security, Vol.5, No.1, PP.21–31, July 2007 21

Evaluation of Distributed File Integrity

Analyzers in the Presence of Tampering∗

Adam J. Rocke1, Ronald F. DeMara1, and Simon Foo2

(Corresponding author: Adam J. Rocke)

Department of Electrical and Computer Engineering, University of Central Florida Orlando1

4000 Central Florida Blvd., Orlando, FL 32816–2450, USA

Department of Electrical and Computer Engineering2

The Florida A&M University and the Florida State University, Tallahassee, FL 32310–6046, USA

(Received Oct. 11, 2005; revised and accepted Dec. 3, 2005 & Feb. 6, 2006)

Abstract

In this paper, the Collaborative Object Notification
Framework for Insider Defense using Autonomous Net-
work Transactions (CONFIDANT) is evaluated in the
presence of tampering. CONFIDANT’s mitigation capa-
bilities are assessed and compared with conventional file
integrity analyzers such as AIDE and tripwire. The po-
tential of distributed techniques to address certain tam-
pering modes such as Pacing, Altering Internal Data,
and File Juggling are discussed. To assess capabili-
ties, a variably-weighted tampering mode exposure metric
scheme is developed and utilized. Results indicate a range
of vulnerabilities for which mitigation techniques such as
Encapsulation, Redundancy, Scrambling, and mandatory
obsolescence can increase robustness against challenging
exposures, including various insider tampering risks.

Keywords: File system integrity, intrusion detection
evaluation, network-level security, tampering exposures,
weighted metric evaluation scheme

1 Introduction

An Intrusion Detection System (IDS) serves to identify
breaches of computer system security and performs an
important role in protecting computer systems from tam-
pering [3, 6, 7, 8]. File integrity analyzers are a class of
related tools that verify the correctness of security-critical
files in order to detect suspicious modification.

Two popular tools are tripwire and the Advanced In-
trusion Detection Environment (AIDE). Tripwire utilizes
a policy file to describe permitted changes to critical sys-
tem files. A baseline database is created by applying cryp-
tographic hash functions to system files as specified in the
policy file. Future scan results are compared to entries in

∗Supported in-part by National Security Agency subcontract

MDA904-99-C-2642.

the baseline database and a report containing the status
of system file contents is generated. AIDE and other tools
operate similarly.

Existing frameworks reviewed in [1], including Trip-
wire and AIDE, exhibit a single point-of-failure and are
subject to insider tampering. The Collaborative Ob-
ject Notification Framework for Insider Defense using Au-
tonomous Network Transactions (CONFIDANT) aims at
trusted detection of unauthorized modifications to filesys-
tem data. The design of CONFIDANT is based on two
goals in order to limit exposures present in existing frame-
works. These goals are:

Goal-1: to reduce single point-of-failure exposures and

Goal-2: increase barriers against insider tampering.

The tampering mode vulnerabilities defined in [1] in-
clude spoofing, termination, sidetracking, altering inter-
nal data, and selective deception categories. The CONFI-
DANT design approach to mitigate these exposures, in-
cluding user capability classification, is provided in [9].
The CONFIDANT agent framework utilizes four au-
tonomous behaviors operating in three distinct echelons as
defined in [10]. An IDS taxonomy, example handshaking
scenarios, and CONFIDANT evaluation results for Goal-
1 are also provided therein. Related agents, ai

j , commu-

nicate within committees, Ci, where i is the committee
index and j is the committee agent ID. Interlocked agent
communication conveys file scan results, network status,
and ensures that failure of an individual agent or network
node is detected by other committee members. Results
show that CONFIDANT does not exhibit the single point-
of-failure present in existing frameworks.

In this paper, the CONFIDANT file integrity verifica-
tion framework is evaluated with respect to robustness in
the presence of tampering. Evaluation in the presence of
insider tampering for each tampering mode is provided
in Section 2. A comparative metric weighting scheme is

International Journal of Network Security, Vol.5, No.1, PP.21–31, July 2007 22

Table 1: Numerical measures for the file integrity problem
Numerical Measure Description

True Positive (TP) Modification of a monitored file followed by an appropriate alarm
False Positive (FP) The presence of an alarm when no file modification has occurred

True Negative (TN) The absence of both a file modification and an alarm
False Negative (FN) A file modification without an associated alarm

Sensitivity (Sen) Probability that a file modification is identified when present (TP
TP+FN

)

Specificity (Spec) Probability that an alarm is not sounded when a file modification is not present (TN
FP+TN

)

proposed in Section 3 to evaluate performance relative to
the existing frameworks Tripwire [4, 11] and AIDE [5].

2 Evaluation Methodology and

Results

As listed in Table 1, an alarm generated in response to an
authorized file modification is a FP. Leveraging the fact
that any alarm might potentially provide useful intrusion
information, every file modification encountered by CON-
FIDANT agents that is not permitted is reported and
considered a TP. An alarm generated by an agent due to
network outages may be considered a FP if it is the result
of benign activity. The presence of an alarm generated
by such activity is considered to be a TP, as network or
gateway failure may be an indication of malicious intent
where an insider tries to circumvent CONFIDANT agent
interactions. In this case, alarms are generated in order
to notify administrators of the unavailability of these net-
work resources.

Evaluation in the presence of insider tampering is pro-
vided below. Tripwire and AIDE are tested in addition to
CONFIDANT for comparison. The default Tripwire and
AIDE configuration performs integrity scans once daily
following the NIST recommendation for file integrity scan
intervals [12]. In order to facilitate testing, scan timing is
increased to once every minute. Tripwire and AIDE scan
results are provided in an email message to the adminis-
trator to serve as alarm notification, while CONFIDANT
uses communication and interlocking between agents to
provide alert information.

2.1 Testing of Spoofing Tampering

Modes

Transmitting counterfeit data in order to mislead the re-
cipient is Spoofing. Spoonfeeding sensor information not
present in the target file, Sugarcoating unfavorable re-
ports prior to evaluation, and Recanting alert notification
are all instances of Spoofing. CONFIDANT is designed
to mitigate exposures to Spoofing tampering modes by
employing techniques such as direct interaction between
the agent gateway and hardware resources on local hosts,
SSL communication between remote hosts, and agent in-
terlocking.

All existing IDS frameworks including CONFIDANT
operate at the application layer. As a result, several
non-trivial but potentially serious vulnerabilities remain.
CONFIDANT mitigation techniques are based on the as-
surance of an initial known safe state, robust agent com-
munication, and gateway integrity. For this to be the case,
the hardware and operating system kernels must remain
free of tampering. Techniques to mitigate tampering at
the hardware and operating system level are the subject
of future research.

2.2 Testing of Termination Tampering

Modes

Test Case: TC-Blindfolding

Blindfolding an IDS involves disabling sensor pro-
cesses. Since the Tripwire and AIDE processes perform
sensor and control routines, termination of the scanning
process is tampering by Blindfolding. Termination of the
IDS process causes a race condition where if the verifica-
tion process was able to complete operations before scan
operation was disabled, the scan was allowed to inspect
file contents. Knowledge of scan times increases the via-
bility of Blindfolding.

The cron daemon emails any process execution output
as a report to the task owner. Termination of the Tripwire
process results in an alarm stating that execution termi-
nated due to an uncaught signal in place of the normal
scan result. Termination of the AIDE process results in
the absence of an AIDE-specific response, but cron re-
ports that the process exited due to an uncaught signal.
In this case, the expected alarm is never observed, but
insight into potential tampering is provided. One prob-
lem is that the response is generated by cron and not
AIDE. It is possible that an administrator, by expecting
an AIDE-specific response, will ignore the cron-generated
notification. Since the Tripwire and AIDE processes are
spawned by cron, another Blindfolding technique is to
terminate the cron daemon. Termination of cron results
in the absence of a response. This is expected because if
the scan is never initiated, no response can be generated.

Termination of the CONFIDANT gateway process re-
sults in the destination being unavailable during an at-
tempted agent dispatch. When a gateway is unavailable,
an alarm notification is sent to other committee members.
Similarly, when file integrity scan results are unavailable,
as is the case when agent ai

j is terminated, other commit-

International Journal of Network Security, Vol.5, No.1, PP.21–31, July 2007 23

Table 2: Termination test results
Tripwire AIDE CONFIDANT

No Tampering Cron Output (TP) AIDE Output (TP) Alarm (TP)
Terminate IDS Cron Error Cron Error Remote

Process Output (TP) Output (TP) Alarm (TP)
Terminate Mail Cron Error Cron Error Alarm (TP)

Process Output (TP) Output (TP)
Terminate Cron No Alarm (FN) No Alarm (FN) Alarm (TP)

Daemon

Sensitivity 0.725 0.725 1
Specificity 1 1 1

tee agents ai
k 6=j trigger an alarm.

A random number generator was used to select between
the absence of tampering, termination of the IDS, mail,
or cron processes over many tests. Results are listed in
Table 2. Of the three tested frameworks, CONFIDANT
is most resistant to Blindfolding as an alarm is generated
if a scan cannot be performed. In the best case, termi-
nation of Tripwire and AIDE processes will report that
an error has occurred. In the worst case, termination of
the cron daemon causes Tripwire and AIDE to fail com-
pletely. Termination of a CONFIDANT gateway prompts
remote committee agents to report that a resource is un-
available as described previously.

Test Case: TC-Commandeering

Due to sensor and control functions being performed
within a single process, the testing of Commandeering
follows the same steps as Blindfolding, and has the same
result listed in Table 2. Here again those processes are
terminated prior to generation of alarms. Tripwire and
AIDE either report error messages or have no response at
all, while CONFIDANT generates an alarm as the scan
cannot be performed.

Test Case: TC-Soundproofing

Soundproofing involves disabling of alarm components.
Termination of email response results in a single notifica-
tion for both Tripwire and AIDE. Table 2 lists the re-
sponse in the presence of disabling email services. Since
Tripwire utilizes cron for email alarms, termination of
email services has no effect on response. The response
from AIDE, however, does not exist in the same man-
ner as described in TC-Blindfolding. The AIDE-specific
response cannot be generated, and output is handled by
cron. Termination of the mail process, even when the
file under inspection is not modified, results in a mes-
sage provided by cron stating that “aide has returned

many errors.” Termination of cron as described in TC-
Blindfolding results in no response of any kind from either
Tripwire or AIDE.

Since CONFIDANT does not rely on email for alarm
notification, disabling of email services had no effect on
alarm operation. Disabling of alarm components involves
termination of a gateway on a specified host. Such behav-
ior is recognized either by committee members executing

on remote nodes or agents that attempt to travel to the
terminated gateway as described previously.

2.3 Testing of Sidetracking Tampering

Modes

Test Case: TC-Blockading:

Blockading involves isolating a sensor from needed ac-
cess to a monitored file or device. One blockading tech-
nique is to increase the system load using a high prior-
ity process in order to prevent the request for a filesys-
tem scan from being serviced. Testing involves using the
stress program [13] to impose load on a computer sys-
tem including CPU, I/O, virtual memory, and disk stress.
The maximum sustained load was approximately 45 as
reported by the uptime system utility. In this test case,
system load was gradually increased to the maximum sus-
tained load. During this time, Tripwire and AIDE were
scheduled to perform scans every minute while CONFI-
DANT agents traversed the network.

Results follow the general trend of increased delay un-
der increased system load. The greatest delay encoun-
tered is 198 seconds while under a system load of 25.02
as listed in Table 3. While Tripwire and AIDE continued
to generate reports under loads of 25-45, reports arrived
out of order. Based upon execution order, AIDE reports
are expected to appear first followed by Tripwire reports.
Delays exceeding 60 seconds result in a group of AIDE
reports followed by a group of Tripwire reports. Also, in
approximately 30% of reports generated while the load
was above 25, Tripwire is unable to complete the scan op-
eration. CONFIDANT agents signal connection alarms
as host services could not be accessed in a timely manner
under any load imposed by stress.

Blockading of IDSs with network components can also
be performed by increasing network load to forestall ac-
cess. The benefits of mobile agents described in [10] in-
clude imposing minimal execution overhead, communica-
tion cost reduction, and a reduced network load compared
to traditional client-server techniques. In order to investi-
gate CONFIDANT network performance, agents are dis-
patched in the presence of an increasing network load as
described below.

In order to measure agent network performance, traffic

International Journal of Network Security, Vol.5, No.1, PP.21–31, July 2007 24

Table 3: Blockading and pacing test results
Tampering Mode IDS

Tripwire AIDE CONFIDANT

Blockading TP delayed TP delayed TP
up to 198 sec up to 193 sec

Pacing FN FN TP

is generated at a defined rate while agents traverse the
network. Traffic is captured using tcpdump and written
to a file. The traffic is replayed using tcpreplay with
the rate parameter, -r, to specify the rate in megabits
per second (Mbps) and the topspeed parameter, -R, to
replay the traffic at the maximum rate. The total round-
trip dispatch and acknowledgment time for the agent to
travel one hop in the network is recorded. Since agent
network travel increases the overall network load, traf-
fic rate is obtained using tcpstat reporting one second
intervals. For each specified load, an agent performs re-
peated round-trip cycles, and the average traversal time
was obtained as listed in Table 4.

As network traffic increases, the ability of agents to
traverse the network is diminished. Network load up to
approximately 20 Mbps results in a traversal time between
215 and 300 msec. The travel time increases significantly
when load increases past 20 Mbps. Figure 1 illustrates the
agent traversal time in the presence of increasing network
load. Agent traversal times are relatively consistent up to
a network load of 20 Mbps. High network loads greater
than 20 Mbps steadily increase traversal delays. Under
maximum network load of nearly 30 Mbps, agents are
still able to traverse between gateways in under 700 msec.
The interlocking nature of CONFIDANT agents requires
that successful tampering occur at multiple gateways.
Blockading increases agent dispatch delays and, thus, in-
creases the time during which tampering can occur. For a
network with n hops between the tampered node and the
alarm destination, detection of a remote intrusion arrives
within time δ by using an exponential spreading notifica-
tion scheme where δ ≥ (700msec) log2 n.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30

R
o

u
n

d
−

T
ri

p
 T

ra
n

si
t

T
im

e
(m

s)

Network Load (mb/s)

High Network Load

Low Network Load

Figure 1: Agent network performance

CONFIDANT mitigates Blockading by taking net-
work latency into consideration. Agent network perfor-
mance testing provides accurate estimates of latency val-
ues based on the physical network topology and expected
load. A delay in excess of an expected value is a potential
sign of tampering as the remote gateway may be unreach-
able. Examples of Blockading network access include DoS
attacks and physically disabling hardware resources. If
an agent is unable to travel to the destination gateway
within the expected time period, an alert is generated to
inform security or administrative personnel of potential
tampering.

The maximum observed traversal time of any single
round-trip dispatch iteration under all tested network
loads was 3.46 seconds. Based on this performance test-
ing, it can be seen that the allowed delay should be at
least 3.5 seconds to take into consideration agent delays
due to routine network traffic as shown in Figure 1.

Test Case: TC-Pacing

Pacing involves tampering with external timing mech-
anisms. For tools that perform scans at times specified
by the system clock, tampering can be performed by re-
setting the system clock. Figure 2 illustrates tampering
by Pacing with a file integrity scan time of tscan and time
intervals τ . Initially the time-of-day clock and the ac-
tual time are the same, more formally t = tTOD. When
t enters the period tscan − τ < tTOD < tscan, the in-
terval immediately preceding the file system scan, it is
set to tTOD = tTOD + 2 ∗ τ effectively skipping past the
scan. Now the actual time appears to be in the interval
tscan+τ < tTOD < tscan+2∗τ . When two τ periods have
elapsed, tTOD will be in the interval tTOD > tscan +3 ∗ τ .
The time-of-day clock is then reset to the actual time,
tTOD = tTOD − 2 ∗ τ = t, file system scan has been by-
passed, and the system clock has been restored to the
actual time.

Figure 2: Pacing timeline

International Journal of Network Security, Vol.5, No.1, PP.21–31, July 2007 25

Table 4: Network load and agent traversal time
Load Specified Load Observed Average One-hop Maximum
by tcpreplay by tcpstat Round-trip Agent Round-trip

(Mbps) (Mbps) Traversal Time (msec) Traversal Time (sec)
0 1.074652 221.33 0.383

1 1.677341 237.89 0.416

5 5.183018 215.55 0.249

10 9.410184 268.55 0.447

15 14.135512 294.33 0.491

20 18.255930 287.88 0.457

25 21.529032 590.00 3.463

Maximum 27.588796 658.11 3.241

Tripwire and AIDE scans occur at periodic intervals
based on the system clock and are consequently vulnera-
ble to Pacing. During Pacing tests, Tripwire and AIDE
were not able to make a single TP detection. The fact that
Tripwire and AIDE are subject to pacing by reliance on
the cron system utility is an implementation detail. Even
if scan timing information is stored internally by Tripwire
and AIDE, integrity scans remain periodic and are both
predictable and configurable. In both cases, they are vul-
nerable to tampering via Pacing. CONFIDANT agents
do not rely on the system clock to trigger any event and
filesystem scans are not scheduled to occur at fixed times.
Agent scan timing is a function of the travel itinerary and
corroboration with committee members. By employing
internal scan timing mechanisms that do not depend on
the system clock, CONFIDANT was able to detect all file
modifications with ideal sensitivity and specificity and is
not vulnerable to Pacing as listed in Table 3. Attempts to
modify the scan timing mechanism is considered altering
internal data as described below.

Test Case: TC-Scapegoating

Triggering alarms with the intent of overwhelming the
alarm subsystem is Scapegoating. One technique involves
artificially increasing the false alarm count in order to
divert the attention of security personnel away from the
tampering. Another Scapegoating technique is to pro-
duce additional alarm messages to consume all avail-
able disk space thus denying further local alerts to be
stored. Scapegoating can be performed by writing mul-
tiple alarms to disk or by creating a process to generate
additional alarms as listed in Table 5. The main concern
with Scapegoating is that alarm messages must be pro-
cessed by the human administrator to verify their validity.
Multiple alarms are generated in order to overload the
administrator. An advantage that all file integrity tools
have compared to network intrusion detection systems is
the number of file scans, and consequently the number of
potential alarms should be relatively low. Based on the
default operation, Tripwire and AIDE should produce a
single report per day. The presence of hundreds of alarms,
even without consideration for the content of the alarm,
is a sign of an error at some level and indicates tampering
via Scapegoating.

Tripwire and AIDE are subject to tampering via Scape-
goating, as the result of file integrity scans are provided
in email form. Simple text processing can be used to in-

sert erroneous messages into a security administrator’s in-
box. The current version of CONFIDANT employs mes-
sages displayed on the local console as well as messages
transmitted to agents. It is possible to enable a process
to present alarm messages on gateway consoles. For in-
stance, errors detected by a local agent are relayed to
remote agents within the committee, so the absence of
corresponding alerts on remote nodes is an indication of
Scapegoating. Also, multiple committee agents a1

1 . . . a1
n

visit the node in question so alarms will be confirmed by
multiple agents. Alarm messages from only one agent a1

i

without corroboration from other agents in committee C1

within the specified time window are indicative of Scape-
goating.

Table 5 lists various technique considerations in
message-centric and process-centric categories. In order
to tamper by Scapegoating, an insider can either create
a process to generate an alarm or create a process to
perform intrusions resulting in alarms. Message-centric
techniques only require knowledge of alarm format while
process-centric tampering requires knowledge of an exist-
ing vulnerability. This helps process-centric techniques
to appear to be more convincing than message-centric
tampering. Due to the reliance on email for alarm no-
tification, Tripwire and AIDE are particularly suscep-
tible to message-centric techniques while CONFIDANT
is not. Since alarm messages are distributed to remote
nodes, successful Scapegoating in CONFIDANT requires
significant additional effort to distribute appropriate erro-
neous alarm messages. Process-centric techniques, how-
ever, perform local intrusions and rely on agent interlock-
ing to distribute alarm data to remote gateways. This
increases confidence as alarms are generated in response
to an actual intrusion.

2.4 Testing of Altering Internal Data

Tampering Modes

Tampering with internal data involves after-the-fact mod-
ification of an IDS component that is completely installed
and properly configured prior to misuse. Unlike previous
tampering modes, altering internal data tampering inter-
acts directly with the IDS without termination of any of
its logical components.

Test Case: TC-Retroactive Baselining

International Journal of Network Security, Vol.5, No.1, PP.21–31, July 2007 26

Table 5: Scapegoating technique considerations
Message-Centric Process-Centric

Mode of Attack Produce message data Create a process
corresponding to to perform
additional alarms intrusive activity

Attacker Knowledge Required Format of alarm messages Existence of a vulnerability

Plausibility to Observer Low to moderate High

Tripwire Susceptibility High High

AIDE Susceptibility High High

CONFIDANT Susceptibility Low High

Table 6: Effort and outcome estimates for tampering via altering internal data
Tampering IDS

Mode Tripwire AIDE CONFIDANT
Single operation Single operation Multiple operations

Retroactive < 5 minutes effort < 5 minutes effort > 8 hours effort

Baselining 10 of 10 resulted in FN 10 of 10 resulted in FN 10 of 10 TP detected
by remote agents

Single operation Single operation Multiple operations
Descoping < 5 minutes effort < 5 minutes effort > 8 hours effort

10 of 10 resulted in FN 10 of 10 resulted in FN 10 of 10 TP detected
by remote agents

Value Single operation Single operation Multiple operations
Jamming < 5 minutes effort < 5 minutes effort > 8 hours effort

10 of 10 resulted in FN 10 of 10 resulted in FN untested

File integrity tools compute a baseline value for mon-
itored files when the host is in a safe state for compari-
son with future integrity scans. Tripwire and AIDE store
baseline values in a local database file. Baseline data in
CONFIDANT is internal to the mobile agents. Tamper-
ing by Retroactive Baselining involves modification of the
baseline value. Both Tripwire and AIDE provide mecha-
nisms to reinitialize or update the local baseline database.
Each enables an insider to reinitialize the local database
and reconcile differences between the existing database
and current file state.

Reinitializing the local Tripwire database updates the
hash values of the modified files. With updated baseline
data, Tripwire is unable to recognize tampering with the
monitored file. Tripwire documentation states that the
baseline database should be stored on read-only media
to mitigate tampering by outsiders. A read-only baseline
database does not mitigate insider risk as an insider with
physical access could replace or reconfigure the media.
Updating the baseline database results in a False Nega-
tive as modifications are not detected. Creating a new
AIDE database then copying it to the default location
is a method used by administrators to reflect approved
file hash values. Retroactive Baselining of Tripwire and
AIDE is a system manageability issue. Enabling admin-
istrators to update the baseline database provides the de-
fined method to facilitate insider tampering. Once base-
line data is modified, no valid tampering detections were
made and a False Negative is encountered.

In order to tamper with CONFIDANT agents via
Retroactive Baselining, the baseline data contained
within the agent must be modified while in memory. Due
to the dynamic nature of CONFIDANT agents, successful
tampering requires that an attacker must:

• physically locate every agent within a committee
across the network,

• determine the baseline memory location in each agent
on the local and remote hosts, and

• update the memory location for all agents between
message exchange and prior to dispatch.

In order to test the CONFIDANT response to Retroac-
tive Baselining, internal modifications are simulated as il-
lustrated in Figure 3. Two agents, a1

1 and a1
3, perform

filesystem scans and post an event to agent a1
2. The base-

line value in a1
1 is valid while the value in a1

3 has been
tampered with. The simulation involves the modification
being present prior to initial dispatch as opposed to al-
tered while executing. Both agents a1

1 and a1
3 send the

message: send − msg.(a1
2, MD5 OK) to agent a1

2 stat-
ing that the scan result is negative. The internal baseline
MD5 value is passed as part of the MD5 OK event. Agent
a1
2 detects a discrepancy between its internal baseline and

the one from agent a1
3. An alarm is triggered and dis-

patched to all members of committee C1. File modifica-
tion is detected using propagation of alarm notification as
illustrated in [10].

Figure 3: Agent interaction in the presence of retroactive
baselining

If only a single agent a1
3 is subjected to tampering,

International Journal of Network Security, Vol.5, No.1, PP.21–31, July 2007 27

other agents within the committee C1 will detect the base-
line discrepancy and generate an alarm. An adversary
must simultaneously determine the memory location of
every agent within a committee on distributed nodes in
the monitored network. Testing is simulated by having
modified baseline data contained within one committee
agent upon initial dispatch. While this agent considers a
modified file to be valid, interlocking messages between
other committee members results in an alarm due to in-
congruent baseline data between committee members.

Test Case: TC-Descoping

Descoping differs from Retroactive Baselining in that
integrity scan policy is modified as opposed to the scan
baseline values. File integrity scan policy data specifies
the files to be scanned.

In order to modify policy data in Tripwire, a pol-
icy database file must first be modified and the baseline
database must then be reinitialized. Descoping in AIDE
is performed by editing the configuration file and reinitial-
izing the database. Removing policy file data will prevent
the file in question from being scanned. A cognizant ob-
server notices that a file to be monitored is missing from
the scan report as the email notification lists the files that
were scanned. In the presence a large scan with many en-
tries, such information may be overlooked.

As with the baseline data, all CONFIDANT agent pol-
icy information is stored internally. The same steps re-
quired to tamper by Retroactive Baselining are involved
to tamper by Descoping with the exception of modifying
policy as opposed to baseline data. Tripwire and AIDE
specifically allow an administrator to reconfigure baseline
and policy information thereby allowing tampering by an
insider. CONFIDANT has no such mechanism to update
baseline or policy information.

Descoping testing is performed by simulation of mod-
ified policy data contained within one committee agent
upon initial dispatch. As in the Retroactive Baselining
test, two agents perform filesystem scans and post an
event. Here the baseline value in a1

3 is null as the policy
data is modified to omit the scan. In this case agent a1

3

does not send a message as no scan is performed. Since a
message is expected but not received, agent a1

2 sends the
message: send − msg.(C1, MD5 Error) to other mem-
bers of committee C1 to acknowledge that tampering has
occurred.

Test Case: TC-ValueJamming

Value Jamming involves altering internal data in some
way so that alarms are ignored. One technique is to con-
tinuously write FALSE to a status location in memory as to
indefinitely delay alarm notification. A less involved tech-
nique specifically for tools that employ email as the alarm
mechanism is to modify or delete email contents. Once
Tripwire and AIDE have delivered email messages detail-
ing the result of the daily file integrity scan, the email can
either be modified to reflect that file integrity is intact or
it can be replaced with a copy of a previous message with

updated header information. Successful tampering will
effectively eliminate any alarms.

Value Jamming in CONFIDANT employed the same
steps listed in TC-Retroactive Baselining to modify mem-
ory locations to disable agent messages. Messages in
CONFIDANT serve as both communication and alarm
notification. In this case, the CONFIDANT response to
Value Jamming is the same as the response for Descop-
ing. When messaging is disabled a message is expected
but not received, thus activating the propagation of alarm
notification.

Value Jamming in CONFIDANT can also be per-
formed by continuously asserting an internal memory
modification so that scan messages always send a MD5 OK

event. This is transmitted with the expected MD5 value,
even if the internal baseline data is invalid. Successful
Value Jamming in a single agent results in passing valid
scan messages without regard for the results of the scan.
This prevents alarm messages from being generated. Sub-
sequent gateway visits by other agents in C1 provided
alarm notification as they remained unmodified. A suc-
cessful adversary must simultaneously tamper with each
agent in committee C1. Testing of both continued modi-
fication of individual committee C1 agents on subsequent
visits, and simultaneous modification of all agents in com-
mittee C1, was unsuccessful. Thus, Value Jamming is
mitigated in CONFIDANT by employing spatially and
temporally distributed agents. Multiple agent visits on
each gateway utilize a range of memory addresses. Also,
multiple agents may reside on a gateway simultaneously.
These efforts prevent tampering by modifying of a single
memory location from being successful.

2.5 Testing of Selective Deception Tam-

pering Modes

The ability to accurately predict integrity scan intervals
is required to perform undetected tampering by File Jug-
gling. Consider a scan time of tscan, and a time period
τ . Once tscan is determined, operations can be performed
before and after the scan in order to hide tampering. A
file integrity scanner is susceptible to tampering by File
Juggling if a pre-scan operation at time tscan−τ and post-
scan operation at time tscan + τ can successfully hide file
modifications.

Test Case: TC-FileJuggling

File Juggling is performed by executing pre-scan op-
erations to present filesystem data in the valid state in
conjunction with post-scan attack operations. For the
file integrity problem, these operations are copying valid
data to the scan location prior to the scan, then replacing
it with the modified data after the scan, as shown below.
Tripwire and AIDE scan times are readily determined by
inspection of the cron daemon configuration. File Jug-
gling is illustrated in Figure 4. Scans are scheduled to oc-
cur at time tscan1

and tscan2
. At time tscan − τ , the valid

file is available for scan operations. At time tscan + τ , the

International Journal of Network Security, Vol.5, No.1, PP.21–31, July 2007 28

Table 7: TME metric weighting scheme
Category Name Weight Rationale

Monitoring 4 Security personnel may not remain in a
single location

Management Configurability 2 Ease of configuration enables insider tam-
pering

Scalability 2 The test network contains few nodes

Spoonfeeding 2 Attack requires intricate

Spoofing Sugarcoating 2 OS-level modification
Recanting 1 Relies on human administrator response

Blindfolding 3 Trivial attack pathway
Termination Commandeering 3 for any insider

Soundproofing 3

Blockading 1 Successful attempts delay accurate results

Sidetracking Pacing 2 Modifying scan timing can prevent scan
from occurring

Scapegoating 1 Relies on human administrator response

Retroactive Baselining 4 Baseline changes can make tampered data

appear to be valid
Alter Internal Data Descoping 4 Policy changes can make tampered data

appear to be valid
Value Jamming 4 Eliminating alarms gives a false sense of

security

Selective Deception File Juggling 3 Predictable scan timing facilitates future

tampering

valid file is replaced with a maliciously altered version.
For testing purposes, scans are performed every five min-
utes with the interval τ set at one minute. Due to the
use of periodic scan intervals, Tripwire and AIDE were
unable to detect file tampering as the valid file was pre-
sented during scan operations. Since CONFIDANT does
not rely on the system clock for timing information, scans
are neither regularly scheduled or predictable. CONFI-
DANT was able to detect file modifications with perfect
sensitivity. It is important that an agent can begin the
scan operation and obtain filesystem data prior to an op-
erating system context switch. If an attacker can monitor
a process list, detect process initialization, and perform
operations prior to the agents obtaining filesystem data,
modified data can be replaced with valid data prior to
MD5 hash computation.

Figure 4: Expected and tampered data presented during
file juggling

Valid data is observed by the IDS during the intervals
tscan − τ < t < tscan + τ . During the interval tscan1

+
τ < t < tscan2

− τ , filesystem data has been tampered
with. The probability of the filesystem data being in the
expected valid state is:

pv =
(tscan1

+ τ) − (tscan1
− τ)

tscan2
− tscan1

=
2τ

∆tscan

.

Increasing τ decreases the probability of the data being
in a modified state. When ∆tscan is set to 24 hours per
NIST guidelines, pv = 0.0069 even if the scan takes as
long as 5 minutes.

3 TME Weighting Scheme and

IDS Comparison

A metric weighting model called the Tampering Mode
Exposure (TME) weighting scheme is developed based on
the metric evaluation strategy described in [2]. In order
to compare the frameworks numerically, categories and
weights are defined and results computed using Equa-
tion (1) with j categories, i = n metrics in each category
j, and an unweighted score Uij and weight Wij for each
metric. Six categories, j = 6, are defined including one
for each of the five tampering mode classes and a man-
agement category. The assigned weights and rationale for
weight selection are listed in Table 7. Weights are given
values of 1 to 4 based on the relative significance of each
metric based on the methodology in [2]. Higher values
indicate greater capability for management metrics and
increased significance of successful tampering for tamper-
ing mode metric classes.

S =
∑

j=1,6

∑

i=1,n

(Uij ∗ Wij)

 . (1)

Unweighted scores are listed in Table 8. Scores are
assigned a value of 1, 2, or 3 to signify detection fail-
ure, a modified result, and correct operation, respectively,
for the tampering mode classes. For instance, testing of
Selective Deception resulted in Tripwire and AIDE gen-
erating false negatives, so they are assigned a score of 1.
CONFIDANT provided accurate alarm notification and is
assigned a score of 3. Scores of the management category

International Journal of Network Security, Vol.5, No.1, PP.21–31, July 2007 29

metrics are assigned based on the individual significance
of each exposure.

Monitoring specifies the ability to receive alarm noti-
fication from multiple locations. The distributed nature
of CONFIDANT provides alarms across the monitored
network domain and is assigned a score of 3. AIDE has
no network capability and is assigned a score of 1. The
use of Tripwire Manager allows alarms to be received at a
central console, thus providing greater monitoring ability
than AIDE, but not fully distributed as in CONFIDANT.
Configurability as it relates to insider tampering is dis-
cussed in the previous section. Tripwire and AIDE utilize
configuration files that can be modified by an administra-
tor and are assigned high scores. A CONFIDANT design
consideration is to disallow configuration to eliminate cer-
tain insider tampering exposures.

Using the weights in Table 7 and the scores in Ta-
ble 8, a comparison of the frameworks can be performed.
The weighted results calculated using Equation (1) are
65, 59, and 103 for Tripwire, AIDE, and CONFIDANT
respectively, out of a maximum score of 123. CON-
FIDANT compares favorably under the TME weighted
model where Tripwire and AIDE score comparably to
each other. The scores and weights of the TME model,
and the categories it uses, can be adapted to evaluate the
performance of other IDSs in a similar manner.

4 Conclusion

Testing was performed to illustrate the defined mitigation
techniques. Tripwire and AIDE were evaluated in order
to compare results with CONFIDANT’s response. In the
absence of tampering, all frameworks operate correctly.
Results from tampering via Recanting, Scapegoating, and
to some degree Value Jamming are similar among frame-
works, as all rely on security administrator reaction to
the presented alarm notification. Blockading causes all
three frameworks to warn that resources are unavailable.
Tripwire and AIDE reports arrive later than expected and
out of order. Furthermore, termination-based tampering
causes Tripwire and AIDE to fail completely, while CON-
FIDANT generates accurate alarm notification. CONFI-
DANT may be subject to tampering if an adversary is
able to simultaneously modify all agents within a com-
mittee across a network domain. Attempts to perform
such tasks have proven unsuccessful. Across all tamper-
ing modes, testing has shown that the CONFIDANT re-
sponse is at least as accurate as the Tripwire and AIDE
response to the same stimulus.

Testing has identified critical exposures in all evalu-
ated frameworks. Tripwire and AIDE exhibit critical ex-
posures to tampering via Pacing, all Altering Internal
Data tampering modes, and File Juggling. Every test
case for these tampering modes resulted in a FN response.
Testing of CONFIDANT shows that it is highly subject
to Blockading but carries less significance than those for
Tripwire and AIDE. In fact, even under minimal system

More
Severe

Less
Severe

Baselining
Retroactive Value

Jamming

Selective Deception

Alter Internal Data

Sidetracking

Termination

Spoofing

Pacing

Descoping

Blindfolding Commandeering Soundproofing File Juggling

SugarcoatingSpoonfeeding

Blockading RecantingScapegoating

Figure 5: Relative tampering mode impact

load, filesystem scans failed, and alarms were generated
stating that the scan could not be performed.

While each framework is subject to certain critical ex-
posures, the severity of the associated tampering modes
varies, as illustrated in Figure 5. The TME weights listed
in Table 7 are based on tampering mode severity. For in-
stance, tampering via Blockading is not as severe as tam-
pering via Pacing. Blockading causes results to be delayed
while Pacing has the potential to completely bypass scan
operations. Similarly, Pacing is not as severe as Retroac-
tive Baselining as updating the baseline database causes
the IDS to interpret all results as valid, while configu-
ration and scan timing remains unchanged and therefore
undetected. Testing has shown that the Altering Inter-
nal Data tampering modes can be the most severe, while
Scapegoating, Blockading, and Recanting are not as detri-
mental nor effective.

Testing also showed the relationship between con-
figurability and robustness against insider tampering.
Specifically, testing has shown CONFIDANT to be effec-
tive in mitigating several severe insider tampering expo-
sures at the expense of manageability. IDSs that provide
configuration and management routines inherently enable
insider tampering. This can best be seen by inspection of
the test results for the Altering Internal Data tampering
modes. Consider Retroactive Baselining in Tripwire as
opposed to CONFIDANT. Tripwire includes commands
to allow an administrator to update baseline data. Once
the data has been updated with a MD5 of a modified file,
subsequent scans report that the file is valid.

The most significant difference between existing ap-
proaches and CONFIDANT with regard to manageability
is that CONFIDANT does not readily allow incremental
upgrade of the IDS during network operation. While con-
ventional frameworks may allow administrator-approved
updates during operation, the CONFIDANT approach
would interpret such modifications as a form of insider
tampering. Thus, an administrator is unable to easily
perform tasks such as updating the internal baseline data
as CONFIDANT does not have built in management rou-
tines. When upgrades are required the entire IDS func-

International Journal of Network Security, Vol.5, No.1, PP.21–31, July 2007 30

Table 8: TME unweighted scores
Metric Tripwire AIDE CONFIDANT Rationale

Monitoring 2 1 3 Alarm notification on
multiple nodes

Configurability 3 3 1 Ability to reconfigure once
deployed

Scalability 2 1 3 Overlapping agents vs

centralized control

Spoonfeeding 1 1 1 Architectural vulnerability

Sugarcoating 1 1 1 between OS and application

Recanting 3 3 3 Administrator response

Blindfolding 2 2 3 Test result listed

Commandeering 2 2 3 in Table 2
Soundproofing 2 2 3

Blockading 2 2 1 Test result listed
Pacing 1 1 3 in Table 3

Scapegoating 2 2 2 Administrator response

Retroactive Baselining 1 1 3 Test result listed
Descoping 1 1 3 in Table 6

Value Jamming 1 1 3

File Juggling 1 1 3 Reliance on system clock

tionality must be temporarily disabled prior to upgrad-
ing. The TME management category aims at quantifying
the tradeoff between robustness in the presence of insider
tampering and manageability. Administrators can adjust
TME weights to determine the impact for each implemen-
tation instance.

A distributed design is essential for robust operation in
the presence of insider tampering as it enforces success-
ful tampering to occur at multiple nodes simultaneously.
Two major difficulties with this design include the inter-
locking of distributed components and recovery upon in-
trusion detection. Agent interlocking is required to ensure
that components remain distributed. Also, since manage-
ability is sacrificed in order to enhance robustness against
insider tampering, recovery after alarm notification re-
quired that CONFIDANT be restarted on all nodes. This
may not be practical for large enterprise installations.

While the current work focused on individual tamper-
ing modes, future work includes investigation of cascad-
ing tampering modes as certain tampering modes may be
combined to increase IDS exposures. For instance, the
susceptibility of an IDS to Selective Deception may be
increased with resource blockades and high priority pro-
cesses. Tampering by Pacing or Blockading may allow
File Juggling to occur as illustrated in Figure 6. Success-
ful File Juggling depends on the predictability of scan
timing. An attacker could first perform Blockading to de-
lay IDS access to filesystem resources and then perform
File Juggling resulting in a successful attack. Similarly,
Pacing can be performed to corrupt the system time by
setting the system clock to a time when a scan is known
to not occur in order to facilitate File Juggling. Another
example involves tampering via Blockading in order to
localize agents to a smaller network domain than defined
upon initial dispatch. This may increase the exposure to
Termination tampering modes.

Attack
Initialization

Attack
Success

Set System Clock
To Known Safe State

Delay IDS Access
To System Resource

File Juggling

Pacing

Blockading

Figure 6: Cascading tampering mode pathway example

References

[1] R. F. DeMara and A. J. Rocke, “Mitigation of net-
work tampering using dynamic dispatch of mobile
agents”, Computers & Security, vol. 23, no. 1, pp.
31-42, 2004.

[2] G. Fink, B. Chappell, T. Turner, and K.
O’Donoghue, “A metrics-based approach to intrusion
detection system evaluation for distributed real-time
systems”, in proceedings of the 16th International
Parallel and Distributed Processing Symposium, pp.
93-100, Fort Lauderdale, FL, USA, 2002.

[3] Y. Jianga, Z. Xiab, and S. Zhanga, “A novel de-
fense model for dynamic topology network based
on mobile agent”, Microprocessors and Microsystems
vol.29, pp. 289-297, 2005.

[4] G. H. Kim and E. H. Spafford, “Experiences with
tripwire: Using integrity checkers for intrusion detec-
tion”, in proceedings of the 3rd Annual System Ad-
ministration, Networking and Security COnference,
pp. 89-101, Toronto, Ontario, Canada, 1994.

[5] R. Lehti, “Advanced intrusion detection environ-
ment”. http://www.cs.tut.fi/simrammer/aide.html

[6] D. G. Marks, P. Mell, and M. Stinson, “Optimizing
the scalability of network intrusion detection systems
using mobile agents”, Journal of Network and Sys-
tems Management vol, 12, no. 1, pp. 98-110, 2004.

International Journal of Network Security, Vol.5, No.1, PP.21–31, July 2007 31

[7] J. McHugh, A. Christie, and J. Allen, “Defending
yourself: The role of intrusion detection systems”,
IEEE Software, vol. 17, no. 5, pp. 42-51, 2000.

[8] J. McHugh, A. Christie, and J.Allen, “Intrusion
detection: Implementation and operational is-
sues”, Software Engineering Institute Computer
Emergency Response Team White Paper, 2001.
http://www.stsc.hill.af.mil/crosstalk/2001/01/
mchugh.html

[9] A. J. Rocke and R. F. DeMara, “Mitigation of insider
risks using distributed agent detection, filtering, and
signaling”, International Journal of Network Secu-
rity, vol. 2, no. 2, pp. 141-149, 2006.

[10] A. J. Rocke, and R. F. DeMara, “Collaborative ob-
ject notification framework for insider defense us-
ing autonomous network transactions”, Autonomous
Agents and Multi-Agent Systems vol. 12, no. 1, pp.
93-114, 2006.

[11] Tripwire, Inc. Tripwire.org-home of the tripwire open
source project. http://www.tripwire.org

[12] J. Wack, M. Tracy, and M. Souppaya, “Guideline
on network security testing”, National Institute
of Standards and Technology, Computer Security
Division, Special Publication SP-800-42, Oct. 2003.
http://csrc.ncsl.nist.gov/publications/nistpubs/800-
42/NIST-SP800-42.pdf

[13] A. Waterland, “Stress: impose a config-
urable amount of computer system load”.
http://weather.ou.edu/∼apw/projects/stress/

Adam J. Rocke received the Ph.D.
degree in Computer Engineering from
the University of Central Florida in
2004. He has been a lecturer and re-
searcher at the University of Central
Florida in the areas of system software
and network security. Dr. Rocke’s re-
search interests are in distributed pro-

cessing, network security, and embedded systems.

Ronald F. DeMara received the
Ph.D. degree in Computer Engineer-
ing from the University of Southern
California in 1992. Since 1993, he has
been a full-time faculty member at the
University of Central Florida and is
currently a Professor with joint ap-
pointment in the Departments of Elec-

trical and Computer Engineering and Computer Science.
Dr. DeMara’s research interests are in Distributed Pro-
cessing and Special-Purpose Architectures. He is the edi-
tor of two books and has approximately 100 publications
in-print or online on these topics. His research has been
sponsored by the National Science Foundation, NASA,
U.S. Army and Navy, National Security Agency, Harris
Computer Systems, Lockheed Martin Information Sys-
tems, Theseus Logic Incorporated and others. He is a Se-
nior Member of IEEE and a Member of ACM and ASEE.
He has served on the Editorial Boards of the Journal
of Circuits, Systems, and Computers, the journal Micro-
processors and Microsystems, and IEEE Transactions on
VLSI Systems.

Simon Y. Foo is a Professor at the
Department of Electrical and Com-
puter Engineering at Florida State
University. His research interests are
in neural networks, genetic algorithms,
fuzzy logic, machine vision, and hard-
ware field programmable gate array
(FPGA) implementations. Dr. Foo

has authored or co-authored more than seventy refereed
technical papers on these topics. He also graduated more
than 25 graduate students. His primary sponsors include
the National Security Agency, National Science Founda-
tion, U. S. Air Force, Boeing Aircraft Company, and the
Florida Department of Transportation. In addition to the
prestigious ”Engineering Research Award” (2004) from
the FAMU-FSU College of Engineering, he also won the
”Teacher of the Year” award (2001) two ”Best Paper”
awards (2001 and 2004), and the Teaching Incentive Pro-
gram Award (1995).

