
International Journal of Network Security, Vol.4, No.3, PP.340–347, Mar. 2007 340

Secure Logging for Irrefutable Administration

Francesco Bergadano1, Davide Cavagnino1, Paolo Dal Checco1,

Pasquale Andrea Nesta1, Michele Miraglia1, and Pier Luigi Zaccone2

(Corresponding author: Francesco Bergadano)

Dipartimento di Informatica, Universita’ degli Studi di Torino1

Corso Svizzera 185 - 10149 Torino - Italy. (E-mail: dalche@di.unito.it)

Telecom Italia S.p.A.2

Via Reiss Romoli 274 - 10148 Torino - Italy

(Received Oct. 07, 2005; revised and accepted Dec. 31, 2005)

Abstract

This paper presents a method that allows for securely sav-
ing a temporal sequence of data (log lines) in a file. Log
lines are signed by an authority, and are thus unalterable
without detection. Data is also encrypted in the file, and
may be accessed with the granularity of a single log line
with the possession of a decryption key. Also, it is possi-
ble that for some lines data must be accessed by a group
of cooperating users.

Keywords: Auditing, computer forensics, logging, modifi-
cation detection, privacy, secret sharing

1 Introduction

In many applications there are contexts in which it is nec-
essary to check and verify the operations performed by
some entity (possibly an administrator) on another entity
(possibly a computer system). For example, in industrial
environments some jobs are left in outsourcing to external
companies; the operations performed by the external per-
sonnel should be controlled in some way, and at the same
time, the privacy of the workers must be guaranteed, with
the ability, in case of need, to verify and link the opera-
tions performed with the person who made them.

The system proposed in the present paper is related to
the previously discussed context, considering system and
network administrators, administered systems and net-
works, with the objective of giving a secure and reliable
auditing system. The main characteristics of this system
are the ability of logging all the operations that occur in a
complex environment, linking these operations to the en-
tities involved (namely, the administrator of the system
and the system itself), with the guarantees that:

• The log does not immediately disclose its content (for
privacy reasons), i.e. it is encrypted;

• The log’s content may be examined only by the enti-
ties having the rights to perform this operation (i.e.

only the authorized people, administrators or third
parties, may decrypt the log entries content, with
some defined modes);

• Log entries cannot be directly related to the entities
that are involved in the activity described in the log
entry itself;

• The log cannot be modified without detection (i.e.,
if the log is modified this can be discovered by the
auditors that will eventually check the content).

The ideas presented in this paper have many fields of
application, where the main problem to be solved is the
logging of some activity for a subsequent control.

The paper is organized as follows: Section 2 presents
some works related to the argument we deal with, Section
3 presents the terms of the problem and foresees some
solutions, deeply discussed in Section 4. Section 5 shows
some characteristics of the solution we propose, whilst
Section 6 deals with the specific problem of permitting a
set of users to access a log line. Finally, Section 7 presents
some conclusions.

2 State of the Art

The commonly accepted definition of log is given in [13],
as: “a plain file where data are stored sequentially as they
arrive, by appending them to the end of the file. When a
problem arises in the system (e.g. a fault or an intrusion),
the log is reread to find its source and/or to correct its
consequences.”.

Ruffin, in his detailed discussion, does not even ex-
amine the possible requirement that logs should not be
manipulated by malicious users or intruders. In modern
systems, log files may contain important and/or classi-
fied information, and are stored on machines that should
not be considered completely secure. Then, it is necessary
that the logs themselves be made intrinsically secure, pre-



International Journal of Network Security, Vol.4, No.3, PP.340–347, Mar. 2007 341

venting an attacker from accessing and reading these logs
and in case modifying them.

Some approaches have been developed to authenticate
or certify the content of different types of log files, possibly
of large size. [2] and [3] present some possible methods.

A first hypothesis on the possible detection of log file
manipulation has been made in [5], where it is proposed
to authenticate every entry of the log file by means of a
Message Authentication Code (MAC). This system guar-
antees that if an attacker gains control over a machine
(containing the log files) at time t, then he will not be
able to modify (without detection) the content of the log
files generated at a time before t. This is made possi-
ble using a key for the MACs that changes over time,
with no information kept on the system about previous
keys. To accomplish this, a first key that must be kept
secret is generated; this key is used to authenticate a first
set of entries in a time interval. When the time interval is
elapsed, a new key is generated applying a pseudo-random
non-invertible function to the previous key. In this sys-
tem only the first key of the chain, and the one used in
the current time interval, have to be maintained. An at-
tacker having control over the system will not be able to
undetectably modify the entries because he is not able to
obtain the keys used to generate the MACs. To guarantee
that entries are not added or deleted, the various lines are
sequentially numbered.

Schneier and Kelsey have developed a method for keep-
ing the log files secret and for detecting in a fast way any
log file modification [15, 16]. Their system involves an
untrusted machine U and a trusted secure system T; with
a small amount of data exchange between these two ma-
chines it is possible to keep the log file inaccessible (i.e.
unreadable and not modifiable with respect to the entries
logged before the attack) to an attacker that takes con-
trol of U. As in the previous system, also this solution uses
authentication and encryption keys that change for every
log file entry; this is obtained by means of a hash function
applied to the previous keys. To avoid the insertion or the
deletion of entries, these are sequentially concatenated in
a hash chain that is authenticated. Schneier and Kelsey
accurately describe the system, explaining how to create
and close the log file, and how to deal with sudden ma-
chine shutdowns. Every log file entry belongs to a class.
This class is used to specify the kind of access each auditor
has on that entry, allowing for different privileges of differ-
ent auditors on an entry. On the latter characteristic [17]
describes how to minimize the bandwidth necessary to
verify the log file content. [18] is a patent on the system
developed by Schneier and Kelsey, that also introduces
the possibility of using asymmetric encryption.

A possible implementation of the system by Schneier
and Kelsey is described in [6], where a tamper-resistant
hardware (iButton) is used to keep the secrets, having the
role of maintaining information that should not be kept
on an untrusted system.

Recently Waters et al. [19] made a new study on se-
cure audit log. The problem they want to solve is to create

an encrypted log that could be searched using some key-
words. The approach followed to encrypt and link the log
entries is very similar to the method proposed by Schneier
and Kelsey; the main difference is that this method ex-
tracts some keywords from the data to be logged before
they’ll be encrypted. An auditor willing to search for
some data has to send a keyword to a centralized trusted
element; on the basis of the element’s authorization policy
such element may grant him the necessary information to
reconstruct a key to be used for decrypting the data itself.
In this paper it is not discussed how keywords could be
extracted from raw data.

3 Preliminary Considerations

In our approach we consider a log file as a journal in
which information coming from various activities is stored
in a set of lines; each line refers to a particular event of
interest in each activity. We do not consider the physical
implementation, and refer to the definition given in [13].

The environment of our system is composed by admin-
istrators that perform activities on objects: these activi-
ties are logged by an entity. The job of this entity is to
ensure that the content of parts of the log file is available
only to the authorized people (auditors) and that this
content cannot be modified without detection. We want
to propose a method where there is no need for a central-
ized element that authorizes any new people to access a
previously produced log entry. The set of people which is
authorized to access stored data has to remain the same
as it was when a log entry was produced. In the following
we discuss techniques that can be used to obtain these
objectives.

The first consideration relates to data encryption. The
objective of data encryption is to allow the access to par-
ticular data only to set of users. This set may change
for every logged line. Moreover, it must be possible to
allow access to groups of users in which the presence of
at least n users over N is required to reveal the content
of a line. The chosen approach is to encrypt each line
with a different key. This key is generated automatically
by the system, and access to this key is given according
to the kind of access we want for each user, in a exclu-
sion/elusion strategy for the log file auditing that will be
presented later.

Another goal of the system we propose is to ensure
that the file cannot be altered without possible successive
detection by a verifier. Thus, one objective is to avoid
data forging. A solution to this requirement is to use a
hash chain. A hash chain keeps the log lines linked, in
the same order they were originally written, and prevents
the insertion of a line between two other lines. One of the
first proposals of the use of chains to connect a sequence
of data is presented in [7]. [1] uses a hash chain to link
a set of data transmitted in streaming; in that paper the
point that remains to be solved is how to make sure that
the last element of the chain is not modified.



International Journal of Network Security, Vol.4, No.3, PP.340–347, Mar. 2007 342

4 Possible Approaches

As previously seen, for privacy reasons the data section
of the log line is encrypted with an randomly generated
key. To record this random key for later use in auditing,
we consider two possible approaches:

A. Each auditor has his own symmetric secret key; the
system encrypts the random key for each auditor
with his secret key.

B. Each auditor has his own pair of asymmetric pub-
lic/private keys; the system encrypts the random key
for each auditor with his public key. The auditor will
use his private key to decrypt the random key and
access the log line data.

The approach of directly encrypting the log line data
with the auditor’s public keys was taken into considera-
tion, but discarded due to the computational complexity
of the asymmetric encryption and the amount of data that
were required to be encrypted and stored. Let’s see the
structure of the log lines in the two cases A and B. The
index i runs over the log lines; k is an index that runs
over the identifiers of the entities involved in the logged
transaction, and j indexes the various auditors. (In this
example of line structure, auditors from 0 to j − 1 have
access to the line content, auditors from j to n have not.
This will become clearer throughout the rest of the pa-
per.)

Case A:

Li = {TSi, Uk, li, E(Ai/Di), E(K0/Ai),

· · · , E(Kj−1/Ai), E(Kj/H(Ai)), · · · ,

E(Kn/H(Ai)), HCi, Si}

Case B:

Li = {TSi, Uk, li, E(Ai/Di), α(K+
0 /(Ai, R0)),

· · · , α(K+
j−1/(Ai, Rj−1)), α(K+

j /Rj),

· · · , α(K+
n /Rn), HCi, Si}.

Note, in the preceding lines, the parts that are under-
lined, whose meaning will be discussed deeply. In the
following the meaning of the various parts is presented.

• TSi: It is the timestamp issued by a Time Stamping
Authority1 or it is a timestamp assigned by the sys-
tem. If a Time Stamping Authority comes into play,
then TSi is calculated on the result of a hash function
(e.g. like SHA-1 [11]) applied to Si−1

2concatenated
with all of the data in Li except TSi, HCi and Si.

1The decision about whether and how often a Time Stamping
Authority has to be involved must be made according to the effec-
tiveness of the vulnerability and threats associated with the system.

2This field prevents an attacker that obtains B
− at a certain

point in time from being able to successfully forge any previously
stored log lines.

It may express the time of logging or the time of the
reception of the line. Both are possible approaches.
Even if the data contained in the log line already con-
tains a timestamp, TSi may be useful for some cross
checks on the data.

• Uk: It is a set of data related to the log entry; in our
environment it represents the identifier of the user
(administrator) that generated the data in the log
line, along with an identifier of the administered sys-
tem. For the responses from the systems, this may be
an identifier of the system and of the user whose this
response is sent. In order to enforce the secrecy of
this field the method proposed in [19] could be used.

• li: It represents the length of data in cryptographic
blocks.

• Di are the data to be logged for the i-th line.

• Ai is the symmetric key, randomly generated, used
to encrypt the data of the i-th log line.

• K0, · · · , Kn are the auditor’s secret keys, used in Ap-
proach A that uses symmetric encryption of Ai.

• K+
0 , · · · , K+

n are the auditor’s public keys, used in
Approach B that uses asymmetric encryption of Ai.

• R0, · · · , Rn are random values used to preserve the
elusion property we will discuss in a following section.

• E(x/y) represents a symmetric encryption function
that uses the key x to encrypt data y; it returns the
encrypted data. A good candidate function could be
AES [9].

• α(x+/y) represents an asymmetric encryption func-
tion that uses the key x+ to encrypt data y; it returns
the encrypted data. A function that may be used is
RSA [12].

• H(x) is a one-way hash function (like SHA-1 [11]).

• HCi is the element of the hash chain for the i-th log
line (see below).

• Si is the signature of the element of the hash chain,
that is, it corresponds to Sign(B−/HCi), that is the
function of digital signing HCi with the logging sys-
tem private key (B−); it returns the signature. Func-
tions that may be used are, for example, RSA [12] or
DSA [10].

Let’s see how the element HCi of the hash chain is
computed. It is the hash of the previous log line hash
(i.e. HCi−1) concatenated with all the elements of the
current line, except HCi and Si (obviously, because the
first one is what we are computing, and the second one
will depend on the first one). In formulas, we may write
that (for both proposals):



International Journal of Network Security, Vol.4, No.3, PP.340–347, Mar. 2007 343

Proposal A:

HCi = H(HCi−1, TSi, Uk, li, E(Ai/Di),

E(K0/Ai), · · · , E(Kj−1/Ai),

E(Kj/H(Ai)), · · · , E(Kn/H(Ai)).

Proposal B:

HCi = H(HCi−1, TSi, Uk, li, E(Ai/Di),

α(K+
0 /(Ai, R0)), · · · ,

α(K+

j−1/(Ai, Rj−1)), α(K+
j/Rj),

· · · , α(K+
n /Rn)).

The first element of the hash chain, namely HC1, is
computed using as previous element a fixed and known
value for HC0 which may be recorded, without encryp-
tion, in the beginning of the log file. When a line is veri-
fied, the hash of the previous line should be trusted, thus
a verification of the signature of the previous line should
be performed.

5 Encryption and Exclu-
sion/Elusion

The objective of this section is to introduce the intrinsic
security of the log file when it is stored on any device. In
fact, it has to be taken into account that the security of
the log file should not change even if it is saved and copied
for backup purposes. That is, the log file content should
not be alterable (by anyone) and should not be visible by
non-authorized people.

To avoid the disclosure of the content to non-
authorized people we already introduced the idea of en-
crypting the data with a random key Ai (that changes for
every line): thus, this key is used to encipher the data;
afterwards, the key Ai is made available to the various
auditors encrypting it with the personal key of every au-
ditor that should have access to that data. When the key
has been encrypted, then it is destroyed, and only the au-
thorized auditors will be able to reconstruct the original
data. If there are auditors that should not have access to
a particular log line, then Ai is not encrypted for them;
instead:

• H(Ai): A one-way hash of the key, is encrypted in
case of Approach A.

• a random value Rr
3 (different for every auditor) is

encrypted with the public key in case of Approach
B.

This is done for the following two reasons:

Exclusion: It is easy to exclude one or more auditors
from accessing the log line data, simply giving them

3In some embodiments, in place of Rr the concatenation of H(Ai)
and a random number Rr (different for every auditor) can be used.

a fake key: a random number in Approach B or
obtained from the right key, but through a non-
invertible function, in Approach A. In the literature
are presented many one-way hash functions easy to
compute. The use of a different Ai for every line al-
lows for a fine granularity in giving access to every log
line only to a subset of auditors. Thus the exclusion
is local to every log line. We used a one-way hash
function in Approach A because we considered it as
an efficient source of randomness. Due to the elusion
property discussed below, we had to use a different
random number for every auditor in Approach B.

Elusion: It is easy to see that simply looking at the log
file it is not possible to understand which auditors
have access to which log lines. This is due to the fact
that we encrypt the key Ai for every auditor. At this
point we distinguish the two Approaches A and B.
previously introduced.

A. Access to a line depends on the possession of Ai,
useful to decrypt the line, or H(Ai), that does
not allow access to the line. But, for the prop-
erties of symmetric encryption, it is impossible
to deduce which case (if Ai or H(Ai)) has been
encrypted for an auditor. Note that it is impor-
tant to use H(Ai) that changes for every line. In
fact, suppose to use a constant value for those
auditors that should not have access to a line.
Then, encrypting a constant value using a fixed
key (the secret key of the auditor) will disclose
the lines that are not accessible to an auditor,
simply by inspection of the log file looking for
a repeated value for an auditor. Note also that
the use of H(Ai) has the only objective to create
a random number in an efficient manner; that
is, instead it could be used a random number
Bi different from Ai.

B. From the properties of asymmetric encryption it
is impossible to deduce which auditor is able to
decrypt the key Ai. Note the use of the random
values Rr to ensure the elusion property. For
those auditors having rights to access to the log
line, then the key Ai is encrypted along with a
random number (different for every auditor) to
ensure that an auditor decrypting the key Ai is
not able, through asymmetric encryption using
the other auditors’ public key, to deduce which
of them has access to the log line. At the same
time, for auditors that do not have access to a
line, a random value (also in this case, different
for every auditor) is encrypted with the pub-
lic key of each auditor, thus the resulting value
is undistinguishable from the encryption of the
correct key Ai and a random value.



International Journal of Network Security, Vol.4, No.3, PP.340–347, Mar. 2007 344

6 Group Auditing

One of the objectives of the system is to give different
access modes to different auditors. We have already pre-
sented a method for allowing or not the access to a line.
In this section we present how to give access to a single
line to a group of auditors. For example, some log lines
should be decrypted only when a set of at least three au-
ditors out of five agree on looking at its content; with this
approach it is possible to access the data even if not all
the auditors belonging to one group are available.

6.1 State of the Art on Secret Sharing

We give a brief introduction on some proposals for secret
sharing found in the literature.

[4] presents a model for sharing a secret; the objective
of the paper is to develop a method to keep copies of cryp-
tographic keys distributing the secret among many peo-
ple. The idea behind is based on n-dimensional geometry.
Let’s see an example of this method from [8]: suppose
to distribute a secret among m parts, where at least 3 of
them are required to reconstruct the secret. Suppose that
the secret is represented as a point into the three dimen-
sional space. Construct m planes such that any three of
them intersect into the point representing the secret, but
any two of them defines a line. Obviously, only know-
ing at least three of these planes, then it is possible to
unambiguously identify the single point in the space.

[14] defines a method to distribute a secret among n
entities where at least k of them are necessary to recon-
struct the original secret. It is based on polynomial in-
terpolation. The idea is to construct a polynomial q(x)
of degree k − 1 having random coefficients except for the
coefficient of x0 that must be equal to the secret to share.
Distributing the evaluation of the polynomial into n dif-
ferent points, then it is possible to calculate the k coeffi-
cients (thus the shared secret also) only when at least k
evaluations of the polynomial are available. This can be
done interpolating the polynomial in the k points (note
that there is only one polynomial of degree k−1 that fits
into k points, and there are infinite polynomials of the
same degree that fit into k − 1 points).

6.2 Group Access to a Log Line

In our application, we use the method from [14], with the
following constraints:

• Each auditor should be able to access the content of
a log line both alone (if he has the rights) or with
the cooperation of other auditors (if he belongs to a
group of auditors that should have access to the line);

• When a group of auditors has used a secret to dis-
close the content of a line, then this secret must be
useless if used to disclose the content of other lines;
the reason lies in the fact that when a group of au-
ditors agree in looking at the content of a line, then

some of them may not agree in disclosing the content
of other lines to the members of the same group;

• Each auditor may belong to any number of groups
(also none).

We obtain the previous results by distributing to the
auditors that need a group access to a log line, a share to
determine the secret Ai. That is, instead of encrypting
the secret Ai for an auditor, we encrypt a part that allows
the reconstruction of the complete secret Ai. This implies
that to decrypt a line there may be:

• Users that have access to the line as alone entities,
i.e. they have E(Kj/Ai) or α(K+

j /(Ai, Rj))
4;

• Users that do not have access to the line as alone en-
tities, i.e. they have E(Kj/H(Ai)) or α(K+

j /(Rj))
4;

• Users that have access to the line only with the
collaboration of at least k users, i.e. they have
E(Kj/

∑
Ai

) or α(K+
j /SAi)

4, where
∑

Ai
is the

share of a secret that allows disclosing Ai with the
collaboration of other k − 1 users. Users may belong
to many groups, thus having many shares of the se-
cret (obviously, the various shares will be related to
different polynomials).

Note that the three sets of users may be not disjoint
(the first two are obviously disjoint). Thus, our system
allows for users that may access a log line by themselves,
or in collaboration with other users also, or only when
other group members agree in disclosing the content of a
line.

Let’s see which data is saved for every auditor that
potentially has access to a line:

E(Kj/[H(Ai), IDgroup′ ,
∑

′

Ai
, IDgroup′′ ,

∑
′′

Ai
, · · · ])

α(K+

j /[Rj , IDgroup′ ,
∑

′

Ai
, IDgroup′′ ,

∑
′′

Ai
, · · · ])4

or, for some embodiments :

α(K+

j /[H(Ai), Rj , IDgroup′ ,
∑

′

Ai
, IDgroup′′ ,

∑
′′

Ai
, · · · ]Rj)

4.

In this example the j-th auditor has not access as in-
dividual, but only as belonging to some groups. If a user
does not belong to a group (or a group does not have ac-
cess to the line) then

∑
may be left as a set of zeroes of

the right size (using a proper encryption function, all this
data will preserve the elusion property).

To add an auditor to the group of auditors, it is suf-
ficient to give him a new share based on the polynomial,
encrypting this share with the auditor’s key. To exclude
an auditor from a group it is sufficient not to give him his
share anymore.

To modify the minimum number of auditors necessary
to disclose a log line, a different polynomial should be
used, according to [14].

4If each auditor has his own pair of asymmetric public/private
keys.



International Journal of Network Security, Vol.4, No.3, PP.340–347, Mar. 2007 345

To work properly and to be able to decrypt correctly
a log line for a group, the system requires at least the
following information for each group:

• A group identifier;

• The minimum number of auditors that are required
to disclose the secret;

• The identifiers of all the auditors belonging to the
group.

6.3 Observations on Multiple Groups

A question that may arise on the security of the method
applied on multiple groups is: what happens if shares
of different groups on the secret Ai are joined together?
Do these parts allow the determination of Ai? That is,
let’s suppose the worst case. Imagine m′ − 1 auditors of
a group (requiring m′ auditors to compute Ai) colluding
with m′′−1 auditors of another group (requiring m′′ audi-
tors to compute Ai). Moreover, note that the two groups
may overlap.

Let’s write the two polynomials we want to determine:

y = αm′−1x
m′

−1 + αm′−2x
m′

−2 + · · · + α1x + Ai

y = βm”−1x
m′′

−1 + βm′′−2x
m′′

−2 + · · · + β1x + Ai.

The target is to determine the α values, the β values
and Ai; that is, in all m′ + m′′ − 1 values. The colluding
auditors have m′ + m′′ − 2 points (possibly not distinct),
m′ − 1 from one polynomial, and m′′ − 1 from the other
polynomial. This allows to write a system of m′ +m′′− 2
equations in m′+m′′−1 variables. The target may not be
reached because the system of equations is undetermined
if we make the assumption that a single polynomial of
degree m is undetermined if only m − 1 points are avail-
able. But, to discover the shared key, it is sufficient to
determine Ai: we show that this is not possible. We will
call the set of equations coming from the first polyno-
mial

∏
and the set of equations coming from the second

polynomial Θ.
Given that Ai cannot be determined from Π ([14]),

then reducing this set should bring to an equation of this
kind:

c1αj + c2Ai = b1.

For the same reason, reducing Θ will lead to

c3βk + c4Ai = b2,

where the cms and bns are constant values.
The system of these two equations does not allow to

determine Ai because αj and βk are different unknowns
(they are coefficients from different polynomials). Thus,
to answer the question we posed in the beginning of this
section, even if different auditors from different groups
collude to determine the shared key, they will not be able
to get it unless the required number of auditors in one of
the groups is reached.

Figure 1: Common share of different polynomials

The same demonstration works also in the case two au-
ditors belonging to different groups own the same share
(i.e. the same point in the plane, where two distinct poly-
nomials intersect).

7 Conclusions

In this paper we dealt with the problem of keeping the
content of a log file both unalterable (without detection)
and private.

The first objective is obtained through the use of signa-
tures and a hash chain that links all the log lines together.

The privacy of the content is obtained by means of
encryption. Log lines are encrypted with a key that is
successively encrypted with the keys of the entities that
should have access to the line; moreover, the key may be
distributed (encrypted) among a set of entities, if these
entities should have access to the line only together. The
solution proposed allows also for privacy in the access
to a line: this was obtained with an exclusion/elusion
property of the method. That is, the data to be used for
accessing a line is encrypted in a way that it is impossible,
if not in possession of the decrypting key, to decide if the
data is useful or not for disclosing the log line content.
The consequence of this is that no one is able to decide
whether an auditor has access or not to a line (except the
auditor itself).

The proposed method is efficient in the sense that
uses only one key to encrypt a line, and distributes this
key to the auditors with the modes previously discussed.
Nonetheless this key changes for each line, leaving a fine
granularity in giving or not the possibility to various au-
ditors to access a log line content.

The method is especially suitable to scenarios where a
log entry size is considerable.

References

[1] F. Bergadano, D. Cavagnino, and B. Crispo,
“Chained stream authentication,” in Proceedings of



International Journal of Network Security, Vol.4, No.3, PP.340–347, Mar. 2007 346

Selected Areas in Cryptography 2000, LNCS 2012,
pp. 144-157, Springer-Verlag, 2000.

[2] F. Bergadano, D. Cavagnino, and L. Egidi, “Partially
sighted signatures on large documents,” in Proceed-
ings of International Network Conference, Sherwell
Conference Centre, University of Plymouth, UK, pp.
373-380, 2002.

[3] F. Bergadano, D. Cavagnino, and P. A. Nesta, “Cer-
tification of web access statistics,” in Proceedings of
e-2001, E-work and E-commerce, vol. 1, IOS Press,
pp. 326-332, Oct. 2001.

[4] G. R. Blakley, “Safeguarding cryptographic keys,”
in Proceedings of AFIPS, NCC, vol. 48, pp. 313-317,
Arlington, Va., Jun. 1979.

[5] M. Bellare and B. S. Yee, Forward Integrity for Se-
cure Audit Logs, Technical report, UC at San Diego,
Dept. of Computer Science and Engineering, Nov.
1997.

[6] C. N. Chong, Z. Peng, and P. H. Hartel, “Secure au-
dit logging with tamper-resistant hardware,” in 18th
IFIP TC11 International Conference on Information
Security (IFIPSEC), Security and Privacy in the Age
of Uncertainty, pp. 73-84, 2003.

[7] L. Lamport, “Password authentication with insecure
communication,” Communications of the ACM, vol.
24, no. 11, no. 24, pp. 770-772, 1981.

[8] A. J. Menezes, P. C. van Oorschot, and S. A.
Vanstone, Handbook of Applied Cryptography, CRC
Press, 1996.

[9] National Institute of Standards and Technologies,
NIST FIPS PUB 197, Advanced Encryption Standard
(AES), U.S. Department of Commerce, Nov. 2001.

[10] National Institute of Standards and Technologies,
NIST FIPS PUB 186, Digital Signature Standard,
U.S. Department of Commerce, May. 1994.

[11] National Institute of Standards and Technology,
NIST FIPS PUB 180-1, Secure Hash Standard, U.S.
Department of Commerce, Apr. 1995.

[12] R. Rivest, A. Shamir, and L. Adleman, “A method
for obtaining digital signatures and public-key cryp-
tosystems,” Communications of the ACM, vol. 21,
pp. 120-126, 1978.

[13] M. Ruffin, A Survey of Logging Uses, Technical Re-
port, no. FIDE2-94-82, Dept. of Computer Science,
University of Glasgow, Glasgow, Scotland, Feb. 1995.

[14] A. Shamir, “How to share a secret,” Communications
of the ACM, vol. 22, pp. 612- 613, 1979.

[15] B. Schneier and J. Kelsey, “Cryptographic support
for secure logs on untrusted machines,” in The 7th
USENIX Security Symposium Proceedings, USENIX
Press, pp. 53-62, Jan. 1998.

[16] B. Schneier and J. Kelsey, “Secure audit logs to sup-
port computer forensics,” ACM Transaction on In-
formation and System Security, vol. 2, issue 2, May.
1999.

[17] J. Kelsey and B. Schneier, “Minimizing bandwidth
for remote access to cryptographically protected au-
dit logs,” in Web proceedings of the 2nd International

Workshop on Recent Advances in Intrusion Detec-
tion (RAID’99), 1999.

[18] B. Schneier and J. Kelsey, Event Auditing System,
US Patent #5,978,475, Nov. 2, 1999.

[19] B. R. Waters, D. Balfanz, G. Durfee and D. K. Smet-
ters, “Building an encrypted and searchable audit
log,” in The 11th Annual Network and Distributed
System Security Symposium), Feb. 2004.

Francesco Bergadano received his
Ph.D. in Computer Science from the
University of Torino in 1991. He is Full
Professor at the Computer Science De-
partment of the University of Torino.
He has authored several papers in in-
ternational journals and conferences.
His main research interests are secu-

rity and its applications, in particular World Wide Web
security, system security, public key infrastructure and
user identification.

Davide Cavagnino received his
laurea degree in 1992 and his Ph.D.
in 1998, both in Computer Sci-
ence. Presently he is a researcher
in the University of Torino. His
research interests are network and
security protocols, and their applica-
tions.

Paolo Dal Checco has received his
Laurea degree in Computer Science in
2002 and completed his Ph. D. stud-
ies in Computer Science in 2005. He is
currently a Short Term Researcher at
the Department of Computer Science,
University of Turin. His research in-
terests are web analytics, security and

networking.

Pasquale Andrea Nesta received
his Laurea degree in Computer Sci-
ence in 2000 from the University of
Turin. He has been a Ph.D. student
at the Computer Science Depart-
ment of the University of Torino
working on Web technology and
security.



International Journal of Network Security, Vol.4, No.3, PP.340–347, Mar. 2007 347

Michele Miraglia has received his
Laurea degree in Computer Science
in 2004. At the moment he is a Short
Term Researcher at the Department
of Computer Science, University of
Turin. His research interests are
web analytics, security and network-
ing.

Pier Luigi Zaccone received a de-
gree in Computer Science from the
University of Torino, Italy, on June
1994. Since 1997 he has been work-
ing in an Information Security Unit at
Telecom Italia Research Department.
He has worked on Information Secu-
rity Risk Analysis and System Man-

agement Security. He is currently leading a corporate
project regarding non-repudiation for system manage-
ment.


