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Abstract

Electronic surveys are an important resource in data min-
ing. However, how to protect respondents’ data privacy
during the survey is a challenge to the security and pri-
vacy community. In this paper, we develop a scheme to
solve the problem of privacy-preserving data mining in
electronic surveys. We propose a randomized response
technique to collect the data from the respondents. We
then demonstrate how to perform data mining compu-
tations on randomized data. Specifically, we apply our
scheme to build a Naive Bayesian classifier from random-
ized data. Our experimental results indicate that accu-
racy of classification in our scheme, when private data is
protected by randomization, is close to the accuracy of a
classifier build from the same data with the total disclo-
sure of private information. Finally, we develop a measure
to quantify privacy achieved by our proposed scheme.

Keywords: Data mining, privacy, randomization

1 Introduction

Data mining has emerged as a means for identifying pat-
terns and trends from large amounts of data. To conduct
data mining computations, we need to collect data first.
However, because of privacy concerns, people might de-
cide to selectively divulge information, or give false in-
formation, or simply refuse to disclose any information
at all. There is research evidence [2] that providing pri-
vacy protection measures is a key to the success of data
collection.

There are many ways to collect data. For instance,
data may be collected using transaction records. This can
often be done without people’s knowledge, and individuals
have no control over what information can be collected.

The evolving legal developments will hopefully soon pre-
clude this questionable practice. Another way to collect
data is to solicit respondents’ responses via surveys, for
example, respondents might be asked to rate certain prod-
ucts, or they might be asked whether they have a certain
medical condition, etc. The collected data is entered into
a database. Although answering survey questions gives
respondents control over whether they want to disclose
their information or not, privacy concerns might hinder
the respondents from telling the truth or responding at
all (we will refer to this problem as respondent privacy in
electronic surveys). How can we improve the chance to
collect more truthful data that are useful for data min-
ing while preserving respondents’ privacy? How can re-
spondents contribute their personal information without
compromising their privacy?

One way to achieve privacy is to let each respondent
randomize their data, such that data collector cannot de-
rive the truthful information about a respondent’s private
information. The challenge is how to conduct data min-
ing on randomized data. To address this challenge, we
propose the following computation model depicted in Fig-
ure 1. The model consists of a data collection step and
a computation step. In data collection step, each respon-
dent utilizes certain techniques to randomize her data,
then sends randomized data to data collector (solid line
from the respondents to data collector) who cannot ac-
cess the actual respondents’ data (dashed line from data
collector to respondents), and should not be able to find
out any respondent’s actual data with probabilities better
than a pre-defined threshold. In computation step, data
collector constructs a database using randomized data,
and conducts data mining computations on this database.
The goal of data collector is to derive useful information
(or knowledge) out of this randomized database. In this
paper, we focus on the naive Bayesian (e.g., NB) clas-
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sification [7]. However, the proposed approach can be
applied to other data mining algorithms as well.
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Figure 1: Privacy-oriented mining of survey data

We propose to use the Randomized Response tech-
niques [11] to solve the problem of respondent privacy
in electronic surveys. The basic idea of randomized re-
sponse is to scramble the data in such a way that the
data collector cannot tell with probabilities better than a
pre-defined threshold whether the data from a respondent
contain truthful information about the sensitive, private
information. Although information from each individual
respondent is scrambled, if the number of respondents
is significantly large, the aggregate information of these
respondents can be estimated with reasonable accuracy.
Such property is useful for naive Bayesian classification
since it is based on aggregate values of a data set, rather
than individual data items.

The contributions of this paper are as follows: (1) We
have modified naive Bayesian classification algorithm [7]
to make it work with data disguised by randomized re-
sponse techniques, and implemented the modified algo-
rithm. (2) We then conducted a series of experiments
to measure accuracy of our modified naive Bayesian al-
gorithm on randomized data. Our results show that if
we choose the appropriate randomization parameters, the
accuracy we have achieved is very close to the accuracy
achieved by the standard, unmodified naive Bayesian clas-
sifier on the undisguised data. (3) We develop a method
to measure privacy achieved by proposed approach.

The rest of the paper is organized as follows: we discuss
related work in Section 2. In Section 3, we describe how
to utilize multi-variant randomized response technique to
build a naive Bayesian classifier on randomized data. In
Section 4, we describe our experimental results. Further
discussion is provided in Section 5. We give our conclusion
in Section 6.

2 Related Work

There are currently two approaches to achieve privacy-
preserving data mining: one is to use Secure Multi-party
Computation (SMC) techniques [12]. Several SMC-based
privacy-preserving data mining schemes have been pro-
posed [8, 10]. The other is the randomization approach.

Agrawal and Srikant proposed a scheme for privacy-
preserving data mining using random perturbation ap-
proach [1]. In their scheme, a random number is added to
the value of a private attribute. For example, if xi is the
value of a private attribute, xi + r, rather than xi, will
appear in the database, where r is a random value drawn
from some distribution. The paper shows that if the ran-
dom number is generated with some known distribution
(e.g., uniform or Gaussian distribution), it is possible to
recover the distribution of the values of that private at-
tribute. Assuming independence of the attributes, the pa-
per then shows that a decision tree classifier can be built
with the knowledge of distribution of each attribute.

Rizvi and Haritsa presented a scheme called MASK

to mine associations with secrecy constraints in [9]. Ev-
fimievski et al. proposed an approach to conduct privacy-
preserving association rule mining based on randomiza-
tion techniques [4]. Du and Zhan [3] utilized randomized
response technique for decision tree classification. The
method presented here is also based on randomized re-
sponse technique. The difference is that the randomized
response technique in [3] is based on the related-question
model, and our randomized response technique is based
on the unrelated-question model. In Section 6, we discuss
the advantages of our approach over [3].

3 Building Naive Bayesian Clas-

sifiers Using Multi-variant Ran-

domized Response Techniques

Randomized Response techniques were first introduced by
Warner [11] to solve the following survey problem: to esti-
mate the percentage of respondents in a population that
has attribute A, queries are sent to a group of respon-
dents. Since the attribute A is related to some confiden-
tial aspects of human life, respondents may decide not to
reply at all or to reply with incorrect answers.

For the purpose of this discussion, we will distinguish
two types of questions in a survey: questions about the re-
spondent’s private information, and questions about the
respondent’s personal information. Both kinds of infor-
mation refer to the attributes of the respondent. The
private information is an attribute the respondent would
rather not disclose, including its probability distribution
(e.g., whether the respondent has a certain medical con-
dition; or whether she takes a given medication); the per-
sonal information is also an attribute of the respondent,
but unlike the private information the respondents do not
normally mind that the data collector knows the proba-
bility distribution of the personal information (e.g., what
is the probability that the color of the respondent’s hair
being black, or what is the probability that she lives near
a lake). We also assume that the private and personal
information are unrelated - e.g., taking a medication in
unrelated to one’s hair color.

To enhance the level of cooperation, instead of asking
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each respondent whether she has the attribute A, the data
collector asks each respondent two unrelated questions.
One of them asks private information, i.e., the one that
the data collector is interested in. The other refers to the
personal information. The answers to the two questions
are unrelated to each other [11]. For example, the survey
questions can be designed as follows:

1) Do you have the private attribute A?

2) Do you have the personal attribute Y ?

In practice, the first question could be ”Are you tak-
ing medicine A?”, and the second question could be ”Do
you live near a lake?”. Respondents answer one of these
two questions. They use a randomization device to de-
cide which question to answer, without letting the data
collector know which question is answered. Each random-
ization device tells the respondent which question she is
to answer: the probability of choosing the first question is
θ, and the probability of choosing the second question is
1− θ. Although the data collector learns a response (i.e.,
“yes” or “no”), he does not know which question was an-
swered by the respondents. It is important to engineer the
interaction between data collector and respondent in such
a way that the respondent will trust the system, i.e., the
respondent will clearly understand that data collector has
no way of knowing which of the two questions is answered.
Thus the respondent feels that her privacy is preserved.
We further comment on this in Section 5.1. Note that
data collector only knows the probability distribution of
the respondent’s attribute Y . This is consistent with the
interpretation of a personal attribute - the data collector
could know the distribution of the values (e.g., hair col-
ors) of the personal attribute in the general population,
without knowing the value of that attribute for a specific
respondent.

The randomized response technique discussed above
considers only one attribute. However, data sets usu-
ally consist of multiple attributes; finding the relationship
among these attributes is one of the major goals for data
mining. Therefore, we need techniques that can handle
multiple attributes while supporting various data mining
computations.

In this paper, we provide multi-variant randomized re-
sponse technique (MRR) to address the problems of re-
spondent privacy in electronic surveys.

3.1 Notations

In this work, we assume data are binary, but the tech-
niques can be extended to categorical data. Suppose there
are N private attributes (A1, A2, . . ., AN ) in a data set A.
We construct N personal attributes (Y1, Y2, . . ., YN ). We
want one private attribute (question) to pair with one per-
sonal attribute (question), therefore we make the number
of attributes of Y and the number of attributes of A be
equal. Let A and Y represent any logical expression based
on those attributes Ai(i ∈ [1, N ]) and Yi(i ∈ [1, N ]). For

example, A can be (A1 = 0) ∧ (A2 = 1) and Y can be
(Y1 = 0) ∧ (Y2 = 1).

Let P (Y ) be the proportion of the records in the per-
sonal data that satisfy Y = true. Let P ∗(A) be the
proportion of the records in the whole randomized data
set that satisfies A = true. Let P (A) be the proportion
of the records in the whole non-randomized data set that
satisfy A = true (the potential non-randomized data set
which in reality does not exist). P ∗(A) can be observed
from the randomized data, but P (A), the actual propor-
tion that we are interested in, cannot be observed from
the randomized data because the non-randomized data
set is not available to anybody; we have to estimate P (A).
The goal of MRR is to find a way to estimate P (A) from
P ∗(A).

3.2 Multi-variant Randomized Response

Scheme

In this scheme, all the attributes including the class la-
bel either keep the same values or obtain the values from
personal data. In other words, when sending the private
data to the data collector, respondents either tell their
answers to the private questions or tell their answers to
the personal questions. The probability for the first event
is θ, and the probability for the second event is 1− θ. For
example, assume a respondent’s attribute values A1 and
A2 are 11 for private data; and the respondent’s attribute
values Y1 and Y2 are 01. The respondent generates a ran-
dom number between 0 and 1; if the number is less than
θ, she sends 11 to the data collector; if the number is
bigger than θ, she sends 01 to the data collector. Since
the data collector only knows θ which is the same for all
respondents and does not know the random number gen-
erated by each respondent, he cannot know whether the
respondent tells the values from private data or personal
data. To simplify our presentation, we use P (A(11)) to
represent P (A1 = 1 ∧ A2 = 1), P (Y (11)) to represent
P (Y1 = 1 ∧ Y2 = 1) where“∧” is the logical and oper-
ator. Because the contributions to P ∗(A(11)) partially
come from P (A(11)), and partially come from P (Y (11)),
we can derive the following equation:

P ∗(A(11)) = P (A(11)) · θ + P (Y (11)) · (1 − θ).

Since P (Y (11)) is known as Y is personal data, θ is de-
termined before collecting the data, and P ∗(A(11)) can be
directly computed on the disguised (randomized) data set.
By solving the above equation, we can obtain P (A(11)),
the information needed to build a naive Bayesian classi-
fier. The general model is described in the following:

P ∗(A) = P (A) · θ + P (Y ) · (1 − θ). (1)

3.3 Building Naive Bayesian Classifiers

The naive Bayesian classifier is one of the most success-
ful algorithms in many classification domains. Despite of
its simplicity, it is shown to be competitive with other
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complex approaches, especially in text categorization and
content based filtering. The naive Bayesian classifier ap-
plies to learning tasks where each instance x is described
by a conjunction of attribute values and where the tar-
get function f(x) can take on any value from some finite
set V. A set of training examples of the target function
is provided, and a new instance is presented, described
by the tuple of attribute values < a1, a2, · · · , an >. The
learner is asked to predict the target value for this new
instance. Under a conditional independence assump-
tion, i.e., P (a1, a2, · · · , an|vj) = Πn

i=1P (ai|vj), a naive
Bayesian classifier can be derived as follows:

vNB = argmaxvj∈V P (vj)Π
n
i=1P (ai|vj)

= argmaxvj∈V P (vj)Π
n
i=1

P (ai ∧ vj)

P (vj)

To build a NB classifier, we need to compute P (vj)
and P (aj ∧ vj). To compute P (vj), we can use the gen-
eral model (Equation 1) with A being (C = vj) and Y

being (CY = vj) where C is the class label for the pri-
vate data A and CY is the class label of personal data Y .
P ∗(A) can be computed directly from the (whole) ran-
domized data set. P (Y ) is known since it is personal and
θ is known as well. By knowing θ, data collector, who
conducts the training, only knows the probability of the
training data being private, but does not exactly know if
each value is private data or not. By solving the above
equation, we can get P (A) which is P (C = vj) in this
case. Similarly, we can compute P (ai ∧ vj) using the gen-
eral model (Equation 1) with A being (Ai = ai ∧C = vj)
and Y being (Yi = ai ∧ CY = vj).

3.4 Testing

Conducting the testing is straightforward when data are
not randomized, but it is a non-trivial task when the test-
ing data set is randomized. When we choose a record from
the testing data set, compute a predicted class label using
the naive Bayesian classifier, and find out that the predi-
cated label does not match the record’s actual label, can
we say this record fails the testing? If we knew whether
the record represents the private or the personal data, and
if we knew the true class for each data, we could easily
answer this question. But how can we compute the accu-
racy score of a NB classifier when data are randomized?
Our answer is to apply the multi-variant randomized re-
sponse technique once again to compute the accuracy. Let
us use an example to illustrate how to compute the ac-
curacy. Assume the number of attributes is 2. To test
a record (A1 = 1, A2 = 0) (denoted by A(10)), we feed
A(10) and Y (10), where Y = (Y1 = 1, Y2 = 0) to the
NB classifier built in Section 3.3. Let P ∗(A(cc)) be the
proportion of correct predictions using the disguised (ran-
domized) testing data set, P (Y (cc)) be the proportion of
correct predictions in the personal data, and let P (A(cc))
be the proportion of correct predictions in the private
data. P (A(cc)) is what we want to estimate.

Because P ∗(A(cc)) consist of contributions from
P (A(cc)) and P (Y (cc)), we have the following equation:

P ∗(A(cc)) = P (A(cc)) · θ + P (Y (cc)) · (1 − θ),

where P ∗(A(cc)) can be obtained from disguised testing
data set. θ is known and by knowing θ, data collector,
who conducts the testing, only knows the probability of
the testing data being private, but does not exactly know
if each value is private data or not. How does the data col-
lector know P (Y (cc))? One implementation is as follows:
each respondent is given the same classifier by the data
collector. The classifier is constructed during the train-
ing (Section 3.3). Each respondent applies this classifier
on her personal data Y and communicates the number
of correct predictions (0 or 1) to the data collector, who
then computes (Y (cc)). Note that the data collector does
not know the values of the Y attributes, only the result
of the classifier. The data collector can solve the above
equation and get P (A(cc)), the accuracy score of testing.

4 Measuring Privacy

Enlighten by [9] where a probability-based method is pro-
vided. We develop privacy measure for our proposed
scheme as follows:

• First, we measure privacy for a single entry.

• Second, we select the minimal privacy value and treat
it as the privacy level for the group. The reason why
we choose the minimal value for the group is that,
the entries are randomized together, by finding the
original value for one entry will cause disclosing the
original values for other entries in the group.

4.1 Measure Privacy for a Single Entry

Before Mining

For a single entry, original value can be 1 or 0; random-
ized value can be 1 or 0 as well. Privacy comes from un-
certainty of original value given a randomized value. In
other words, if original value is 1, given randomized value
1 or 0, privacy will be the probability of data collector
guess the original value being 0. There are four possible
randomization results:

• Original value is 1, the value after randomization is
still 1;

• Original value is 1 but the value after randomization
is 0;

• Original value is 0 but the value after randomization
is 1;

• Original value is 0, the value after randomization is
still 0.

Consequentially, there are four components in the pri-
vacy measure:
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• The probability that original value is 1, multiplies
the probability that original value is 1 and the value
after randomization is still 1 , then times the proba-
bility that guessing the original value is 0 given the
randomized value is 1.

• The probability that original value is 1, multiplies
the probability that original value is 1 but the value
after randomization is still 0, then times the proba-
bility that guessing the original value is 0 given the
randomized value is 0.

• The probability that original value is 0, multiplies the
probability that original value is 0 but the value after
randomization is 1 , then times the probability that
guessing the original value is 1 given the randomized
value is 1.

• The probability that original value is 0, multiplies
the probability that original value is 0 and the value
after randomization is still 0, then times the proba-
bility that guessing the original value is 1 given the
randomized value is 0.

Let’s use the following denotations:

• Let’s Om be the original value;

• Let’s Rm be the value after randomization;

• Let’s Wa be the probability that a value is 1 in data
set A, and the probability that a value is 0 in data
set A is (1 − Wa);

• Let’s Wy be the probability that a value is 1 in data
set Y, and the probability that a value is 1 in data
set Y is (1 − Wy);

Privacy denoted by PRE(PSE) for a single entry be-
fore mining can be derived as follows:

PSE(PRE)

= Pr(Om = 1) ∗ Pr(Rm = 1|Om = 1) ∗ Pr(Om = 0|Rm = 1) +

Pr(Om = 1) ∗ Pr(Rm = 0|Om = 1) ∗ Pr(Om = 0|Rm = 0) +

Pr(Om = 0) ∗ Pr(Rm = 1|Om = 0) ∗ Pr(Om = 1|Rm = 1) +

Pr(Om = 0) ∗ Pr(Rm = 0|Om = 0) ∗ Pr(Om = 1|Rm = 0)

= Component1 + Component2 + Component3 + Component4

The first component can be computed as follows:

Component1

= Wa ∗ [θ + (1 − θ) ∗ Wy ] ∗
Pr(Rm = 1|Om = 0) ∗ Pr(Om = 0)

Pr(Rm = 1)

=
Wa ∗ [θ + (1 − θ) ∗ Wy ] ∗ (1 − θ) ∗ (1 − Wy) ∗ (1 − Wa)

Pr(Rm = 1|Om = 1) ∗ Pr(Om = 1) + Pr(Rm = 1|Om = 0) ∗ Pr(Om = 0)

=
Wa ∗ [θ + (1 − θ) ∗ Wy ] ∗ (1 − θ) ∗ (1 − Wy) ∗ (1 − Wa)

[θ + (1 − θ) ∗ Wy ] ∗ Wa + (1 − θ) ∗ (1 − Wy) ∗ (1 − Wa)

Similarly, we can obtain other components.

Component2

=
Wa ∗ (1 − θ) ∗ (1 − Wy) ∗ [θ + (1 − θ) ∗ (1 − Wy)] ∗ (1 − Wa)

[θ + (1 − θ) ∗ (1 − Wy)] ∗ (1 − Wa) + (1 − θ) ∗ (1 − Wy) ∗ Wa

Component3

=
(1 − Wa) ∗ (1 − θ) ∗ Wy ∗ [θ + (1 − θ) ∗ Wy ] ∗ Wa

(θ + (1 − θ) ∗ Wy) ∗ Wa + (1 − θ) ∗ Wy ∗ (1 − Wa)
,

Component4

=
(1 − Wa) ∗ [θ + (1 − θ) ∗ (1 − Wy)] ∗ (1 − θ) ∗ (1 − Wy) ∗ Wa

[θ + (1 − θ) ∗ (1 − Wy)] ∗ (1 − Wa) + (1 − θ) ∗ (1 − Wy) ∗ Wa

.

We then get

PSE(PRE)

=
Wa ∗ (θ + (1 − θ) ∗ Wy) ∗ (1 − θ) ∗ (1 − Wy) ∗ (1 − Wa)

(θ + (1 − θ) ∗ Wy) ∗ Wa + (1 − θ) ∗ (1 − Wy) ∗ (1 − Wa)
+

Wa ∗ (1 − θ) ∗ (1 − Wy) ∗ (θ + (1 − θ) ∗ (1 − Wy)) ∗ (1 − Wa)

(θ + (1 − θ) ∗ (1 − Wy)) ∗ (1 − Wa) + (1 − θ) ∗ (1 − Wy) ∗ Wa

+

(1 − Wa) ∗ (1 − θ) ∗ Wy ∗ (θ + (1 − θ) ∗ Wy) ∗ Wa

(θ + (1 − θ) ∗ Wy) ∗ Wa + (1 − θ) ∗ Wy ∗ (1 − Wa)
+

(1 − Wa) ∗ (θ + (1 − θ) ∗ (1 − Wy)) ∗ (1 − θ) ∗ (1 − Wy) ∗ Wa

(θ + (1 − θ) ∗ (1 − Wy)) ∗ (1 − Wa) + (1 − θ) ∗ (1 − Wy) ∗ Wa

=
(1 − Wa) ∗ Wa ∗ (1 − θ) ∗ (θ + (1θ) ∗ Wy)

(θ + (1 − θ) ∗ Wy) ∗ Wa + (1 − θ) ∗ Wy ∗ (1 − Wa)
+

2 ∗ Wa ∗ (1 − Wa) ∗ (1 − θ) ∗ (1 − Wy) ∗ (θ + (1 − θ) ∗ (1 − Wy)

(θ + (1 − θ) ∗ (1 − Wy)) ∗ (1 − Wa) + (1 − θ) ∗ (1 − Wy) ∗ Wa

4.2 Measure Privacy for a Single Entry

After Mining

There is another issue which may decrease the privacy
level that we obtained from pre-mining. That is pri-
vacy leak because of inference from the mining middle
steps and mining output results or other sources. We will
compute the final data privacy as the difference between
PSE(PRE) and recoverability from the middle steps and
outputs or other sources.

There are mainly two scenarios for current data mining
applications:

1) Centralized data mining. In this scenario, there is
a data collector who collects all the disguised data
from data providers and forms a data set. she then
conduct mining on the disguised data set.

2) Distributed data mining. There are several parties,
with each of them having a data set, want to collab-
orate to conduct mining on their combined data set.
According to data format,there are two cases:

• Horizontally Partitioned Data. Each party’s
data set has the same set of attributes, however,
the transactions for each party are different.

• Vertically Partitioned Data. Each party’s data
set has different attributes, but the identities for
each transaction are the same.

The denotation of recoverability for different scenarios
is not the same.
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Scenarios I: For inference where the original values for
pre-condition of an inference rule being known, e.g., ver-
tically partitioned distributed mining, the recoverability
can be denoted as:

REC = Pr(precondition) ∗ Pr(Confidence),

where precondition is the conditions for an inference
rule, and Pr(Confidence) is the confidence for an in-
ference rule. The inference rules means that the rules
obtained during mining, after mining and other sources.
For example, assume we obtain a rule A1 ⇒ A2 with
Pr(A1 ⇒ A2) = 0.6, then Pr(Confidence) = 0.6.

Let’s use an example to show how to compute REC.
Assume that data collector obtains the following rules:

Pr([A1 = 1] => [A2 = 1]) = 80%;

Pr([A1 = 1] => [A2 = 0]) = 60%;

Pr([A1 = 0] => [A2 = 1]) = 40%;

Pr([A1 = 0] => [A2 = 0]) = 30%.

Assume that A1 belongs to Alice and A2 belongs to
Bob. Then REC will be

REC = Pr(precondition) ∗ Pr(Confidence)

= Pr(A1 = 1) ∗ Pr(A2 = 1|A1 = 1) +

Pr(A1 = 1) ∗ Pr(A2 = 0|A1 = 1) +

Pr(A1 = 0) ∗ Pr(A2 = 0|A1 = 0) +

Pr(A1 = 0) ∗ Pr(A2 = 1|A1 = 0).

Scenario II: For inference where the original values for
pre-condition of an inference rule being unknown, e.g.,
horizontally partitioned distributed mining and central-
ized mining, the recoverability can be computed as:

REC = Pr(Confidence) ∗ Pr(OriginalV alues|RandomizedV alues),

where Pr(Confidence) is the confidence for an in-
ference rule; Pr(OriginalV alues|RandomizedV alues) is
the probability to make a correct guess for original values
given the randomized values.

Let’s still use the above example, then REC will be

REC = Pr(A2(R) = 1|A1(R) = 1) ∗ Pr(A2(O) = 1|A2(R) = 1) +

Pr(A2(R) = 0|A1(R) = 1) ∗ Pr(A2(O) = 0|A2(R) = 0) +

Pr(A2(R) = 1|A1(R) = 0) ∗ Pr(A2(O) = 1|A2(R) = 1) +

Pr(A2(R) = 0|A1(R) = 0) ∗ Pr(A2(O) = 0|A2(R) = 0),

where Ai(O) represents the original values and Ai(R)
represents the randomized values.

If the inference rules are obtained from other sources,
the recoverability is also computed according to the sec-
ond scenarios. In general, we compute REC for each
entry, we then select the largest value among these val-
ues. We then compute the final privacy for each entry as
follows:

PSE = PSE(PRE) − REC.

We compute PSE for each single entry. We then select
the smallest value PSE(Min) as the privacy value for the
group.

5 Experimental Results

To evaluate the effectiveness of our proposed scheme, We
conducted experiments on two real life data sets Adult and
Breast Cancer which were obtained from the UCI Machine
Learning Repository (ftp://ftp.ics.uci.edu/pub/machine-
learning-databases).

5.1 Experimental Steps

We modified naive Bayesian classification algorithm to
handle randomized data based on our proposed scheme.
We applied our scheme to obtain a privacy-oriented clas-
sifier. We also ran the naive Bayesian classification al-
gorithm on original data set, and obtained a base clas-
sifier. We then applied the same testing data to both
classifiers. Our goal is to compare classification accuracy
of these two classifiers. Obviously we want accuracy of
privacy-oriented classifier to be close to accuracy of the
base classifier. Our experiments consist of the following
steps.

Preprocessing: Since we assume that the data set con-
tains only binary data, we first discretize the original non-
binary data to become binary. We split the value of each
attribute from the median point of the range of the at-
tribute. After preprocessing, we randomly divided the
data sets into a training data set D (80%) and a testing
data set B (20%). Note that B will be used for comparing
our results with the benchmark results.

Benchmark: We use D and the original NB classifica-
tion algorithm to build a classifier TD; we use the data set
B to test the classifier, and get an accuracy score. We call
this score the original accuracy (or the benchmark score).

θ Selection: For θ = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9 and 1.0, we conduct the following 4 steps:

1) Randomization: We create a disguised data set G.
For each record in the training data set D, we gen-
erate a random number r from 0 to 1 using uniform
distribution. If r < θ, we copy the record of D to
G without any change; if r ≥ θ, we randomly gen-
erate the values for a record of Y according to the
pre-defined probability and copy the record values to
G. In this paper, each record of Y is randomly gen-
erated such that each logical expression (Y) appears
with the probability of 0.5. That is Wy = 0.5. We
perform this randomization step for all the records in
the training data set D , then generate the new data
set G.

2) Classifier Construction: We use the data set G and
our modified NB classification algorithm to build a
naive Bayesian classifier TG.

3) Testing: We use the data set B to test TG,and get
an accuracy score S.
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4) Repeating: We repeat Steps 1 - 3 for 1000 times, and
get S1, . . . , S1000. We then compute the mean and
the variance of these 1000 accuracy scores.

5.2 Accuracy Analysis

5.2.1 The Analysis of Mean

Figures 2 and 3 show the mean values of the accuracy
scores for Adult and Breast-Cancer data sets respectively.
We can see from the figures that when θ = 1, the results
are exactly the same as the results when the standard,
unmodified classification algorithm is applied. This is be-
cause when θ = 1, the randomized data sets are all from
the private data D. For θ approaching 1, the contribution
of the private data is enhanced; with θ deviating from 1,
the contribution of the private data is decreasing (when θ

is 0, the collected data set is all from the personal data).
Therefore, when θ moves from 1 towards 0, the mean of
accuracy has the trend of decreasing.
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Figure 2: Plot of means for the adult data set

5.2.2 The Analysis of Variance

Figures 4 and 5 shows the variances of the accuracy scores.
When θ moves from 1 towards 0, the degree of random-
ness in the disguised data is increasing, the variance of
the estimation used in our method becomes larger. The
variance changes with different randomization levels (θ).
When θ is near 0, the randomization level is much higher
and the private data is better disguised. We do not show
the variance when θ = 0. In this case, since the collected
data set is actually the personal data and the probability
distribution for it is always the same for each iteration,
the variance is 0.

5.3 Privacy Analysis

To get better sense of our proposed privacy measure,
we conduct a set of experiments on the data sets
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Figure 3: Plot of means for the cancer data set
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Figure 4: Plot of variance for the adult data set

with various distributions. Since we don’t know infer-
ence rules after mining, we solely evaluate privacy be-
fore mining. Specially, we conduct experiments when
Wa = 0.1, 0.2, 0.3, 0.4, 0.5. For each data distribution,
we compute the privacy value for the cases where θ =
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. Notice that the
privacy when Wa = 0.9, 0.8, 0.7, 0.6 is symmetric with the
privacy when Wa = 0.1, 0.2, 0.3, 0.4. Therefore, I only
evaluate half of them. As we see from results in Figure 6.

• When θ = 1, the private data is fully disclosed. Pri-
vacy value is 0;

• When θ = 0, the data collector gets no private data,
and the data obtained are all the personal data. In
this case, the privacy level of private data is the high-
est.

• When θ is away from 1 and approaches 0, the ele-
ments of the private data contribute less to the classi-
fication, and the probability of disclosing the private



International Journal of Network Security, Vol.4, No.3, PP.318–327, Mar. 2007 325

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

θ

V
ar

ia
nc

e
Plot of Variance For The Cancer Data set

Figure 5: Plot of variance for the cancer data set
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Figure 6: Privacy plot

data is decreasing. Therefore the privacy level of the
private data increases.

• When private data (A) distribution approaches to
uniform (Wa = 0.5), the privacy level is increasing.
Since the uniform distribution will make the original
data recoverability be the lowest.

6 Discussion

6.1 The Unrelated-Question Model

There are two types of estimation models for random-
ized response technique [11]. One is the related-question
model where two questions are related and answers for the
two questions are opposite (i.e., one question is “Is it true
that you have attribute K?” and the other is “Is it true
that you do not have attribute K?”). The second type is
the unrelated-question model where two questions are un-
related as we discussed in this paper. A multi-variant ran-
domized response technique (MRR) based on the related-

question model to deal with multiple attributes has been
proposed in [3]. Support for the latter type comes from re-
search showing [6] that the respondents might be more co-
operative provided that they could reply to one of the two
questions where one question is totally unrelated to the
private attribute. Actual survey results were reported to
illustrate that the unrelated-question model did increase
the respondent’s probability of telling the truth. Theoret-
ical framework provided in [5] proved that the unrelated-
question model actually reduced the resultant variance.
Figure 7 further compares naive Bayesian classification
results of two models on the Adult data set (limited by
the space, the similar results of Breast Cancer data set is
not shown here).

We observe that there are three advantages of using
unrelated-question model:

1) When θ = 0.5, although this θ value provides
the highest privacy for related-question model, the
related-question model cannot be applied. The
unrelated-question model does not suffer from this
restriction.

2) For the related-question model, the results for θ ∈
[0, 0.5) are similar to the results for θ ∈ (0.5, 1], there-
fore, the actual privacy level is limited to half of the
whole possible domain [0,1]. But the privacy level for
unrelated-question model can take all the values in
the whole possible domain.

3) From the Figure 7, we can see that unrelated-
question model provides better results than the
related-question model when θ is close to 0.5. The
best privacy in related-question model is achieved as
θ close to 0.5. However, as Figure 7 shows, the results
of related-question model for these values of θ are
not as good as the results of the unrelated-question
model.

6.2 How to Implement a Web-based Ran-

domized Response Scheme

In the original paper on randomized response tech-
nique [11], the scheme was paper-based. However, our
goal is to implement the proposed scheme in a web-based
system.

Assume the server is maintained by the data collec-
tor. The interface for respondents is depicted in Fig-
ure 8. For the sake of simplicity, we only show single
attribute case (the scheme for the multi-variant (multiple
attributes) case can be similarly derived). Each respon-
dent uses a randomization device. For each question, the
respondent generates a random number. If the number is
greater than the pre-defined threshold (θ), the respondent
clicks the corresponding Yes/No button. For instance, if
the answer to a private question is Y es and the answer
to personal question is No. The respondent generates a
random number (r) using her randomization device. If
r > θ, she clicks the Y es button, else she clicks the No
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Variance         0.0054   0.0002  0.0001      0           0

  Mean               0.66      0.81        0.82      0.82     0.82

0.51      0.6         0.7        0.8         0.9θ

(a) Related-Question Model

Variance         0.0001   0.0001   0.0001  0.0001      0           0

  Mean               0.81      0.81       0.82      0.82       0.82      0.82

  0.5        0.51       0.6        0.7         0.8       0.9θ

(b) Unrelated-Question Model

Figure 7: The comparison on the adult data set

button. Since the data collector (server side) does not
know the random number generated by the respondent,
he cannot know whether the respondent answers a private
or a personal question. Note that both data collector and
respondents know θ, but each random number generated
by each respondent is known only by the respondent her-
self.

Private Question
 Yes/No

   Personal Qustion

Figure 8: Web-based randomized response scheme

6.3 How to Increase the Data Privacy

Level

The proposed scheme (Equation 1) is considered a single-
group scheme since all the attributes are grouped to-
gether. For each record in the collected data set, if the
data collector somehow finds out the respondent tells the
private information about one attribute (question), the
data collector then knows the respondent tells the private
information about other attributes as well. To enhance
data privacy, respondents can divide all the attributes into
two or more groups (all the respondents should group the
attributes in the same way, e.g., one respondent lets at-
tribute A1(Y1) and A2(Y2) to be in the group 1, then
other respondents also let attribute A1(Y1) and A2(Y2) to
be in the group 1). They then apply the multi-variant
randomized response techniques for each group indepen-
dently such that knowing information about attributes in
one group cannot hurt the privacy of the information for
the other group.

What happens when the data collector somehow finds
out the answer to a personal question, e.g., Do you live
near a lake?. In this case, the data collector still does
not know whether the respondent answered this personal
question, or the private question associated with it. So
even the knowledge of an answer to a personal question
does not necessarily compromise the privacy of the answer
to a private question.

7 Concluding Remarks

In this paper, we have presented a method to build naive
Bayesian classifiers using multi-variant randomized re-
sponse technique. The experimental results show that
when we select an appropriate randomization parameter
θ, we can get fairly accurate classifiers comparing to the
classifiers built from the undisguised data. The proposed
multi-variant unrelated-question model can be used not
only for naive Bayesian classification, but also can be uti-
lized in many other privacy-preserving data mining com-
putations, such as decision tree induction, Bayesian clas-
sification, probabilistic-based clustering. As future work,
we will apply the proposed scheme to other data mining
problems.
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