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Abstract

In this paper, we propose a discrete cosine transform
(DCT) based spread spectrum data-hiding algorithm that
is resilient to statistical attacks. Unlike other spread spec-
trum based data-hiding algorithms, the proposed algo-
rithm does not introduce a low-pass filtering effect in the
histogram of the stego image. The distance between the
center of gravity (CoG) as defined by [14] of the unmarked
host and the stego images was reduced by 74% in the pro-
posed algorithm. The proposed algorithm is also resilient
against the Chi-Square attack and does not compromise
on robustness or capacity to achieve this goal. When
compared to the generic block based DCT data-hiding
scheme, the proposed algorithm provides a 41% reduc-
tion in the relative entropy between the host and stego im-
ages. In other words, the proposed algorithm is 41% more
secure than generic DCT based data-hiding algorithms
when measured in terms of relative entropy. The proposed
algorithm also provides statistical resilience against a ste-
ganalysis attack specifically designed for block DCT data-
hiding algorithms [29]. The proposed algorithm is robust
against a variety of image manipulating attacks such as
noise addition, filtering, blurring, sharpening, JPEG com-
pression etc. In the cases of dislocating attacks such as
blurring and despeckling, the bit error ratio (BER) was
0.1045 and 0.0435 respectively, thereby yielding retrieval
rates of over 89% and 95% respectively. In the case of low
quality JPEG attack (Q-30) the retrieval rate was 92%.
In the case of noise addition attacks, the retrieval rates
were more than 92%.
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security, steganography

1 Introduction

Data hiding is the science of hiding one data type within
another. Depending upon the purpose of data-hiding, it
can be classified into broad categories: steganography,
where the main application is covert communication; and
watermarking where the application is often related to the
integrity of the host data itself. Some applications of wa-

termarking include copyright protection, copy protection,
authentication, etc. Data-hiding techniques can also be
classified into two categories: perceptible and impercep-
tible. For obvious reasons, imperceptible techniques are
considered more suitable for all of the applications above.
So, for the remainder of this paper, we will only consider
imperceptible data-hiding. Based on the processing do-
main, steganography can be classified into two categories:
spatial domain based [20, 21] and transform domain based
[22, 26, 28, 34]. A very popular class of transform based
data hiding techniques is spread spectrum data hiding
[22, 26, 28, 34]. In the sections that follow we propose
a spread spectrum based data hiding technique that pro-
vides resilience against statistical attacks.

Just as data hiding is classified into steganography and
watermarking, based on the application, the attacks on
the system also can be classified into two categories based
on whether the system is watermarking or steganographic.
In the former case, the attacks usually include geometric
manipulations of the image (rotation, scaling, translation,
cropping etc. [12, 19, 23]), compression, noise addition
etc. The aim of these attacks is to destroy the synchro-
nization between the watermark extractor and the em-
bedder. Attacks on steganographic systems are referred
to as steganalysis attacks [11, 16, 32]. Most popular of
these are: visual attacks [32], histogram analysis [11], dual
statistics methods [25], JPEG compatibility steganalysis
[10, 16, 30], universal blind steganalysis [11], unique fin-
gerprinting [7], etc.

Most data-hiding schemes embed data sequentially or
in some pseudo-random fashion. If the host image con-
tains connected areas or uniform colors, then a simple
visual inspection of a suspected stego image can reveal
the existence of the sequentially embedded hidden data.
However, it may be harder to distinguish noisy images
or highly textured images from stego images using this
technique. Hence, Westfeld et al. [32] introduced a new
statistical attack that can be applied to any data-hiding
technique in which a fixed set of pairs of values (PoVs)
are flipped in order to embed message bits. Example Povs
can be pixel values, quantized image coefficients, palette
indices etc. Prior to embedding, these values are unevenly
distributed, but after embedding their occurrences in each
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pair tends to be equal. Hence a Chi-Square test on such
a data-hiding scheme reveals the existence of the hidden
data [11, 24].

Other statistical detection methods that start with
sample counts, neglect the placement of pixels in the stego
image [25]. It is obvious that by using the spatial corre-
lations between parts of the stego image, we could detect
the hidden data more reliably and accurately. However,
to uncover and possibly quantify the weak relationship
between the host image and some pseudo random data
is not simple. Another means of detecting steganogra-
phy is steganalysis via JPEG compression compatibility
[10, 16, 30]. If a host is originally stored in the JPEG
format [31], it would be possible to recover the JPEG
quantization table even after data-hiding. In most cases,
the stego-image becomes incompatible with the JPEG de-
coder when embedding is done in the compressed domain.
Hence, the presence of hidden data is confirmed.

All of the steganalysis algorithms discussed so far are
tuned to a specific embedding algorithm. Universal blind
detection is a meta-detection method, which attempts to
do away with the above restriction. The idea is to find an
appropriate set of sensitive statistical qualities that pos-
sess the characteristics required to allow the steganalyzer
to detect hidden data. Farid [7] proposed a set of sensitive
higher-order features derived using the wavelet decompo-
sition of the stego-image. These feature vectors are then
divided into two linear subspaces, using the Fisher lin-
ear discrimination analysis [8]. This analysis gives the
distance between the image under test and its low-pass
filtered versions, which can allow the steganalyzer to de-
tect hidden data.

In this paper we propose a novel spread spectrum data-
hiding algorithm, in the two-dimensional discrete cosine
transform (2D-DCT) domain that complies with the fol-
lowing requirements:

1) The algorithm must reduce the chances of statistical
detection.

2) The algorithm must provide robustness against a va-
riety of image manipulation attacks.

3) The stego image must not have any distortion arti-
facts.

4) The algorithm must not sacrifice embedding capacity
in order to achieve the above requirements.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the working of the proposed algorithm
and provide details of an example encoder-decoder pair.
In Section 3, we comment on the visual and statistical dis-
tortion of the proposed algorithm and discuss the perfor-
mance of several stegnalyzers on the proposed algorithm.
In Section 4, we provide experimental results for robust-
ness tests. In Section 5, we end with observations and
concluding remarks.

2 The Proposed Data-Hiding Al-

gorithm

Transform based data-hiding techniques have been well
studied [1, 2, 6, 9, 15, 21, 35]. Unlike spatial techniques,
these provide the user with an option to embed the hidden
data in certain regions of the image that are less sensitive
to minor distortions and at the same time are important
enough to survive general lossy compression. In this pa-
per, we use the block-based two-dimensional discrete co-
sine transform (2D-DCT) for embedding the data. The
DCT coefficients of digital images have interesting prop-
erties that could be exploited to obtain good hidden data
imperceptibility and fidelity. Most important property
of the DCT is energy compaction. It has been shown
that the DCT converges to the Karhunen-Loeve trans-
form (KLT) for certain images that could be statistically
modelled as first-order Markov processes [3]. The DCT
is an invertible transform, and its inverse is given by the
equation below:

Amn =
M−1
∑

p=0

N−1
∑

q=0

αpαqBpqcos(
π(2m + 1)p

2M
)cos(

π(2n + 1)q

2N
),

where, 0 < m < M − 1 and 0 ≤ n ≤ N − 1. Here αp and
αq are defined as,

αp =

{

1/
√

(M) if p = 0
√

(2/M) if 1 ≤ p ≤ M − 1

αq =

{

1/
√

(N) if q = 0
√

(2/N) if 1 ≤ q ≤ N − 1.

The inverse DCT equation can be interpreted as mean-
ing that any M -by-N matrix A can be written as a sum
of MN functions of the form,

αpαqBpq cos(
π(2m + 1)p

2M
) cos(

π(2n + 1)q

2N
), (1)

where, 0 < m < M − 1 and 0 ≤ n ≤ N − 1.
It has been showed that the samples of the DCT coef-

ficients at the same frequency, in different blocks, are sta-
tistically independent [4]. The statistical characterization
of the DCT coefficients of the original image is valuable
information to the decoder; however, since the original
image is unknown to the decoder, this information has
to be estimated from the stego image. Given the small
alterations generated within the host image due to the
data-hiding process and considering that the hidden data
can be modelled statistically [18], very good estimates of
these distribution parameters can be obtained.

2.1 The Encoder

In the proposed algorithm, 8x8 pixel blocks of the im-
age are first transformed using the DCT and the mid-
frequency regions of the DCT coefficient blocks (see Fig-
ure 1) are used to embed the hidden data. In this figure,
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Figure 1: Mid-frequency DCT coefficients that are being
used to embed the hidden data

FL, FM and FH represent the low, medium and high fre-
quency regions respectively. At the encoder end, we use
a random number generator using a secret key and gen-
erate n pseudo random noise (PN) sequences, {Wm}n

m=1
,

where n is the length of the hidden data sequence and Wm

is the mth PN sequence. Hence we have one PN-sequence
corresponding to each hidden bit. If the mth bit of the
hidden data sequence is ‘0’, we modulate the mid-band
DCT coefficients of the mth block with Wm using Equa-
tion (2) and similarly for the case where the hidden bit is
a ‘1’, we use Equation (3).

Ĩm(u, v) =

{

Im(u, v) + kWm, if u, v ∈ FM

Im(u, v), otherwise
(2)

Ĩm(u, v) =

{

Im(u, v) − kWm, if u, v ∈ FM

Im(u, v), otherwise.
(3)

Here, k is the gain factor used to specify the strength
of the embedded data. Typically the values k can as-
sume range between 0.0 and 1.0, where 1.0 corresponds
to 100% data hiding strength. Increasing k hence re-
duces the chance of detection errors at the expense of
additional image degradation [16]. Wm is the appropriate
pseudo random noise sequence, based on the hidden bit,
m. Im(u, v) represents the mth 8x8 DCT block of the host
image and Ĩm(u, v) represents the corresponding marked
DCT block. Each block, Ĩm(u, v), is then inverse trans-
formed to give the final stego image Ĩ(x, y). We note that
the visual distortion induced in the stego image due to
embedding is very low. Figure 2 shows the original image
and the hidden data on the left hand side and the stego
image on the right hand side.

Figure 2: The original image and the hidden data on the
left hand side and the stego image on the right hand side

2.2 The Decoder

Since the proposed detection is blind, the decoder has no
access to the host image. However, considering the minor
distortion generated by the data-hiding process, and the
fact that the hidden data can be modelled statistically, a
good estimate of the distribution parameters can be ob-
tained from the stego image itself. Let β , b1, b2, ..., bM

be the message vectors that correspond to the M possible
hidden messages. Let wl = Pbl, l ∈ 1, 2, ..., M be the lth

PN sequence, whose individual elements may be denoted
by (wl1, wl2, ..., wln). Assuming that all the codewords
b1, b2, ..., bm have the same a priori probability, the de-
coder must minimize the error probability conditioned to
a secret key and extract the message vector bl that satis-
fies,

ln(
fz(z | bl)

fz(z | bm)
) = ln(

fx(z − wl)

fx(z − wm)
) > 0, ∀m 6= l. (4)

With the assumption that the elements of x are indepen-
dent, and using Equations (1) and (2), we can equate
Equation (5) as follows.

L
∑

i=1

(
| Zi − wm,i |ci − | Zi − wl,i |ci

σci
i

) > 0, ∀m 6= l. (5)

Assuming that the message vectors bl satisfy i ∈
−1, 1, ∀l ∈ 1, 2, ..., M, i ∈ 1, 2, ..., N , Equation (6) pro-
vides sufficient statistics for the hidden message recovery
procedure.

ri ,
∑

k∈Si

(
| Zk + αkSk |ck − | Zk − αkSk |ck

σck
k

). (6)

If the stego image has not suffered any alteration, then
∀k ∈ s, zk = xk + biαksk. After using this result in Equa-
tion (4) and treating the si and the sets Si as the only
random elements of the system, without the loss of gen-
erality we can define the first and second order moments.

ri =
∑

k∈Si

(
| xk + 2αkSk |ck − | xk |ck

σck
k

).
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In the definition of the sufficient statistics ri we note
that they can be expressed as a sum of statistically inde-
pendent terms. Hence for a finite N , we can apply the
central limit theorem [17, 18] and approximate the distri-
bution of r via a Gaussian pdf. Hence we define the signal
to noise ratio (SNR) as follows,

SNR , (
E2[ri]

σ2(ri)
).

Lastly under the assumption that the hidden message
vectors form a binary constellation with M = 2N points,
the theory of Gaussian approximation suggests that using
a bit-by-bit hard decoder the probability of a bit in error
is.

Pb = Q(
√

SNR).

In the proposed decoder algorithm, the stego image
Ĩ(x, y) is broken down into 8x8 blocks, and a 2D-DCT
transformation is performed. Then the correlation be-
tween the mid-band DCT coefficients Ĩm(u, v) and the
appropriate mth PN-sequence Wm is calculated, where
Wm is normalized to zero mean. The detection process
measures the correlation between the sequences generated
using the mid-band DCT coefficients from the stego im-
age and the PN-sequences, which were generated by the
same key that was used at the encoder. These correlation
values are stored in an array of size n, with each corre-
lation value corresponding to one hidden bit. If the mth

correlation value exceeds the average of all of the n cor-
relation values, then we extract a ‘0′ bit. Else we extract
a ‘1′ bit as seen in Equation (7).

Hm =

{

0, if correlation(m) > average(corr)
1, otherwise.

(7)

3 Steganalyzing the Proposed Al-

gorithm

To discuss the visual and statistical distortion caused by
embedding, we use the standard secret key stegosystem
[27]. Alice and Bob are the two users of the stegosystem.
An adversary, Eve, is also present within the system. Eve
has access to the stego image, the embedding algorithm,
and a perfect read only access to the channel. Figure 3
shows the model of the stegosystem in detail.

• In the first pass (switch position 0), Alice transmits
only the covertext C to Bob over the public channel.
No hidden messages are transmitted to Bob in first
pass. Eve observes C, but she is unsure of C being
the unmarked covertext or marked stego text.

• In the second pass (switch position 1), Alice is ac-
tive and transmits stegotext S to Bob, generated by
using the embedding function F on the covertext C.
The stegotext is transmitted to Bob via the public
channel. Hence both Bob and Eve observe S. The
secret key K however is transmitted to Bob via the
secure channel. Hence Eve has no knowledge of K.

Figure 3: General framework for secret key stego system
that generates, embeds and securely transmits the hidden
data

The proposed algorithm works along the lines of a uni-
versal stegosystem, where no information about the cover-
text is required at the decoder. In most practical scenarios
it is never desirable for an adversary to gain access to the
unmarked host. Alice generates the stegotext S based on
a secret key K and the covertext C and transmits the
stegotext via the public channel and the secret key via
the secure channel. In this case Eve has access to the dis-
tribution of the stegotext only (PS). In such a scenario
Eve does not have enough information to apply hypoth-
esis testing and stochastic detection algorithms to check
for the presence of hidden data. To compare the perfor-
mance of the proposed algorithm, for all of the following
tests, we implemented and tested a generic block based
data-hiding scheme working in the DCT domain [25]. The
average peak signal to noise ratio (PSNR) for the stego
images created using the proposed algorithm was 38.35
dB.

3.1 The Westfeld Attack

For a blind stegosystem, Westfeld [33] proposed a tech-
nique that detects the sudden and consistent changes in
the color palette of the stego image. Westfeld proposed
that the theoretical comparison of the expected frequency
distribution in stego-images and the host image will reveal
the presence of a hidden signal. For this purpose West-
feld used the Chi-Square test. We tested the proposed
and the comparison algorithms using the Chi-Square test
available at [13].

A Chi-Square test takes into consideration the correla-
tions between neighboring parts of an image to compute
the probability that a message is embedded for a certain
assumed hidden message length. We noticed that for a
large message length of 1024 bits, the Chi-Square test
failed detection, so we performed additional tests to see
if there would be a difference for smaller message lengths.
We chose to embed a smaller hidden message of size 40
bits. Figure 4 plots the probabilities of detection for as-
sumed hidden message lengths ranging from 0 bits to 40
bits (for the images used in this set of tests, the actual
length of hidden data is 40 bits). We note from the plots
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Figure 4: The results of the Chi-Square test for a 40
bit long hidden data in the stego image generated using
(a) the comparison algorithm and (b) the proposed algo-
rithm. The X-axis represents the assumed length of the
hidden message for the Chi-Square test and the Y-axis de-
notes the estimated probability (by the Chi-Square test)
that a message of that assumed length was hidden.

that as the test assumes a longer hidden message, the
probability of detection reduces. This observation is logi-
cal because it is more probable for the test to find a high
correlation between smaller neighboring parts of the im-
age rather than finding a high correlation between larger
neighboring parts of the image. For the proposed algo-
rithm (see Figure 4(b)), the probability that a hidden
message of length 0.5 bytes was embedded (4 bits) is less
than 0.05 (5%) and the same for the comparison algorithm
is 0.75 (75%) (see Figure 4(a)). As a matter of fact, we
note that for the proposed algorithm using the Chi-Square
test, the probability that a 6-bit or larger hidden message
is present is estimated to be 0(0%). Whereas in fact there
is a 5 byte (40 bit) hidden message present, which means
that the proposed algorithm is not detectable using the
Chi-Square attack. However, for the comparison algo-
rithm we note that Chi-Square attack detects the 40-bit
hidden data with a probability of 0.5 (50%).

3.2 Statistical Steganalysis

In this sub-section we analyze the effects of statistical at-
tacks and comment on the performance of the proposed
algorithm in comparison with the generic spread spectrum
based algorithm. Figures 5(a), (b), and (c) show the his-
tograms of the unmarked host image, the stego image for
the Hernandez et al. algorithm, and the stego image for
the proposed algorithm respectively. The Hernandez et
al. algorithm [15] distorts the pdf of the stego image. It

introduces two smaller peaks in the pdf as seen in Fig-
ure 5(c). However, the pdf of the stego image generated
by the proposed algorithm does not have the additional
peaks. (See Figure 5(b).)

3.3 The Low-Pass Filtering Effect

In [14], Harmsen et al. show that noise addition to a host
in order to hide stego data corresponds to low pass fil-
tering of the histogram of the host. Hence they suggest
that if a noticeable number of high frequency components
of the host image have low power, the hidden data could
be detected. Their method starts with calculating a his-
togram, h, of the stego image. Then, h is transformed us-
ing the forward Fourier transform to obtain F (h). Lastly
the center of gravity (CoG) of the magnitude of F (h), is
calculated and used as the distinguishing statistic to dif-
ferentiate between the stego and cover image. According
to Harmsen, it is possible to keep a fixed threshold value
(T ) that determines whether or not one of the two copies
obtained by Eve contains hidden data. Setting a small
value for T ensures powerful detection, but also leads to
increase in false positives. Similarly, a higher value of T
decreases the false positives but the detection power de-
ters as a result. We note that this detection is based on
the adversary’s knowledge of the cover data. In order to
test this steganalyzer, we need to assume that the adver-
sary has obtained a copy of the original host image. The
CoG calculated by the procedure outlined by Harmsen
et al., for the unmarked host, the stego image generated
using the comparison algorithm and the stego image gen-
erated using the proposed algorithm was 37.11, 32.94 and
36.01 respectively. Hence we see that the distance be-
tween the CoG of the unmarked host and the stego images
was reduced by 74% in the proposed algorithm.

3.4 The Kullback Leibler Distance

Another way to determine the effect of embedding is to
determine the Kullback-Leibler distance [5] between the
pdf of the marked and unmarked images. This measure
can be quantified using the relative entropy between the
probability mass functions (PMF) of the host image and
stego image. The relative entropy D(p||q) between two
PMFs p and q can be defined as

D(p ‖ q) =
∑

x∈Xi

p(x)(log(
p(x)

q(x)
)),

where, 0 log(0 | 0) = 0 and p log(p | 0) = ∞. We note that
the KLD is not symmetric. Hence, D(p ‖ q) is different
from D(q ‖ p). The KLD between the host image and the
stego images generated by the proposed algorithm and the
comparison algorithm (D(p ‖ q)) were calculated to be
0.0295 and 0.0505 respectively and the KLD between the
stego images and the host image (D(q ‖ p)) were 0.0347
and 0.0656 respectively. The proposed algorithm provides
a 41% (47%) reduction in the KLD, D(p ‖ q) (D(q ‖ p)),
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Figure 5: Histograms of (a)Unmarked host image, (b)The
stego image for the comparison algorithm, and (c)The
stego image for the proposed algorithm

Figure 6: Value difference graphs of the histograms of
inner and border DCT coefficient pairs for (a)Original
Lena image and (b) Stego image [29]

between the distributions of the host and stego images as
compared to the generic algorithm.

3.5 Block-DCT Image Steganalysis

Wang et al. [29] propose a block-DCT image steganalysis
method that could be used to determine the presence of
hidden data within an image. According to their method,
the block structure of DCT embedding would lead to pairs
of neighboring pixels within an 8x8 block to have different
statistics from those across two blocks. In Figure 6 [29] we
see the value difference graph that is reported by Wang
et al. after subjecting a block-DCT embedding scheme to
their proposed steganalysis algorithm.

We tested stego images generated by our proposed al-
gorithm using the steganalysis method outlined by Wang
et al. In Figure 7 we show a value difference graph gener-
ated for the difference of inner and border pairs for a stego
image generated by the data-hiding algorithm proposed
in this paper. As seen in Figure 7, we note that the value
difference between the inner and border pairs as expected
by Wang et al.’s steganalysis algorithm is not present for
the case of the proposed algorithm.

4 Robustness Tests

In practice, there is a very good chance for a stego image
to be altered (intentionally and unintentionally) while be-
ing transmitted through the channel. These alterations
may be a result of intentional attacks such as filtering,
blurring, requantization etc. or unintentional distortions
such as lossy compression, channel noise addition etc.
Distortions and attacks introduce an additional transfor-
mation between the stego image and the altered version
available to the decoder. As a consequence, the perfor-
mance of the decoder may be affected. Given a stego
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Table 1: BER comparison for popular robustness attacks
Attack BER(Proposed Algo) BER(Comparison Algo)

Sharpening 0.0244 0.0343
High Pass Filter 0.0253 0.0298

Despeckle 0.1045 0.1180
Blurring 0.0435 0.0541

JPEG(Q-80) 0.0295 0.0334
JPEG(Q-50) 0.0320 0.0460
JPEG(Q-30) 0.0725 0.0811

5% Uniform Noise addition 0.0403 0.0550
5% Gaussian Noise addition 0.0757 0.0793
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Figure 7: Value difference graph of the histograms of in-
ner and border DCT coefficient pairs for a Stego image
generated by the proposed algorithm

system, the role of the attacker is to alter the image in
such a way that visually the image is not considerably
degraded, however, the frequency distribution is trans-
formed in such a manner that the decoder fails to extract
the hidden data. To test the robustness of the proposed
algorithm, the stego images were subjected to various im-
age manipulating operations and compression attacks. In
Table 1, we present the bit error rate (BER) after sub-
jecting the stego images to popular image manipulation
attacks.

As can be seen from Table 1, a simple sharpening or fil-
tering attack does not affect the robustness of the hidden
data by a considerable amount. The BER in these cases
were 0.0244 and 0.0253 respectively i.e. more than 97%
of the embedded data was recovered without any errors.
Even in the case of dislocating attacks such as blurring
and despeckle, the BER was 0.1045 and 0.0435 respec-
tively. In the case of JPEG compression attacks, the BER
was very low, since the data-hiding was performed in the
DCT domain. For medium to low quality compression (Q
50-80), the BER was 0.0320-0.0295 i.e. more than 96% of
the hidden data was recovered without any errors. Even
for very low quality compression (Q-30) more than 92% of

the hidden data was recovered without any errors. In the
case of noise addition the retrieval rates were over 92%
for additive uniform and white Gaussian noise.

5 Conclusion

We proposed a statistically secure data-hiding algorithm
in the DCT domain. This algorithm provides statistical
security and robustness against several attacks and avoids
detection by techniques such as Chi-Square attack or the
low-pass filtering attack. When compared to a generic
data-hiding scheme based in the DCT domain, the pro-
posed algorithm provides more than 41% reduction in the
relative entropy between the PMFs of the host the stego
images. The proposed algorithm was shown to be robust
against a multitude of image manipulating attacks. In the
case of JPEG compression attacks, even very low quality
compression (Q-30) resulted in BER of 0.0725 i.e. more
than 92% of the hidden data was recovered without any
errors. In the case of robustness tests, the proposed al-
gorithm out performed the generic DCT algorithm for all
attacks. While providing significant robustness and ca-
pacity, this algorithm also induces low distortion in the
host image with an average PSNR of more than 38 dB for
all the images that were included in the test dataset.
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