
International Journal of Network Security, Vol.5, No.1, PP.16–20, July 2007 16

Another Look at PMAC ∗

Dayin Wang, Dongdai Lin, and Wenling Wu

(Corresponding author: Dayin Wang)

Key Laboratory of Information Security, Institute of Software, Chinese Academy of Sciences

Beijing 100080, China

(Email: {wdy, ddlin, wwl}@is.iscas.ac.cn)

(Received Sept. 30, 2005; revised and accepted Nov. 23, 2005 & Jan. 27, 2006)

Abstract

We can view an existing Message Authentication Code
(MAC) as a Carter-Wegman MAC in spite of the fact
it may not have been designed as one. This will make
the analysis easier than it has been when considered from
other viewpoints. In this paper, we can look PMAC with
two keys as a Carter-Wegman MAC and get a simple se-
curity proof for it. Using this viewpoint to look at PMAC,
we will learn not only why the PMAC is such constructed,
but also a new method of constructing MACs.

Keywords: Carter-Wegman MAC, message authentica-
tion code, pseudo-random functions, universal hash fam-
ily

1 Introduction

A Message Authentication Code (MAC) provides a way
to detect whether a message has been tampered with dur-
ing transmission. The usual model for authentication in-
cludes three participants: a transmitter, a receiver and
an adversary. The transmitter sends a message over an
insecure channel, where the adversary can introduce new
messages as well as alter existing ones. Insertion of a new
message by the adversary is called impersonation, and
modification of an existing message by the adversary is
called substitution. In both cases the adversary’s goal is
to deceive the receiver into believing that the new message
is authentic.

In many applications, it is of significant importance
that the receiver can verify the integrity of a message. In
some cases this is even more important than encryption
[8]. The term “MAC” first appeared around 1980 in the
ANSI X9.9 standard [1]. From then on, XOR-MAC [3],
HMAC [4], XCBC-MAC [9] and so on are proposed in
sequence.

∗This research is supported by the National Natural Science

Foundation of China under Grant No.60373047 and No.90204016;

the National Basic Research 973 Program of China under Grant No.

2004CB318004.

The Carter-Wegman MACs are those which use a func-
tion from a Universal Hash Family to compress the mes-
sage M to be MACed. The output of this hash function
is then processed cryptographically to produce the tag.

PMAC [6], a fully parallelizable block-cipher mode of
operation for message authentication, is deterministic,
works for strings of any bit length, employs a single block-
cipher key. At first glance the structure of PMAC can’t be
looked as a Carter-Wegman MAC. But if we use another
key to encrypt the block in the last step in PMAC, we can
get a typical structure of Carter-Wegman MAC and can
get its security proof in Carter-Wegman spirit. In this
paper we call the PMAC with two keys as PMACV.

We can view an existing MAC as a Carter-Wegman
MAC in spite of the fact it may not have been designed as
one. This will make the analysis easier than it has been
when considered from other viewpoints. In this paper,
we look PMACV as a Carter-Wegman MAC and get a
simple security proof. From the proof of the PMACV,
we can learn that if we view PMAC as a Carter-Wegman
MAC directly, we only need to prove that the collision
probability of all the input to PRF is negligible. This is
a simple information-theoretic question. Thus we can get
a simple proof for PMAC. On the other hand, we learn
that we can use block cipher to construct Universal Hash
Families from the proof of the PMACV.

The paper is organized as follows: In Section 2, Math-
ematical Preliminaries are introduced. In Section 3, the
definitions of PMAC and PMACV are given. In Section
4, we introduce the definition of Universal Hash Families
and how to use them to construct Carter-Wegman MAC.
In Section 5, we give the security proof of PMACV by
viewing it as Carter-Wegman MAC followed by conclu-
sions in Section 6.

2 Mathematical Preliminaries

The Section is the same as the Section 2 in [6]. We include
here for completeness.

If i ≥ 1 is an integer then ntz(i) is the number of
trailing 0-bits in the binary representation of i. So,

International Journal of Network Security, Vol.5, No.1, PP.16–20, July 2007 17

for example, ntz(7) = 0 and ntz(8) = 3. If A ∈
{0, 1}∗ is a string then |A| denotes its length in bits
while ‖A‖n = max{1, dA/ne} denotes its length in n-
bit blocks (where the empty string counts as one block).
If A = an−1 · · · a1a0 ∈ {0, 1}n is a string (each ai ∈

{0, 1}) then str2num(A) is the number
∑n−1

i=0 2iai. If
A, B ∈ {0, 1}∗ are equal-length strings than A ⊕ B is
their bitwise xor. If A ∈ {0, 1}∗ and |A| < n then
padn(A) is the string A10n−|A|−1. If A ∈ {0, 1}n then
padn(A) = A. With n understood we write pad(A) for
padn(A). If A = an−1an−2 · · · a1a0 ∈ {0, 1}n then A �
1 = an−2an−3 · · · a1a00 is the n-bit string which is the left
shift of A by 1 bit while A � 1 = 0an−1an−2 · · ·a2a1 is
the n-bit string which is the right shift of A by one bit. In
pseudo code we write “Partition M into M [1] · · ·M [m]”
as shorthand for “Let m = ‖M‖n and let M [1], · · · , M [m]
be strings such that M [1] · · ·M [m] = M and |M [i]| = n
for 1 ≤ i < m.

The field with 2n points is denoted GF (2n). We in-
terchangeably think of a point a in GF (2n) in any of the
following ways: (1) as an abstract point in the field; (2)
as an n-bit string an−1 · · ·a1a0 ∈ {0, 1}n; (3) as a formal
polynomial a(x) = an−1x

n−1 + · · · + a1x + a0 with bi-
nary coefficients; (4) as a nonnegative integer between 0
and 2n− 1, where a ∈ {0, 1}ncorresponds to str2num(a).
We write a(x) instead of a if we wish to emphasize that
we are thinking of a as a polynomial. To add two points
in GF (2n), take their bitwise xor. We denote this op-
eration by a ⊕ b. To multiply two points, fix some ir-
reducible polynomial p(x) having binary coefficients and
degree n. To be concrete, choose the lexicographically
first polynomial among the irreducible degree n polyno-
mials having a minimum number of coefficients. To mul-
tiply points a, b ∈ GF (2n), which we denote a · b, regard
a and b as polynomials a(x) = an−1x

n−1 + · · ·+ a1x + a0

and b(x) = bn−1x
n−1 + · · · + b1x + b0, form their prod-

uct c(x) where one adds and multiplies coefficients in
GF (2), and take the remainder when dividing c(x) by
p(x). Note that it is particularly easy to multiply a point
a ∈ {0, 1}n by x. We illustrate the method for n = 128,
where p(x) = x128 + x7 + x2 + x + 1. Then multiplying
a = an−1 · · · a1a0 by x yields

a · x =

{

a� 1 if firstbit(a)=0
(a� 1)⊕ 012010000111 if firstbit(a)=1.

(1)
It is similarly easy to divide a by x (meaning to mul-

tiply a by the multiplicative inverse of x). To illustrate,
assume that n = 128. Then

a ·x−1 =

{

a� 1 if firstbit(a)=0
(a� 1)⊕ 101201000011 if firstbit(a)=1.

(2)
If L ∈ {0, 1}n and i ≥ −1, we write L(i) to mean L ·xi.

To compute L(−1), L(0),· · · ,L(µ), where µ is small, set
L(0) = L and then, for i ∈ [1 · · ·µ], use Equation (1)
to compute L(i) = L(i − 1) · x from L(i − 1); and use
Equation (2) to compute L(−1) from L.

We point out that huge = x−1 will be an enormous

number (when viewed as a number); in particular, huge
starts with a 1 bit, so huge > 2n−1. In the security proof
this fact is relevant, so there we use huge as a synonym
for x−1 when this seems to add to clarity.

For any l ≥ 1, a Gray code is an ordering γl =
γl
0γ

l
1 · · · γ

l
2l−1 of {0, 1}l such that successive points dif-

fer (in the Hamming sense) by just one bit. For n a fixed
number, PMAC makes use of the “canonical” Gray code
γ = γn constructed by γ1 = 01 while, for l > 0

γl+1 = 0γl
00γl

1 · · · 0γl
2l−20γl

2l−11γl
2l−11γl

2l−2 · · · 1γl
11γl

0.

It is easy to see that γ is a Gray code. What is more,
for 1 ≤ i ≤ 2n − 1, γi = γi−1 ⊕ (0n−11 � ntz(i)). This
makes it easy to compute successive points. Note that
γ1, γ2, · · · , γ2n−1 are distinct, different from 0, and γi ≤
2i.

Let L ∈ {0, 1}n and consider the problem of succes-
sively forming the strings γ1 · L, γ2 · L, γ3 · L, · · · , γm · L.
Of course γ1 · L = 1 · L = L. Now, for i ≥ 2, as-
sume one has already produced γi−1 · L. Since γi =
γi−1 ⊕ (0n−11 � ntz(i)) we know that γi · L = (γi−1 ⊕
(0n−11� ntz(i))) ·L = (γi−1 ·L)⊕(0n−11� ntz(i)) ·L =
(γi−1 ·L)⊕ (L · xntz(i)) = (γi−1 ·L)⊕ L(ntz(i)). That is,
the ith word in the sequence γ1 · L, γ2 · L, γ3 · L, · · · is
obtained by xoring the previous word with L(ntz(i)).

Algorithm PMACE(K, M)
L← EK(0n)
if |M | > n2n then return 0τ

Partition M into M [1] · · ·M [m]
for i← 1 to m− 1 do

X [i]←M [i]⊕ γi · L
Y [i]← EK(X [i])

Σ← Y [1]⊕ Y [2]⊕ · · · ⊕ Y [m− 1]⊕ pad(M [m])
if |M [m]| = n then X [m] = Σ⊕ L · x−1

else X [m]← Σ
Tag = EK(X [m])[first τ bits]
return Tag

Constants γ1, γ2, . . ., the meaning of the multiplication
operator, and the meaning of pad(·) are all defined in Sec-
tion 2. We comment that Line 2 is simply to ensure that
PMAC is well-defined even for the highly unrealistic case
that |M | > n2n (by which time our security result be-
comes vacuous anyway). Alternatively, one may consider
PMAC’s message space to be strings of length at most
n2n rather than strings of arbitrary length.

The authors of [6] said that PMAC is not a Carter-
Wegman MAC. But we say we can view PMAC as a
Carter-Wegman MAC in spirt of the fact it may not have
been designed as one. In order to see it clearly, we first
consider PMACV, a variant of the PMAC, as a Carter-
Wegman MAC and give its security proof, and then ex-
plain how we can view PMAC. The following is the defi-
nition of the PMACV.

Algorithm PMACVE(K1, K2, M)
L← EK1

(0n)
if |M | > n2n then return 0τ

Partition M into M [1] · · ·M [m]

International Journal of Network Security, Vol.5, No.1, PP.16–20, July 2007 18

for i← 1 to m− 1 do
X [i]←M [i]⊕ γi · L
Y [i]← EK1

(X [i])
Σ← Y [1]⊕ Y [2]⊕ · · · ⊕ Y [m− 1]⊕ pad(M [m])
if |M [m]| = n then X [m] = Σ⊕ L · x−1

else X [m]← Σ
Tag = EK2

(X [m])[first τ bits]
return Tag

From the definitions above, we can see that the only
difference between PMAC and PMACV is the number
of Key. PMACV change the key in the last step, while
PMAC doesn’t.

3 Carter-Wegman MAC

Carter-Wegman MAC is based on the universal hash-
ing paradigm introduced by Carter and Wegman [7, 11].
They proposed to hash a given message with a randomly
chosen function from a strongly universal family of hash
functions, whereafter the output is encrypted with a one-
time-pad (OTP) in order to obtain the MAC tag. In
the original paper, Wegman and Carter [11] use perfect
encryption to produce their MAC. Subsequently Black [5]
gave several other variants of these methods for producing
a MAC given a universal hash family. In this section, we
will simply introduce Universal Hash Families and How
to use them to construct Carter-Wegman MACs.

3.1 Universal Hash Families

There are many different variants of Universal Hash Fam-
ilies, and we now present a few of those that will be used
later.

In the following discussion and throughout the paper
will assume that the domain and range of universal hash
functions are finite sets of binary strings and that the
range is smaller than the domain.

Definition 1. [Carter and Wegman,1979] Fix a do-
main D and range R. A finite multiset of hash functions
H = {h : D −→ R} is said to be Universal if for every
x, y ∈ D where x 6= y, Prh∈H[h(x) = h(y)] = 1/|R|.

If we relax slightly the requirement that the collision
probability be 1/|R|, we will get the notion of Almost
Universal Hash Families in which we allow the collision
probability to be some ε ≥ 1/|R|.

Definition 2. Let ε ∈ R+ be a positive number. Fix
a domain D and range R. A finite multiset of hash
functions H = {h : D −→ R} is said to be ε − Almost
Universal(ε − AU) if for every x, y ∈ D where x 6= y,
Prh∈H[h(x) = h(y)] ≤ ε.

3.2 From Hash to MAC

In [5], Black give another approach to building a MAC
in the Carter-Wegman style. This approach apply a PRF
directly to the output of an almost universal hash family.

We now give description of it. Let Rand(n, n) denote
the set of all functions from {0, 1}n to {0, 1}n. Suppose
the shared key between transmitter and receiver is (h, ρ)
where h ∈ H = {h : D → {0, 1}n} is a ε − AU and ρ
is a randomly-choose function from Rand(n, n). Given a
message M , the output of MAC is ρ(h(M)). We will get
the following theorem regarding the construction.

Theorem 1 (PRF(Hash) as a PRF). Fix n ≥ 1. Let
H = {h : Msg → {0, 1}n} be a family of hash func-
tions. Let δ(m) be a function such that for all distinct
pairs M, M

′

∈ Msg,with M and M
′

at most mn bits long,
Pr

h
R
←H

[h(M) = h(M
′

)] ≤ δ(m). Let A be an adversary

that asks q queries from Msg, each query of length at
most mn bits. Then

Pr[h
R
←− H ; ρ

R
←− Rand(n, n) : Aρ(h(·)) = 1]−

Pr[g
R
←− Rand(Msg, n) : Ag(·) = 1] ≤

q2

2
δ(m).

This theorem’s proof is given in Lemma 6.3.6 in [5].
This theorem tell us this construction ρ(h(·)) can not be
distinguished with random function family.

4 Security Proof of PMACV

The security proof of PMACV is done by viewing it as
Carter-Wegman MAC. Firstly, we divide PMACV into
two parts, one is a universal hash family, and the other
is a PRF. Then we use theorem 1 to complete the proof.
Before giving the definition of the universal hash family
in the PMACV, we give a few lemmas that will be used
in the proof.

It is often convenient to replace random permutations
with random functions, or vice versa in security analy-
sis. Let Perm(n) denote the set of all permutations on
{0, 1}n. The following lemma lets us easily do this. For a
proof see Proposition 2.5 in [2].

Lemma 1 (PRF/PRP Switching). Fix n ≥ 1. Let A
be an adversary that asks at most q queries. Then

Pr[π
R
←− Perm(n) : Aπ(·) = 1]

−Pr[ρ
R
←− Rand(n, n) : Aρ(·) = 1]

≤ q(q − 1)/2n+1.

As is customary, we will show the security of our MACs
by showing that their information-theoretic versions ap-
proximate random functions. As is standard, this will be
enough to pass to the complexity-theoretic scenario. Part
of the proof is Proposition 2.7 of [2].

Lemma 2 (Inf.Th.PRF =⇒ Comp.Th.PRF). Fix
n ≥ 1. Let CONS be a construction such
that CONSρ1,ρ2

(·) : {0, 1}∗ → {0, 1}n for any
ρ1, ρ2 ∈ Rand(n, n). Suppose that if |M | ≤ µ then
CONSρ1,ρ2

(M) depends on the values of ρi on at most
p points (for 1 ≤ i ≤ 2). Let E : Key×{0, 1}n → {0, 1}n

be a family of functions. Then

International Journal of Network Security, Vol.5, No.1, PP.16–20, July 2007 19

Advprf

CONS[E](t, q, µ) ≤

Advprf

CONS[Perm(n)](q, µ) + 2 ·Advprf
E (t

′

, p), and

Advmac
CONS[E](t, q, µ) ≤

Advprf

CONS[Perm(n)](q, µ) + 2 · Advprf
E (t

′

, p) + 1
2n

where t
′

= t + O(pn).

In PMACV, we can look all the steps before the last
encryption as a universal hash family, called PMACH,
and prove it is a ε − AU . Thus we can prove PMACV
is secure in the Carter-Wegman spirit. Now we will
give a description of the PMACH before we give its
proof.

Algorithm PMACHE(M)
L← E(0n)
if |M | > n2n then return 0τ

Partition M into M [1] · · ·M [m]
for i← 1 to m− 1 do

X [i]←M [i]⊕ γi · L;
Y [i]← E(X [i])

Σ← Y [1]⊕ Y [2]⊕ · · · ⊕ Y [m− 1]⊕ pad(M [m])
if |M [m]| = n then X [m] = Σ⊕ L · x−1

else X [m]← Σ
return X [m]

From the definition above, we can see that the domain
of PMACH is {0, 1}∗ and the PMACH hash family’s mem-
bers are selected by the random choice of some block ci-
pher E . As is customary, we will replace the block cipher
E by a random function ρ and then we get the following
theorem.

Theorem 2. Fix l ≥ 1.Then the PMACHρ on domain
D({0, 1}∗) is 2−n−AU.

Proof. we are required to show that for any two distinct
values M, M ∈ D, the probability over uniform random
choices of functions ρ ∈ Rand(n, n) that the PMACHρ of
M, M are equal at most 2−n. In other words we must
prove that.

Pr[ρ
R
←− Rand(n, n) : PMACHρ(M) = PMACHρ(M)] 6 2−n

(3)

Due to PMACHρ(M) = X [m], PMACHρ(M) = X[m]
and ρ is a random function, we now consider all the cases.

Case 1: Suppose that |M [m]| < n and |M [m]| < n.
If m > m then Pr[X [m] = X [m]] = Pr[Σ = Σ] = 2−n

because of the contribution of Y [m− 1] in Σ− a random
variable that is not used in the definition of Σ. If m < m
then Pr[X [m] = X [m]] = Pr[Σ = Σ] = 2−n because of
the contribution of Y [m− 1] in Σ-a random variable that
is not used in the definition of Σ. If m = m and there
is an i < m such that M [i] 6= M [i] then Pr[X [m] =
X[m]] = Pr[Σ = Σ] = 2−n because of the contribution
of Y [i] in Σ-a random variable that is not used in the
definition of Σ. If m = m then for every i < m we have
that M [i] = M [i], then, necessarily, M [m] 6= M [m]. In
this casePr[Σ = Σ] = 0, as the two checksums differ by
the nonzero value pad(M [m])⊕ pad(M [m]).

Case 2: Suppose that |M [m]| = n and M [m] =
n. Then X [m] and X [m] are offset by the same
amount, huge ·L, so this offset is irrelevant in computing
Pr[X [m] = X[m]]. Proceed as above.

Case 3: Suppose that |M [m]| < n and M [m] = n.
Then Pr[X [m] = X[m]] = Pr[Σ = Σ ⊕ huge · L] = 2−n

since Σ and Σ are independent of L. similarly, if |M [m]| =
n and M [m] < n, then Pr[X [m] = X[m]] = 2−n.

To sum up,the collision probability of the PMACH is
exactly 2−n.

Lemma 3. Suppose all distinct pairs M , M are at most
mn bits long. Then the PMACHπ on domain D({0, 1}∗)

is 2m2

2n −AU .

Proof. Using Lemma 1, lets us now replace the random
function ρ in Equation (3) by a random permutation π.
we get the following equation.

Pr[π
R
←− Perm(n) : PMACHπ(M) =

PMACHπ(M)] 6
1

2n
+

2m(2m− 1)

2n+1
6

2m2

2n
.

In the following we prove the security of the PMACV
construction.

Theorem 3 (PMACV ≈ Rand). Fix n ≥ 1 and let
N = 2n. Let A be an adversary which asks at most q
queries, each of which is at most mn-bits. Assume m ≤
N/4. Then

Pr[π1, π2
R
←− Perm(n) : APMACVπ1,π2 = 1]−

Pr[g
R
←− Rand({0, 1}∗, n) : Ag(·) = 1] ≤

q2

2
·
2m2

2n
+

q2

2n+1
.

Proof. We will first compute a related probability where
the final permutation is a random function; this will sim-
plify the analysis. So we are interested in the quantity

Pr[π1
R
←− Perm(n), ρ

R
←− Rand(n, n) :

APMACVπ1,ρ = 1]−

Pr[g
R
←− Rand({0, 1}∗, n) : Ag(·) = 1].

Due to the PMACVπ1,ρ = ρ(PMACHπ1
(·)), Lemma 3

gives that Pr[PMACHπ(M) = PMACHπ(M)] ≤ 2m2

2n .
Therefore we may conclude from Theorem 1 that

Pr[π1
R
←− Perm(n), ρ

R
←− Rand(n, n) :

Aρ(PMACHπ1
(·)) = 1]−

Pr[g
R
←− Rand({0, 1}∗, n) : Ag(·) = 1] ≤

q2

2
·
2m2

2n
.

Finally we replaced the PRF ρ in the left-hand probability
with a PRP to properly realize the PMACV construction.

International Journal of Network Security, Vol.5, No.1, PP.16–20, July 2007 20

Using Lemma 1 this costs us an extra q2

2n+1 , and so our
final bound is

q2

2
·
2m2

2n
+

q2

2n+1
.

This complete the proof.

From the Lemma 2 above it is standard to pass from
information-theoretic to a complexity-theoretic.

It is a standard result that being secure in the sense of
a PRF implies an inability to forge with good probability
see [2, 10].

5 Conclusions

In this paper we study the PMAC with two keys. Viewing
it as a Carter-Wegman MAC, we effectively eliminates the
complexity associated with the adversary’s adaptivity and
get a simple proof . From this viewpoint we can also view
PMAC as a Carter-Wegman MAC directly except that
the PRF applying to a universal hash functions is not
independent of the universal hash functions. But it is
still secure if the collision probability of all the input to
PRF is negligible. Thus we can get a simple security proof
for PMAC in this way.

On the other hand, we know that we can use block
cipher to construct a new Universal Hash Family and then
a new MAC from this paper. This is a new method of
constructing MACs.

References

[1] ANSI X9.9 (Revised), American National Standard -
Nancial Institution Message Authentication, Techni-
cal Report, ASC X9, (Replaces X9.9 - 1982), 1986.

[2] M. Bellare, J. Kilian, and P. Rogaway, “The secu-
rity of the cipher block chaining message authentica-
tion code”, in Advances in Cryptology - CRYPTO’94,
LNCS 839, Springer-Verlag, pp. 341-358, 1994.

[3] M. Bellare, R. Guerin, and P. Rogaway, “XOR
MACs: new methods for message authentication us-
ing finite pseudorandom functions”, in Advances in
Cryptology - CRYPTO’95, Springer-Verlag, pp. 15-
35, 1995.

[4] M. Bellare, R. Canetti, and H. Krawczyk, “Key-
ing hash functions for message authentication”, in
Advances in Cryptology - CRYPTO’96, Springer-
Verlag, pp. 1-19, 1996.

[5] J. Black, “Message authentication
codes”, Manuscript Available at
http://www.cs.colorado.edu/jrblack/papers.html.

[6] J. Black and P. Rogaway, “A block-cipher mode of
operation for parallelizable message authentication”,
in Advances in Cryptology - EUROCRYPT’2002, pp.
384-401, 2002.

[7] J. Carter and M. Wegman, “Universal classes of hash
functions”, Journal of Computer and System Sci-
ences, Vol. 18, pp. 143-154, 1979.

[8] N. Ferguson and B. Schneier, Practical Cryptograhpy,
Wiley, 2003.

[9] V. D. Gligor and P. Donescu, “Fast encryption and
authentication: XCBC encryption and XECB au-
thentication modes”, in FSE 2001 (Fast Software
Encryption Workshop 2001), Springer-Verlag, pp.
92-141, 2002.

[10] O. Goldreich, S. Goldwasser, and S. Micali, “How to
construct random functions”, Journal of the ACM,
vol. 33, no.4, pp. 210-217, 1986.

[11] M. Wegmann and J. Carter, “New hash functions
and their use in authentication and set equality”,
Journal of Computer and System Sciences, vol. 22,
no. 3, pp. 265-279, 1981.

Dayin Wang is now a Ph.D can-
didate at the State Key Laboratory
of Information Security, Institute of
Software, Chinese Academy of Sci-
ences. His research interests in-
clude Message Authentication codes
and Mode of Operation. E-mail ad-
dress: wdy@is.iscas.ac.cn.

Dongdai Lin is now a full time re-
search professor and deputy director
of State Key Labortory of Information
Security, Institute of Software of the
Chinese Academy of Sciences. He re-
ceived his B.S. degree in mathemat-
ics from Shandong University in 1984,
and the M.S. degree and Ph. D degree

in coding theory and cryptology at Institute of Systems
Science of the Chinese Academy of Sciences in 1987 and
1990 respectively. His current research interests include
cryptology, information security, grid computing, mathe-
matics mechanization and symbolic computations.

Wenling Wu is now a professor at the
State Key Laboratory of Information
Security, Institute of Software, Chi-
nese Academy of Sciences. She re-
ceived her B.S. degree and M.S. degree
in Maths from Northwest University in
1987 and 1990, respectively. She re-
ceived her Ph.D degree in Cryptogra-

phy from Xidian University in 1997. From 1998 to 1999
she was a postdoctoral fellow in the Institute of Software,
Chinese Academy of Science. Her current research inter-
ests include theory of cryptography, mode of operation,
block cipher, stream cipher and hash function.

