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Abstract

One of the most important phases of the IDS/IPS imple-
mentation identifies the set of features that the system is
going to use. We present a feature classification schema
for network intrusion detection intended to provide a bet-
ter understanding regarding the features that can be ex-
tracted from network packets. Furthermore, we present
the design of a feature extractor that extracts and sta-
tistically analyze features with respect to attacks. The
experimental results, conducted on DARPA dataset, are
intended to statistically highlight the importance of each
proposed feature category, as well as to identify some of
the most sensitive features to attacks.

Keywords: Feature classification, feature extractor, intru-
sion detection, network security

1 Introduction

Network security is one of the top priorities of our modern
society. The Internet growth, information sharing, and
technology improvement are some of the factors that hu-
mans become dependent on. Illegal access to private and
confidential data has become a new way of crime. Tools
for malicious purposes are freely available for download
from the Internet. Hackers all over the world no longer
need to have a strong background in order to perform at-
tacks. The biggest challenge that network administrators
face is to find good intrusion detection solutions that can
work on-line and are able to detect intrusions in real-time.

Whether the focus is on Intrusion Detection Systems
(IDS) or on Intrusion Prevention Systems (IPS), the chal-
lenges remain the same: feature selection, intrusion iden-
tification method, intrusion identification latency, and
false positive rates to name a few.

One of the most important phases of an IDS/IPS im-
plementation is the decision upon the set of features that
the system is going to use for detection/prevention pur-
poses. This decision will directly influence the types of
attacks that are going to be detected/prevented by the

IDS/IPS (e.g., a network based IDS will not be able to
detect an application-based intrusion initiated within the
same host, similarly an antivirus will not be able to detect
a Distributed Denial of Service (DDoS) attack).

Despite its importance, to the best of our knowledge,
there is no comprehensive classification of features that an
IDS/IPS might use for detecting network based attacks.
Moreover, different researchers use different names for the
same subsets of features, while others use the same name
for completely different types. Network security related
articles, journals, and white-papers usually concentrate
on the detection techniques that they use, briefly men-
tioning the chosen features or the reasons behind that
selection.

We propose a feature classification scheme for network
intrusion detection that is intended to provide a better
understanding of the large number of attributes that can
be extracted from network packets, their relationships,
as well as their usefulness in detecting different types of
attacks.

The rest of this paper is organized as follows, Section 2
presents the main existing feature classifications schemes
that are used in the literature. Section 3 identifies the
main abstractions of the network security domain. The
naming convention of the proposed feature categories is
explained in Section 4. The domain abstractions are used
in Section 5 for defining the proposed feature classifica-
tion schema. Section 6 presents two available methods
for reporting the features to the detection engines. Sub-
sequently, Section 7 describes the architectural design of
our feature extractor engine. Section 8 presents our ex-
perimental results while using DARPA 1999 [4], a well
known intrusion detection and evaluation dataset. Fi-
nally, Section 9 presents the conclusion and possible fu-
ture extensions of the work.

2 Background Review

The diversity of features that can be extracted from raw
data packets and the time complexity that takes for some
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of the features to be computed are two major factors that
lead to compromises that researchers make when design-
ing and deciding upon the features that they are going to
use.

Even though there is no unanimous accepted classifi-
cation regarding the features that can be extracted from
raw packet data, most of the papers do make a distinc-
tion (even if not directly) between features that are com-
puted with respect to a single TCP connection, versus
those that are computed considering multiple TCP con-
nections. Thus, two types of features can be identified as
follows.

1) Basic TCP Features: features that characterize a sin-
gle TCP/IP connection. The name of this category
differs from author to author, but the semantic tends
to be consistent. Accordingly, Dokas et al. [5], and
Ertoz et al. [6] use the name Basic Features; Lee et
al. [20] use Essential Attributes; KDD-1999 uses Ba-
sic Features of individual TCP connection [7], while
Lichodzijewski et al.[9] use Basic TCP Features as a
suitable name for this category. Finally, Powers [11]
uses the name Flow Statistics for a superset of this
category, which also includes connection-less proto-
cols (e.g., UDP, ICMP).

2) Derived Features: features that can characterize mul-
tiple TCP/IP connections at the same time [5, 6].
Also, known as Traffic Features [7, 20].

The goal of using Derived Features is to find similari-
ties that exist between different TCP connections in the
network. In order to compute those features, two types of
sliding window intervals are used. The first approach uses
a time-window interval of few seconds (e.g., 5 sec), while
the second one uses a connection-window interval of sev-
eral connections (e.g., last 100 connections). The use of
the two types of sliding windows further divides the De-
rived Features category into Time based and Connection
based features as follows:

1) Time Based Features: are all the derived features
computed with respect to the past x seconds, where
x is the size of the time window interval [5, 6, 7, 20].
This type of features are useful for detecting bursty
attacks (i.e., attacks that happen within a short pe-
riod of interval) such as worm and DDoS.

2) Connection Based Features: are all the derived fea-
tures computed with respect to the past k TCP
connections that were encountered in the network
[6, 5, 20]. These features are used when the detec-
tion of stealthy attacks is targeted (i.e., attacks that
happen within a long period of time, usually several
minutes or even hours).

Although theoretically it is possible to design a system
that can extract and analyze a wide range of features, due
to constraints such as, large computational time, diversity
of protocols and applications that exist, and amount of

memory that the IDS/IPS needs, most of the implementa-
tions make tradeoffs concentrating only on a particular set
of intrusions (e.g., R2U, U2R, and DoS in [5, 6, 20]; Hor-
izontal, Vertical, and Block PortScanning for TCP and
UDP in [16]; Denial of Quality of Service in [19]; Worms
in [2, 18, 22]; DDoS in [10, 13]; TCP-SYN Flooding At-
tacks in [21]; TCP-SYN Flood, UDP Flood, and ICMP
Flood Attacks in [14]). Finally, due to possible false cor-
relations between features that an IDS/IPS might detect,
selecting larger number of features may not necessarily
lead to a better detection [12, 17], but may have adverse
effect on the performance of the system. For instance, by
using only 17 features out of the 41 features provided by
the International Knowledge Discovery and Data Mining
Competition (KDD-1999), Chebrolu et al. [12] obtained
almost the same detection rate, while the performance of
the system was improved by almost 50 percent.

3 The Network Security Domain

Feature classification is a domain dependent problem that
cannot be accomplished without identifying the main en-
tities that reside in a given domain and the means that
they use to communicate.

Let us consider a network as any arrangement of enti-
ties that are interconnected. In the case of a wired net-
work those interconnections are realized through cables,
routers, switches, to name a few. In the case of a wireless
network, the interconnections are also achieved by using
towers and antennas. The entities in a network are rep-
resented by hosts. A host can refer to almost any kind
of computer that resides within the network (e.g., server,
mainframe, desktop PC, or terminal).

The data exchanged between different hosts inside a
network is wrapped in packets. A packet is the funda-
mental unit of information carriage in the network (also
referred to as datagram or frame in the literature). Fur-
thermore, let us consider a connection as the act of bring-
ing two hosts into contact. Consequently, if the informa-
tion unit is represented by a packet, a connection is rep-
resented by a collection of packets that are bidirectional,
exchanged between the two hosts for fulfilling a goal. As
an alternative to connections, some of the authors and
IDS/IPS vendors adopt the flow definition as reported by
CISCO1 [3].

In brief, we have identified four main abstractions
of the domain, namely network, host, connection, and
packet. Accordingly, we further extract and classify their
prominent characteristics, which we call features.

The proposed feature classification schema is defined
for the Transport, Network, and Network Access layers
of the TCP/IP Architecture Model. This corresponds to

1A flow is a unidirectional sequence of packets between a given
source and a given destination. It is uniquely identified as a combi-
nation of seven factors as follows: source IP, destination IP, source
port, destination port, layer 3 protocol type, the type of service
byte, and the Input Logical Interface (ifIndex) value.
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Data Link (MAC), Network, Transport and Session lay-
ers of the OSI (Open Systems Interconnection) standard.
In particular, a host is uniquely identified by its IP ad-
dress, while a connection (i.e., TCP, UDP, and ICMP2)
is uniquely identified by the combination of 6 fields as
follows source IP, destination IP, source port, destination
port, protocol, and type of service. However, the schema
can be easily extended to the other remaining protocols
and layers of the TCP/IP architecture.

4 The Naming Convention

Due to the large number of proposed feature-categories,
the current work uses acronyms for defining their names.
As depicted in Figure 1 the naming convention can be fol-
lowed as a path in the tree, where each edge represents a
letter that adds to the end of the acronym. For instance,
the DFSTU acronym is obtained by following the path of
the right, left, left, and right vertices of the sub-children
nodes of the root; and stands for the subset of Derived
Feature category that are dependent on a Single connec-
tion, are computed using a Time-window interval, and
are Unidirectional.

Similarly, DFMCG acronym is obtained by following
the path defined by the right, right, right, and center ver-
tices of the sub-children nodes of the root; and stands
for the subset of Derived Features that are computed
using data extracted from Multiple connections, in a
Connection-window Interval, involving only One host of
the current connection.

5 The Feature Classification
Schema

One of the main dilemmas in network security is whether
or not a packet belongs to a malicious event. If a defi-
nite answer can be deducted from the available pool of
features, the detection problem is solved. Thus, our clas-
sification schema is defined with respect to the currently
sniffed packet. Therefore, all the features are grouped in
two main classes Basic Features and Derived Features.

• Basic Features (BF): contains all the features that
can be extracted from a single packet without re-
quiring any kind of extra information.

• Derived Features (DF): contains all the features that
require relationship analysis of multiple packets over
a period of time.

Obviously, without having the BF category, none of
the DF features can be computed. Moreover, most re-
searchers do not even mention the BF category, since they
only use it as an intermediary layer which helps them to
create other features.

2In the case of an ICMP connection, the source and destination
ports are 0.

Figure 1 depicts the proposed feature classification
schema. Each path from the root node to either a leaf
or an intermediate node also denotes the naming conven-
tion.

5.1 Basic Features (BF)

Any field of a packet (datagram) is a possible candidate
for this feature category including Timestamp, sourceIP,
destinationIP, protocol, sourcePortNo (if applicable), des-
tinationPortNo (if applicable), flags, ICMP Type (if ap-
plicable), to name a few.

Some of the basic features do not provide any kind of
information when studied alone, but can contribute to the
computation of other derived features. For instance, let
us consider the case of a packet timestamp. This feature
is linearly increasing in time and is not directly useful in
mining the intrusions. Nevertheless, it can be successfully
used to compute a derived feature such as the duration of
a certain connection. Packet source IP (srcIP) and packet
destination IP (dstIP) are two other examples of basic
features that cannot directly participate in an anomaly
detection process. On the other hand, it is impossible to
extract any information about the connections in the net-
work if these two features are not considered. Moreover,
as our experimental results show (see Section 8) some of
the features from this category are quite sensitive to in-
trusions.

Mahoney and Chan [8] use only BF for the purpose
of detecting network attacks. Their algorithm splits the
fields larger than 4 bytes (such as Ethernet address) into
half, while concatenates fields smaller than 1 byte. How-
ever, we believe that, by examining the packets and their
fields in isolation, a lot of information about packet in-
terdependencies is lost. Basu et al. [1] also identifies this
category of features under the name of Packet Header
Features.

The BF are also used by any state-machine that needs
to be implemented for a particular protocol. Usually,
IDS/IPSs that implement a specification based engine
closely monitor the observed states of the protocols and
detect abnormal conditions that may happen. Here, BF
are used as triggers to change state in the correspondent
state machines (e.g., for TCP protocol, the packet Se-
quence number and packet Acknowledgement number are
used in combination with other BF features).

5.2 Derived Features (DF)

This category contains all the features that require rela-
tionship analysis of multiple packets over a period of time.
Since we define a connection as a collection of packets that
are exchanged between two hosts for fulfilling a goal, the
subgroup of packets that is used to compute a particular
DF may belong to one or more connections. Two subcate-
gories of related features can be identified with respect to
the number of connections that they belong to as follows:
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Figure 1: The feature classification schema and the naming conventions

• DF-Single connection dependent (DFS): contains fea-
tures that are computed with respect to a single con-
nection. The aim here is to detect if the current
connection is a malicious one or not.

• DF-Multiple connection dependent (DFM): contains
features that represent interdependencies between
connections in time. These features are mostly used
in the case of detecting worm attacks, DDoS attacks,
or any kind of attack that requires more than one
connection.

Note that our definition for connection includes con-
nection oriented protocols (e.g. TCP) as well as connec-
tionless protocols (e.g. UDP, ICMP). In the case of con-
nectionless protocols we define a connection as the num-
ber of packets exchanged between two hosts in the last m

seconds (using the same two ports when appropriate).

Most researchers in the area of Network Security agree
with this classification, even though the names differ from
author to author. For example Dokas et al. [5], Ertoz
et al. [6], and Lichodzijewski et al. [9] use the name
Basic Features for a subset of the DFS category, Lee et
al. [20] use Essential Attributes, while Powers [11] uses
Flow Statistics for the same subcategory. Finally, KDD-
1999 distinguishes only the subset that refers to the TCP
protocol as Basic Features of individual TCP connection
[7].

The DFM category has also been referred to as Traffic
Features [7, 20], and Derived Features [5, 6] by different
researchers.

The DFS and DFM categories are further described in
the following two subsections.

Table 1: Subset of the DFS features
No Feature Description
1 no. of packets
2 no. of bytes
3 no. of fragmented packets
4 no. of overlapping fragments
5 no. of TCP packets that have flag X set
6 no. of TCP flags per packet
7 no. of ICMP echo request packets
8 no. of ICMP destination unreachable packets

5.2.1 DF-Single Connection Dependent Features
(DFS)

This category contains all the features that can describe
a single connection. Even though the DFS features can
be computed for each existing connection in the network,
from the intrusion detection point of view a special in-
terest represents the connection that the current sniffed
packet belongs to. Table 1 contains a small subset of the
features that belong to this category.

The DFS features can be computed in two different
ways depending on the type of intrusion targeted. For
bursty attacks, the connection’s activity for the past few
seconds is a decisive factor, while stealthy attacks can be
detected by studying the duration of the whole connec-
tion. These two methods lead to the following categories.

• DFS-Time-window based features (DFST): contains
all the DFS features that are computed by using a
time window interval.

• DFS-connection-Life based features (DFSL): in-
cludes all DFS features computed with respect to
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connection’s life time. Theoretically, if there is a con-
nection that lasts for two days, a network security
system should be able to compute all the features of
that particular connection without any problem. In
practice, due to the space and processing time restric-
tion, if the connection is not closed after a reasonable
period of time, it will be discarded.

There might be a concern that some of the DFSL fea-
tures should be extracted only when a connection ends.
The argument against this position is that an intrusion
detection system does not have the luxury to wait un-
til the connection is closed, but has to adopt a proactive
approach. Thus, for example, even though the total du-
ration of a connection cannot be exactly extracted before
the connection ends, the current duration of connection
is a valuable information.

Regardless of the method used to extract the DFS fea-
tures (i.e., time-window based, connection-Life based),
each of the previously discussed subcategories (i.e., DFST
and DFSL) can be further analyzed with respect to the
packet direction between the two hosts involved in the
connection. Consequently, the next subsection describes
them in parallel. For easier notation let DFSx stand for
either DFST or DFSL categories.

Since there are always two hosts involved in a con-
nection, the features can be further categorized into uni-
directional features (DFSxU) and bidirectional features
(DFSxB), where x can be replaced with either T or L for
time-window based and connection-life based features, re-
spectively (see Figure 1).

1) DFSx-Unidirectional features (DFSxU): are features
computed with respect to either one of the two hosts
that belong to the connection. For instance, the “no.
of packets” feature will become “no. of packets sent
by srcIP to dstIP”, and “no. of packets sent by dstIP
to srcIP”.

This is important in the cases when the features com-
puted for the current connection show an abnormal-
ity and the system has to decide which one of the
two hosts is the attacker and which one is the vic-
tim. Note that the initiator of the connection is not
always the attacker, while the target of the connec-
tion is not always the victim. For example, consider
the case of a Trojan Horse installed on a computer
that opens a backdoor with the real attacker. This is
especially relevant when the application layer is also
considered for features extraction. Thus, the DFSxU
features are further divided into two types as follows:

a. DFSxU-Source to destination features (DF-
SxUS): includes all DFSxU features computed
with respect to the active behavior of the con-
nection source IP.

b. DFSxU-Destination to source features (DF-
SxUD): includes all DFSxU features computed
with respect to the active behavior of the con-
nection destination IP.

The previous distinction is implicitly done by all the
systems that consider flows3 instead of connections.
Even though computationally a system that uses
flows might be superior, due to lack of correlation
between the two flows that belong to a connection,
some of the attacks will remain undetected (e.g., at-
tacks that can be identified by the use of specification
based detection techniques).

2) DFSx-Bidirectional features (DFSxB): this category
covers all the features that can depict the traffic of a
connection as a whole, considering the contribution
of both hosts at the same time. This category of fea-
tures can be used to build connection anomaly pro-
files, to define connection specification based rules, or
to compare the current connection against Quality of
Service factors.

The bidirectional features can also be used for identi-
fying Remote to Local or DoS attacks. As an exam-
ple, consider the case of an UDP Storm attack, where
by the use of a single spoofed packet, the attacker
compromises two hosts. In this particular case, the
two participants to the current connection are both
victims, and thus, intuitively the features represent-
ing the connection will better highlight the anomaly
than the previously presented unidirectional features.

5.2.2 DF-Multiple Connection Dependent Fea-
tures (DFM)

All the feature-groups identified in the previous subsec-
tion were defined with respect to a single connection. The
main issue that may arise so far is that by their use, an
IDS/IPS would not be able to detect intrusions that use
more than one connection at a time such as worm, scan-
ning, and DDoS attacks. Thus, for this purpose, the DFM
group includes features that characterize interdependen-
cies between connections in time.

Since the targeted information has to be extracted from
multiple connections, two methods can be identified for
feature construction: features extracted based on a pre-
defined time interval (e.g., number of TCP packets ex-
changed through the network in the last 5 seconds), and
features extracted considering a fixed number of connec-
tions (e.g., number of TCP packets exchanged through the
network by the last 100 TCP connections) [1, 5, 6, 20].
Consequently, the DFM category is further separated into
the following subcategories:

• DFM-Time-window based features (DFMT): in-
cludes all the features that are computed with re-
spect to the last time interval. This type of features
is mostly used for detection of bursty attacks that
happened in the last several seconds.

• DFM-Connection-window based features (DFMC):
includes all the DFM features that are computed

3The flow definition is described by CISCO[3]



International Journal of Network Security, Vol.5, No.1, PP.1–15, July 2007 6

Table 2: A subset of the DFMxB features
No Feature Description
1 no. of AAA connections between SrcIP and DstIP
2 no. of BBB connections created by SrcIP using any port to connect to any port on DstIP
3 no. of BBB connections created by SrcIP using the SrcPort to connect to any port on DstIP
4 no. of BBB connections created by SrcIP using any port to connect to the DstPort on DstIP
5 no. of BBB connections created by DstIP using any port to connect to any port on SrcIP
6 no. of BBB connections created by DstIP using the SrcPort to connect to any port on SrcIP
7 no. of BBB connections created by DstIP using any port to connect to the DstPort on SrcIP
8 no. of AAA packets received by SrcIP from DstIP
9 no. of AAA packets sent by SrcIP to DstIP
10 no. of AAA bytes received by SrcIP from DstIP
11 no. of AAA bytes sent by SrcIP to DstIP
12 average no. of AAA bytes per packet received by SrcIP from DstIP
13 average no. of AAA bytes per second received by SrcIP from DstIP
14 average no. of AAA bytes per packet sent by SrcIP to DstIP
15 average no. of AAA bytes per second sent by SrcIP to DstIP
16 no. of TCP packets sent by SrcIP to DstIP with XXX flag
17 no. of TCP header flags sent by SrcIP to DstIP
18 no. of TCP packets received by SrcIP from DstIP with XXX flag
19 no. of TCP header flags received by SrcIP from DstIP
20 no. of ICMP echo request packets sent by SrcIP to DstIP
21 no. of ICMP echo request packets received by SrcIP from DstIP
22 no. of ICMP destination unreachable packets sent by SrcIP to DstIP
23 no. of ICMP destination unreachable packets received by SrcIP from DstIP

with respect to the last several encountered connec-
tions. This type of feature is used to detect stealthy
attacks (i.e., attacks that happen over a long period
of time).

Stealthy attacks are famous due to their ability to pass
the security layer undetected. This is mostly because their
behavior slightly changes in time, and an IDS that uses a
predefined time window interval cannot detect anything
as the time window slides. This does not happen in the
case of a connection-window interval in which the entire
connection (not just the last several seconds) is considered
for computing the features.

Depending on the type and number of protocols that
an IDS/IPS is analyzing, a connection-interval may be
assigned to each protocol or a single connection-interval
may be assigned for all the protocols. Consequently, in
the first case, the IDS/IPS would have to handle mul-
tiple connection-intervals while in the second case only
one. The first method might be preferred due to the in-
tuitive behavioral difference between different protocols.
For example, factors such as traffic burst, number of con-
nections, and load of connections, are fundamentally dif-
ferent from protocol to protocol (e.g., the load created in
the case of a TCP connection cannot be compared with
the load created by an ICMP connection4). The main dis-
advantage of this approach is that it is computationally
intensive. The second approach, on the other hand, uses
only a connection-interval and makes the computational
power manageable. However, in the case of simultaneous
attacks, the connection-window might be flooded by only
some attacks, making the other ones undetectable.

Each of the previously discussed DFM subcategories
can be further analyzed versus the connections that are
taken into consideration when the features are computed.
Consequently, the next subsection describes the DFMT

4A connection is previously defined as the act of bringing two
hosts into contact, thus, the definition can also be applied in the
case of connectionless protocols.

and DFMC categories in parallel. For easier notation let
DFMx stand for both DFMT and DFMC categories.

The features belonging to both of these two categories
can be further grouped into three distinct sets (see Fig-
ure 1): features that describe the activity between two
hosts, features that describe the activity of a single host,
and features that describe the activity of the whole net-
work.

Let CSrcIP, CDstIP, CSrcPort and CDstPort represent
the connection source IP, destination IP, source port, and
destination port, respectively. Similarly, SrcIP, DstIP, Sr-
cPort, and DstPort denote the current packet’s source IP,
destination IP, source port, and destination port, respec-
tively. Since for the ICMP protocol no port numbers are
defined, we consider CSrcPort, CDstPort, SrcPort, Dst-
Port only for TCP and UDP protocols. Furthermore, let
AAA, BBB, and XXX denote the following sets {TCP,
UDP, ICMP}, {TCP, UDP}, and {URG, ACK, PHS,
RST, SYN, FIN}, respectively. These notations are used
in Tables 2, 3, and 4.

The previously mentioned subcategories are defined as
follows:

1) DFMx-involving Both hosts of the current connec-
tion (DFMxB): all the features in this category are
computed considering the contribution of both srcIP
and dstIP hosts over multiple connections between
them (see Table 2). This set of features is especially
useful in the case of vertical scanning attacks, DoS
attacks, or whenever the attacker initiates multiple
connections between his host and the victim.

2) DFMx-involving One host of the current connection
(DFMxO): this category of features are constructed
in order to monitor the interaction between one host
and the whole network. This is especially useful in
the case of DDoS attacks (i.e., when the attacker
controls multiple daemons which aim to compromise
a certain host), a horizontal scanning attacks (i.e.,
when the attacker scans multiple hosts in order to
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Table 3: A subset of the DFMxOy features, where the letter y stands for S or D in DFMxOS and DFMxOD
categories, respectively

No Feature Description
1 no. of AAA connections created by HostY
2 no. of AAA connections that use HostY
3 no. of BBB connections created by HostY using any port to connect to the CDstPort on any other

hosts
4 no. of BBB connections created by any host using any port to connect to the CDstPort on HostY
5 no. of BBB connections created by HostY using the CSrcPort to connect to any ports on any

other hosts
6 no. of BBB connections created by any host using the CSrcPort to connect to any ports on HostY
7 no. of TCP connections created by HostY which have SYN Flag
8 no. of TCP connections that use HostY which have SYN Flag
9 no. of TCP connections created by HostY which have RST Flag
10 no. of TCP connections that use HostY which have RST Flag
11 no. of AAA packets received by HostY
12 no. of AAA packets sent by HostY
13 no. of AAA bytes received by HostY
14 no. of AAA bytes sent by HostY
15 average no. of AAA bytes per packet received by HostY
16 average no. of AAA bytes per second received by HostY
17 average no. of AAA bytes per packet sent by HostY
18 average no. of AAA bytes per second sent by HostY
19 no. of ICMP packets received by HostY with destination unreachable flag
20 no. of ICMP packets sent by HostY with echo reply flag
21 no. of TCP packets received by HostY with XXX flag
22 no. of TCP header flags received by HostY

find possible vulnerabilities), or a worm propagation
attacks (i.e., when the worm scans the network prior
to its migration).

The features in this category can be computed with
respect to CSrcIP and CDstIP as follows:

a. DFMx-involving the Source of the connection
(DFMxOS): contains features that depict the
interaction of the CSrcIP host with the whole
network (i.e., all the other hosts that CSrcIP
has at least one connection with). Table 3 lists
a subset of the features contained in this cate-
gory when HostY is replaced with CSrcIP.

b. DFMx-involving the Destination of the connec-
tion (DFMxOD): similar to the previous subcat-
egory but computed with respect to the CDstIP,
the DFMxOD features describe the interaction
of CDstIP with the whole network. Table 3 lists
a possible subset of the features contained in
this category when HostY is replaced with CD-
stIP.

The distinction made between the DFMxOS and
DFMxOD categories is very important since in the
first case (i.e., DFMxOS) the source of the connec-
tion is targeted for possible malicious activities while
in the second case (i.e., DFMxOD) the destination
of the connection is targeted for possible infection.
Thus, some of the attacks can be identified by using
this two categories in conjunction. For instance, in
the case of a worm attack the connections that have
as destination the CSrcIP can be compared against
those connections that are initiated afterwards by
CDstIP. If these two features exhibit a similar pat-
tern shifted in time, then one conclusion might be
that the hosts are infected.

3) DFMx-General network statistics (DFMxG): these
features are used to provide statistical information
about the state of the whole network. Any feature
belonging to this category (see Table 4) is not directly
related to any of the two hosts that participate in the
current connection (i.e., CSrcIP and CDstIP). Thus,
DFMxG provides valuable information about intru-
sions that are not related to the current packet, but
represent a threat to the network itself (e.g., scan-
ning, probing, and DDoS). This information can also
be used as a trace to network quality of service re-
lated issues such as inbound/outbound traffic ratios,
number of dropped packets, number of retransmit-
ted packets, number of connections closed with a re-
set signal, number of packets that have small time to
live value, to name a few.

A subset of the DFMTG category is also identified by
KDD-99 under the name of Traffic Features [7], while
Lee et al. defines other two main categories that are
also contained into the DFMx category as follows:
The Same Host features and The Same Port features
[20]. The former category defined by Lee et al. is
contained in DFMxO features, while the latter one
is divided between DFMxO and DFMxG categories.
We believe that The Same Port category cannot be
defined as a single category since a port is neither
an entity nor an activity of the previously defined
knowledge domain. Therefore, the part of The Same
Port category which is computed versus the whole
network is included in the DFMxG category (note
that it is not directly related with any of the two hosts
participating to the current connection), while the
part which is computed versus either of the CSrcIP
or CDstIP is included in DFMxO category.
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Table 4: A subset of the DFMxG features
No Feature Description
1 no. of AAA connections
2 no. of AAA packets
3 no. of BBB connections that use the CDstPort as destination port
4 no. of BBB connections that use the CSrcPort as source port
5 no. of TCP packets with XXX flag
6 no. of received ICMP packets with destination unreachable flag
7 no. of sent ICMP packets with echo reply flag
8 no. of ICMP connections that have at least one destination unreachable message
9 no. of ICMP connections that have at least one echo reply message
10 no. of TCP connections that use CSrcPort as source port and have SYN Flag
11 no. of TCP connections that use CDstPort as destination port and have SYN Flag
12 no. of TCP connections that use CSrcPort as source port and have RST Flag
13 no. of TCP connections that use CDstPort as destination port and have RST Flag
14 no. of TCP connections that have SYN Flag
15 no. of TCP connections that have RST Flag
16 the percent of partially opened TCP connections vs. all connections
17 the percent of TCP connections that were closed with reset vs. all connections
18 the percent of AAA connections vs. all connections

6 Reporting the Features to a De-

tection Engine

Once the features are constructed, they need to be for-
warded to the detection engine(s) for further processing.
There are two main methods for reporting the features.
For instance, if the detection engine implements a Signa-
ture based technique on packets, it is most likely that it
will analyze each packet as it is encountered from the net-
work. Furthermore, a detection engine that uses a Spec-
ification based technique based on protocol analysis, will
use a state machine that also needs to be fed with data
each time a packet is encountered. On the other hand,
the Signature and Specification based detection techniques
together with the Anomaly based technique may also be
implemented accept data that is collected at a rate of
several seconds. Thus, in this case, the data is collected
and reported to the detection engine in a synchronized
manner. There are two methods of reporting the data as
follows:

• Event-based reporting: the data is reported to the
detection engine whenever a packet is encountered.
The principal candidates for such an approach are all
BF features, but also part of the DFSL and DFMC
features. The most common consumers of this re-
porting technique are packet signature and protocol
state machine analyzers.

• Time-based reporting: the data is reported to the
detection engine based on a predefined rate of sev-
eral seconds. In this case, any feature that belong to
DF category is a possible candidate for this method.
The mostly common subgroups that are sent this way
are DFMxG features, and part of the DFMxB and
DFMxO features. This method is mostly suitable
for traffic and quality of service analysis as well as
anomaly detection.

7 Implementation of the Feature

Extractor

To further study the features that have been presented
in the previous sections, a feature extractor engine along
with a postprocessing module have been implemented.
This section presents the underlying high-level architec-
ture of the system, along with some of the algorithms that
are used for feature construction. The main objective is to
design the feature extractor as an external entity that can
afterwards be plugged in a real IDS/IPS system. More-
over, the design had to encompass features from all the
previously mentioned categories, and to easily allow the
addition of other network features later on. Finally, since
the system is primarily concerned with feature behavior
mining, it must also be highly customizable, allowing the
user to change several feature construction variables such
as granularity and dimensionality of the time-window in-
terval, dimensionality of the connection-window interval,
maximum time to live interval that triggers the deletion of
inactive connections, the option to analyze connectionless
protocols as flows or connections, to name a few.

7.1 Top Level View

Figure 2 depicts the main building blocks of the sys-
tem. The first processing unit is the Data Reader Module,
which allows the system to either directly sniff the net-
work packets from the Network Interface Card (NIC), or
to read them from a binary TCP dump file. At this stage,
all the features from the BF category are extracted and
passed along to the Time Reconstruction Module (TRM).
The TRM is bypassed when the data is directly sniffed
from the network, but plays a critical role when the data
is read from a TCP dump file in replaying the packets
at their normal speed. Thus, the implementation of the
next module becomes independent of the input data. The
Connection Reconstruction and Features Extraction Mod-
ule represents the core of the system. This module is
responsible for extracting all the other feature categories
that exist in our classification schema. The module uses
the event-based reporting technique for forwarding the fea-
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tures to the next modules. The rational behind choosing
this type of reporting against time based reporting is that
for feature post-analysis the packet by packet reporting
is more appropriate. This module is currently design to
extract 613 features per packet5. As final step of the fea-
ture extraction process, the data is stored in a MySQL
database, each day of the data being stored in a sepa-
rate table. After the features are saved into the MySQL
database, and if the labels are provided for the data, the
Data Labeler Module, working as an offline process, ap-
plies those labels. Due to processing speed and mem-
ory consumption, the developing platform/language for
all the previously presented modules are Linux and C++.
Finally, the Statistical Extractor Module has been imple-
mented for feature post analysis. The aim of this module
is to provide statistical properties of the features while
under normal as well as intrusion traffic, so that their
relevancy over different attack scenarios can be extracted
and analyzed. Since in this case the speed and mem-
ory consumption are not critical factors, the program was
written as a combination of Java and Matlab languages
under windows platform.

The following two subsections describe in more detail
some of the key points in the design of both: The Con-
nection Reconstruction and Features Extraction Module,
as well as the Statistics Extractor Module.

7.2 The Feature Extraction Process

Several key issues must be addressed at the designing
stage of the feature extraction, such as data dimension-
ality, data redundancy, memory usage, and speed. This
is especially important in the case of network traffic due
to the tremendous volume of data that must be analyzed,
combined with the number of features (i.e., 613) that the
feature extractor was designed to produce. While data
dimensionality is accommodated by using connection and
time-window intervals, the data redundancy can be solved
through a careful analysis of both the network security do-
main abstractions (as defined in Section 3) and the pro-
posed classification schema. Consequently, five main data
structures can be identified that will allow the extraction
of all the feature categories from the classification schema
as follows: packet data group, host data group, connec-
tion data group, HostX-HostY data group, and network
data group.

Each one of these structures stores and maintains a
particular set of features. For instance, the packet data
group is used to store the BF category. A container is
created for each encountered packet, and populated as
the BF features are extracted.

Next, the host data group is used to store any feature
that is related to a particular host. This includes DFMTO
and DFMCO categories. One instance of this container
is needed for each existing host in the network. Due to
memory constraints, once a particular host is not involved

5Section 5 mentions most of the features. Please note that Ta-
bles 1,2,3, and 4 incorporate features from multiple categories.

anymore in any connection, its container is automatically
deleted. Since the host IP address is unique for each active
host, this key is used as a unique identification ID.

The connection data group is used to store those fea-
tures that target a single connection (i.e., DFSTB, DF-
STU, DFSLB, DFSLU). Like in the previous cases, a
container is created for each new encountered connec-
tion. Furthermore, each time when a connection is closed
(or becomes inactive for a long period of time), its con-
tainer is disregarded. Each connection is identified by
a unique ID composed of 5 features as follows: <IP1,
IP2, Port1, Port2, Protocol>, where host IP1 uses Port1,
host IP2 uses Port2, the connection is using Protocol, and
P1<6IP2. In this way, regardless of the packet direction,
the connection ID will remain the same.

Next, HostX-HostY data group is used to store any
features that characterize the exchanged information be-
tween HostX and HostY (i.e., DFMTB and DFMCB fea-
tures). Therefore, a such container is created for each
pair of hosts that exchange at least one packet. Once is
no more activity between a pair of hosts, the corespon-
dent container is deleted. As additional information, each
container also carries a list of all the connections that the
two hosts create between them, and is uniquely identi-
fied by the <P1,P2> tuple, where P1 and P2 are the IP
addresses for the two hosts, and P1<P2.

Finally, since the network is uniquely identified by the
sniffer’s position, a single data structure called network
data group is sufficient to contain both the DFMTG and
DFMCG features.

7.2.1 Implementing the Connection-Window In-
terval

The connection-window interval is used for computing the
connection-window based features (i.e., DFTCOS, DFT-
COD, DFTCB, DFTCG), and it is internally stored as a
doubly-linked list.

Using a linked list confers several advantages that
directly influence the speed of the program, since the
connection-window interval can be pictured as a FIFO7.
Consequently, each time when a new connection is en-
countered the oldest one must be disregarded. Thus, by
using a doubly-linked list the program does not have to
shift all the elements inside the list in order to attach
the new connection. Note that the size of the connection-
window interval does not influence the performance of the
algorithm since updating the head and tail required O(1).

Storing the connection-window interval as a simple
FIFO is not enough. This is mostly because active con-
nections may and up thrown outside the window interval,
instead of closed connections. Consider a scenario where
a active connection x opened several minutes ago is at
the end of the window. This connection will be the first
one to be disregarded when a new connection is encoun-

6The ‘<’ operator can be overloaded, since the internal repre-
sentation of each IP address is a double long number.

7First In First Out vector also known as a queue
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Figure 2: The underlying architecture of the feature extractor and feature post-processing system

tered. This does not exclude the possibility of several
already closed connection being inside the interval. Con-
sequently, in such situation disregarding a closed connec-
tion will be more beneficial. To accommodate this issue,
each time when a packet of an old connection is encoun-
tered the connection is moved at the beginning of the
connection interval. In this way, the connections which
recently exchanged packets will always be near the head
of the doubly-linked list, while the other connections will
end up near the tail of the window.

This modification of the connection-window interval
does not influence too much the performance of the al-
gorithm since the correspondent connection data group is
already identified, and it stores a pointer to the corre-
spondent cell in the FIFO. Thus, moving the cell in front
of the connection-window will take at most four pointer
assignments (i.e. two to remove the connectiondata group
from the current position in the FIFO, and two to insert
it back into the FIFO), making the time complexity of
the task O(1).

7.2.2 Implementing the Time-Window Interval

The primary challenges that the construction of a time-
window Interval faces are the tradeoff between window-
step granularity and computational time, as well as the
tradeoff between window dimension and memory con-
sumption.

Let us define window-step granularity, χ, as the time
latency before the window slides again. The smaller this
value is chosen, the smoother the time-window moves, and
thus, the closer its value becomes to the real value. On
the other hand, this decrease of χ is in the detriment of
the computational time. Thus, a tradeoff must be made
between the computational time required to compute the
features and the smoothness of the time-window interval
movement.

Regardless of granularity size, the window dimension
can be expressed as τ = n · χ, where n ∈ N

∗ represents
the number of steps that the time-window encompasses.

Thus, by choosing n = 1 the size of the window becomes
equal with the granularity χ. This practice is widely ac-
cepted especially in the case when the size of the time-
window is not big (e.g., a one second time-window interval
updated each second). In this particular case, each time
when the time-window moves, its value will be replaced
with a new one. This practice becomes inefficient as the
time-window increases. For instance, if τ = 1 minute, it
is quite ineffective to also have χ = 1 minute. Here, one
would rather prefer to increase the step-granularity to (let
us say) χ = 20 seconds (i.e., a time-window of one minute
updated every 20 seconds). In this case, the new value of
the time-window will be dependent on the previous one
(since there will be a 40 seconds overlap between the two).

Let χ(ai) represent the real value of feature a in ith

step, and τ(aj) denote the value of a computed with re-
spect to τ interval at time j. The current τ(at) value can
be computed as follows:

τ(at) =

t
∑

i=t−n

χ(ai), (1)

where t represents the current time. Note that this com-
putation has a linear time complexity (i.e., O(n)). A bet-
ter solution would be to incrementally compute τ(at) as
a function of τ(at−1). Thus, Equation (1) can be further
extended to:

τ(at) = χ(at) +

t−1
∑

i=t−n

χ(ai)

=

(

χ(at) +

t−1
∑

i=t−n

χ(ai)

)

+ χ(at−n−1) − χ(at−n−1)

= χ(at) +





t−1
∑

i=(t−1)−n

χ(ai)



− χ(at−n−1). (2)

Thus the incremental formula is:

τ(at) = χ(at) + τ(at−1) − χ(at−n−1). (3)
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In Equation (3), τ(at) is no longer dependent on the
size of the window (i.e., n), and can be computed in O(1),
as long as the program keeps track of each individual χ(ai)
that belongs to the current interval (i.e., i ∈ [t − n, t]).

The time-window interval is implemented as a circular
linked list of size n. Each cell of the list keeps a particular
χ(ai). Thus, each time when the time-window slides, the
oldest χ value is subtracted from τ while the newest χ(at)
one is added, and the position of the current pointer in
the circular linked list is updated.

7.3 The Statistical Extraction Process

Figure 3 depicts the Statistical Extractor Module which
comprises two processing stages (i.e., preprocessing stage
and the visualization stage). These two stages have been
implemented as a mixture of Java and Matlab languages.
While the second stage is more concerned with data pre-
sentation and GUI, the first stage mines and extracts
statistics from the Database Module. The presence of la-
bels is critical at this stage, since without them no devi-
ation between normal and abnormal can be defined.

The module, analysis one feature at the time reading
all its stored values for a particular day. In order to study
the behavior of a feature versus different types of attacks,
the intrusive and normal portion of the data must be fil-
tered out and statistical profiles must be created for each
one of the behaviors. The filtering process is done by the
Intrusion Filter, while the latter process is done by the
Profiler.

Given that features tend to have different values for
different protocols (e.g., the size of the ICMP packets is
expected to be less than the size of the TCP packets),
creating a common profile is not recommended. A better
practice would be to filter the data by protocol, and after
that to analyze it. Consequently, once the Feature Normal
Behavior is extracted, the Protocol Filter is used to split
the data into three streams, each stream corresponding
to one of the three protocols that we analyze (i.e., TCP,
UDP and ICMP).

Our proposed system uses the event-based reporting
technique in order to save the data into the database. As
previously explained, this technique produces one value
for each encountered packet. Consequently, the set of all
values for a particular feature will not resemble any infor-
mation regarding the inter-arrival time between packets,
but only regarding the arrival sequence of packets on the
network. Furthermore, if at this stage any statistics (e.g.,
mean, variance) is computed the bursts in the data will
bias the result towards their values8. Therefore, before
extracting any statistics from a feature, the data has to
be divided into non-overlapping groups with respect to
the packet timestamp and a window size. Our system is
design to accept any granularity-size for the groups. Let
∆t represent this granularity in seconds. Consequently, a

8Consider the case where 20% out of all the packets encountered
within last 6 hours were collected in 10 minutes.

day of data will be divided into k non-overlapping sets of
∆t seconds.

Our assumption is that a feature is influenced by a
certain intrusion if its value significantly changes during
the attack period. This will obviously lead to a change
in the feature’s mean. Hence, based on ∆t, the Profiler
Module computes the mean ∆tµ(i) of the feature, where i

represents the ith group of data, i ∈ [1, k]. This process is
done separately for each one of the normal data streams
(i.e., TCP, UDP, and ICMP) as well as for each individual
intrusion that is to be analyzed.

Next, the Comparator Module reports any deviation
between the expectation of the normal behavior (i.e.,
mean of all normal ∆tµ(i)) and the value of each intrusion
using Chebyshev’s inequality (Equation (4)).

P (|x − E(x)| ≥ kσ) ≤
1

k2
, ∀k > 0, (4)

where P (x), E(x) and σ denote the probability, expecta-
tion, and standard deviation of x respectively, and k is
any real number greater than 0. This inequality defines
the probability of a random variable x to be part of a cer-
tain distribution, and holds for any kind of distribution,
as long as its E(x) and variance are finite [15].

8 Experimental Results

The experimental results presented in the current sec-
tion aim to highlight the importance of each already pre-
sented feature categories from the proposed classification
schema. The presented system extracts and analyzes a to-
tal of 613 different features. For the purpose of this work
we have chosen to report the results using a connection-
window interval of 100 connections, a time-window inter-
val of τ = 1min., with a granularity of χ = 10sec., and a
time to live for the inactive connections of 1 minute. Fur-
thermore, the Statistical Extractor Module uses a gran-
ularity of ∆t = 20min. in order to split the data into
non-overlapping sets, as explained in the previous section.
Next, we have used the 4th and 5th week of the DARPA
dataset as input for our feature extractor engine, in par-
ticular, days 1 to 5 from week 4 as well as days 1 and 3
from the 5th week.

Chebyshev’s theorem states that for any population or
sample, at least 1 − ( 1

k2 ) of the observations are within
k standard deviations of the mean, where k > 1. For
example, 96% of a population lies within five standard
deviations from the mean, whereas 99% lies within 10
standard deviations. Therefore, in order to identify the
features that are highly sensitive to intrusions, we take
into considerations only those features that have their val-
ues within five standard deviations from the mean during
normal operation, and deviate a minimum of 10 standard
deviations while in attack.

Table 5 displays the top 4 features for each one of
the leafs categories in the proposed classification schema.
Each row of the table constitutes a feature. Since usu-
ally one feature is sensitive to multiple attacks, the table
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Figure 3: The statistical extractor module

also states the total number of intrusions as well as the
minimum and maximum probability for the feature to be-
long to the normal population while in attack (see Equa-
tion (4)). Furthermore, the table also reports the k factor
from Chebyshev’s inequality which states the number of
standard deviations that the value of the points deviates
from the mean.

Furthermore, Table 6 depicts all the previously pro-
posed feature-categories along with the total number of
intrusions that they detected, as well as the total number
of hits that the features belonging to the category had.
As an example, for the BF category, the number of intru-
sions that the features in this category are sensitive to is
24, while the total number of times that the features from
this category identify intrusions is 53. Additionally, the
table also provides the percentage of the five main types
of attacks as defined by DARPA, namely denial of service
(DoS), probing, remote to local (R2L), user to remote
(U2R), and Data [4].

As expected, the BF and DFS categories identify only
intrusions that are not distributed. Moreover, the DFST
category does not detect as many intrusions as the DFSL
category does. The reason behind this difference is the
size of the time-window interval (i.e., 1 min), which is
relatively small comparing with the duration of the intru-
sions that the DFSL category detects, making the time-
interval unable to grasp the change. The DFSxUS detects
more attacks than the DFSxUD category since it mostly
models the attacker behavior. Next, the DFM category
identifies more intrusions versus DFS category since the
features that belong to this category mine similarities be-
tween multiple connections in time. Please note that the
number of detected intrusions is also boosted by the va-
riety and number of features belonging to this class. A
quite surprisingly observation is that the DFMxB cate-
gory is probably one of the most sensitive in this dataset.
This results from the fact that it picks vertical scanning
attacks or dos attacks like apache2, which involve multiple
connections between the two hosts. Finally, the DFMxOy
and DFMcG categories highlight intrusions that use mul-
tiple connections for scanning, or Distributed DoS at-
tacks. Note that even though the DFMcG category de-
fines the general behavior of the network, it proves to be

less efficient than the other DFM subcategories.

9 Conclusions and Future Work

In this paper we presented a feature classification schema
for network intrusion detection. The aim is to provide a
better understanding regarding the huge amount of fea-
tures that can be extracted from network packets. We
have identified 26 categories of features that can be ex-
tracted in real time by sniffing the packets from the net-
work. The proposed categories are defined against the
main abstractions of the network domain such as network,
host, connection, and packet.

For each category in our classification schema, we have
enumerated a subset of possible features that might be
used for intrusion detection purposes. Part of the features
are collected from different papers, while part of them are
proposed by us. Next, we have discussed two methods of
reporting any feature to the detection engine (i.e., by time
and by event).

In order to study the network features, we designed and
implemented a framework for real-time feature construc-
tion. Chapter 7 describes the architectural design of this
framework intended to study each subset of features from
the proposed classification schema. Finally, last chapter
is intended to highlight the importance of each feature
category in the detection process. Furthermore, using the
DARPA dataset, we have statistically identified the most
sensitive features to attacks and reported them.

Our future work will target to further statistically an-
alyze and identify the most important features that need
to be considered in each subgroup for detecting differ-
ent types of attacks. In order to accomplish this goal we
propose to study the statistical behavior of each feature
against several standard intrusion evaluation databases
(e.g., DARPA 99, DARPA 2000), as well as against real
data. For real traffic labeling we are planning to use the
alerts generated by an IDS. We will target the main types
of attacks such as DoS, DDoS, scaning, and worms to
name a few.
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Table 5: Top 4 features for each leaf category, ranked by the number of intrusions that they are influenced by
Category #Intr max min max min Description

(P(X)) (P(X)) (σ(X)) (σ(X))
BF 10 0.00346 0.00033 55.1857 17.0029 packet TCP acknowledgement flag (true/false)

7 0.00867 0.00006 124.107 10.7414 packet TCP reset flag (true/false)
5 0.00457 0.00134 27.3075 14.7914 packet TCP synchronize flag (true/false)
5 0.00788 0.00488 14.3206 11.2681 packet TCP finalize flag (true/false)

DFSTB 3 0.00609 0.00556 13.4067 12.8176 number of TCP packets that have finalize flag set
3 0.00375 0.00000 792.84 16.3234 number of TCP packets that have urgent flag set
2 0.00866 0.00044 47.4352 10.744 number of TCP packets that have reset flag set
2 0.00935 0.00102 31.3437 10.342 number of packets exchanged

DFSTUS 6 0.00754 0.00064 39.4253 11.5174 number of TCP packets sent by host1 to host2 with finalize
flag

2 0.00669 0.00060 40.7499 12.2274 number of packets sent by host1 to host2
2 0.00669 0.00060 40.789 12.2267 number of TCP packets sent by host1 to host2 with acknowl-

edgement flag
2 0.00630 0.00322 17.6259 12.6019 number of TCP packets sent by host1 to host2 with push flag

DFSTUD 2 0.00000 0.00000 1.60E+07 1.00E+07 number of ICMP destination unreachable packets received by
host1 from host2

1 0.00450 0.00450 14.9142 14.9142 number of packets sent by host1 to host2
1 0.00375 0.00375 16.322 16.322 number of TCP packets sent by host1 to host2 with urgent

flag
1 0.00450 0.00450 14.9142 14.9142 number of TCP packets sent by host1 to host2 with acknowl-

edgement flag
DFSLB 4 0.00806 0.00737 11.6508 11.1389 number of packets/second exchanged

4 0.00636 0.00288 18.6398 12.5373 connection end time
3 0.00391 0.00352 16.8667 16.0013 number of TCP packets that have finalize flag set
2 0.00636 0.00025 63.1981 12.5361 number of bytes exchanged

DFSLUS 6 0.00754 0.00042 49.0656 11.5168 number of TCP packets sent by host1 to host2 with finalize
flag

1 0.00000 0.00000 2.80E+07 2.80E+07 number of TCP packets sent by host1 to host2 with urgent
flag

1 0.00969 0.00969 10.1594 10.1594 number of TCP packets sent by host1 to host2 with push flag
1 0.00990 0.00990 10.052 10.052 number of TCP flags sent by host1 to host2

DFSLUD 2 0.00000 0.00000 2.00E+07 2.00E+07 number of ICMP destination unreachable packets received by
host1 from host2

1 0.00771 0.00771 11.3882 11.3882 number of bytes sent by host1 to host2
DFMTB 19 0.00998 0.00015 81.2067 10.0081 average number of TCP bytes per packet sent by SrcIP to

DstIP
12 0.00651 0.00000 14310.73 12.3923 number of TCP connections created by SrcIP using any port

to connect to any port but DstPort on DstIP
12 0.00793 0.00000 961.3655 11.2303 number of TCP connections created by DstIP using any port

to connect to any port but DstPort on SrcIP
12 0.00796 0.00000 958.266 11.2106 number of TCP connections between SrcIP and DstIP

DFMTOS 12 0.00843 0.00008 113.92 10.8886 average number of ICMP bytes per packet sent by HostY
12 0.00190 0.00000 1826.66 22.9457 number of TCP packets received by HostY with reset flag
10 0.00838 0.00036 52.9447 10.9224 average number of TCP bytes per packet sent by HostY
8 0.00512 0.00037 52.1261 13.9687 number of ICMP connections created by HostY

DFMTOD 10 0.00595 0.00001 318.550 12.9679 number of TCP connections created by HostY
10 0.00595 0.00001 318.836 12.9688 number of TCP connections created by HostY using any port

to connect to any port but CSrcPort on any other hosts
10 0.00978 0.00002 229.040 10.111 number of TCP connections that use HostY
9 0.00978 0.00002 229.236 10.1111 number of TCP connections created by any host using any

port to connect to any port but CSrcPort on HostY
DFMTG 5 0.00537 0.00042 48.6867 13.6436 number of TCP packets with reset flag

4 0.00641 0.00008 111.7244 12.4941 number of TCP packets with urgent flag
4 0.00944 0.00012 91.2141 10.2929 number of TCP connections that use CDstPort as source port

and have RST Flag
3 0.00880 0.00293 18.4779 10.658 number of TCP connections that use different ports than CD-

stPort

DFMCB 18 0.00859 0.00016 79.8677 10.7896 average number of TCP bytes per packet sent by SrcIP to
DstIP

13 0.00778 0.00000 554.94 11.3351 number of TCP connections created by SrcIP using any port
to connect to any port but DstPort on DstIP

12 0.00866 0.00000 554.94 10.7448 number of TCP connections between SrcIP and DstIP
10 0.00727 0.00000 554.94 11.7284 number of TCP connections created by SrcIP using any port

to connect to any port but SrcPort on DstIP

DFMCOS 12 0.00279 0.00000 2258.42 18.9319 number of TCP connections that use HostY which have RST
Flag

11 0.00861 0.00032 56.1709 10.7747 average number of TCP bytes per packet sent by HostY
8 0.00917 0.00007 118.804 10.4439 number of TCP connections created by any host using any

port to connect to any port but CDstPort on HostY
8 0.00048 0.00004 161.142 45.7665 (OUT) number of TCP connections that do not start with

SYN
DFMCOD 12 0.00730 0.00005 138.876 11.7063 average number of ICMP bytes per packet received by HostY

10 0.00918 0.00005 146.568 10.4357 number of TCP connections created by any host using any
port to connect to any port but CDstPort on HostY

8 0.00818 0.00005 146.183 11.0555 number of TCP connections that use HostY
8 0.00818 0.00005 146.509 11.0555 number of TCP connections created by any host using any

port to connect to any port but CSrcPort on HostY
DFMCG 3 0.00762 0.00028 59.9254 11.4521 number of TCP connections that use CDstPort as destination

port and have SYN Flag
3 0.00327 0.00098 31.8772 17.4927 number of TCP connections that use CDstPort as source port

and have RST Flag
2 0.00430 0.00000 4252.54 15.2464 number of UDP connections that use CSrcPort as destination

port
2 0.00430 0.00000 4252.54 15.2464 number of UDP connections that use CSrcPort as source port
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Table 6: All the identified categories versus the types of distinct attacks that they detect, and number of hits that
their features have

Number of Intrusions Detected Total Number of Hits
Category total DoS% Probe% R2L% U2R% Data% total DoS% Probe% R2L% U2R% Data%
F 75 32.00% 22.67% 34.67% 8.00% 2.67% 1062 69.11% 11.21% 16.76% 2.73% 0.19%
BF 24 37.50% 37.50% 20.83% 0.00% 4.17% 53 39.62% 47.17% 11.32% 0.00% 1.89%
DF 72 33.33% 20.83% 36.11% 8.33% 1.39% 1009 70.66% 9.32% 17.05% 2.87% 0.10%
DFS 22 31.82% 45.45% 13.64% 9.09% 0.00% 70 32.86% 30.00% 22.86% 14.29% 0.00%
DFST 14 28.57% 50.00% 14.29% 7.14% 0.00% 39 25.64% 20.51% 30.77% 23.08% 0.00%
DFSTB 8 37.50% 25.00% 25.00% 12.50% 0.00% 16 31.25% 12.50% 31.25% 25.00% 0.00%
DFSTU 12 33.33% 50.00% 8.33% 8.33% 0.00% 23 21.74% 26.09% 30.43% 21.74% 0.00%
DFSTUS 9 44.44% 33.33% 11.11% 11.11% 0.00% 16 31.25% 18.75% 25.00% 25.00% 0.00%
DFSTUD 5 0.00% 60.00% 20.00% 20.00% 0.00% 7 0.00% 42.86% 42.86% 14.29% 0.00%
DFSL 20 35.00% 45.00% 15.00% 5.00% 0.00% 31 41.94% 41.94% 12.90% 3.23% 0.00%
DFSLB 16 37.50% 37.50% 18.75% 6.25% 0.00% 19 42.11% 31.58% 21.05% 5.26% 0.00%
DFSLU 9 44.44% 55.56% 0.00% 0.00% 0.00% 12 41.67% 58.33% 0.00% 0.00% 0.00%
DFSLUS 7 57.14% 42.86% 0.00% 0.00% 0.00% 9 55.56% 44.44% 0.00% 0.00% 0.00%
DFSLUD 2 0.00% 100.00% 0.00% 0.00% 0.00% 3 0.00% 100.00% 0.00% 0.00% 0.00%
DFM 72 33.33% 20.83% 36.11% 8.33% 1.39% 939 73.48% 7.77% 16.61% 2.02% 0.11%
DFMT 65 35.38% 15.38% 38.46% 9.23% 1.54% 583 72.90% 6.69% 17.50% 2.74% 0.17%
DFMTB 40 45.00% 15.00% 37.50% 2.50% 0.00% 199 74.87% 5.53% 17.59% 2.01% 0.00%
DFMTO 57 38.60% 17.54% 35.09% 7.02% 1.75% 336 74.40% 7.14% 16.96% 1.19% 0.30%
DFMTOS 43 39.53% 20.93% 37.21% 2.33% 0.00% 170 74.71% 10.00% 14.71% 0.59% 0.00%
DFMTOD 43 46.51% 6.98% 37.21% 6.98% 2.33% 166 74.10% 4.22% 19.28% 1.81% 0.60%
DFMTG 24 45.83% 12.50% 29.17% 12.50% 0.00% 48 54.17% 8.33% 20.83% 16.67% 0.00%
DFMC 57 36.84% 22.81% 36.84% 3.51% 0.00% 356 74.44% 9.55% 15.17% 0.84% 0.00%
DFMCB 38 44.74% 15.79% 39.47% 0.00% 0.00% 116 74.14% 6.90% 18.97% 0.00% 0.00%
DFMCO 46 41.30% 26.09% 28.26% 4.35% 0.00% 211 73.46% 11.85% 13.27% 1.42% 0.00%
DFMCOS 36 44.44% 25.00% 27.78% 2.78% 0.00% 101 71.29% 14.85% 12.87% 0.99% 0.00%
DFMCOD 37 48.65% 18.92% 27.03% 5.41% 0.00% 110 75.45% 9.09% 13.64% 1.82% 0.00%
DFMCG 15 73.33% 6.67% 20.00% 0.00% 0.00% 29 82.76% 3.45% 13.79% 0.00% 0.00%
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