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Abstract

In order to reduce key sizes and bandwidth, several LFSR-
based (linear feedback shift register) public key cryptosys-
tems and signature schemes have been proposed. Digital
signatures with message recovery are useful for many ap-
plications in which small messages (e.g., 100 bits or so)
should be signed. This paper first presents a new se-
quence operation, called DSO, based on existing sequence
operations, and then proposes a LFSR-based signature
scheme with message recovery and a LFSR-based signa-
ture scheme with partial message recovery. We support
the proposed schemes with security analysis. Our schemes
take the advantage that they require less computation
complexity, less representation and less bandwidth than
those required in their counterparts based on finite fields
of Zq.

Keywords: Characteristic sequence, digital signature, dis-
crete logarithm problem, linear feedback shift register se-
quence, message recovery

1 Introduction

With the rapid development of information security,
nowadays cryptosystems are more important than those
in previous eras. To Design an efficient and secure cryp-
tosystems has become a very challenging task for re-
searchers in order to meet the requirements of communi-
cation bandwidth, information rate, computational speed,
and various security strategies. The finite-field based
public-key cryptosystems, such as ElGamal cryptosys-
tems [3], DSS [10], and RSA [14], require that the field
sizes must be chosen large enough to strengthen their
security. But this affects the efficiency of the schemes
because the time to do the underlying operations grows
(and rather quickly) as the security parameter increases.
For applications where bandwidth is limited, we prefer to
avoid this. Recently, several cryptosystems have been pro-
posed to successfully reduce the representation of the ele-
ments of the finite fields with the coefficients of their min-
imal polynomials [4, 8, 9, 16]. For instance, Niederreiter
[9] has proposed encryption and key agreement schemes

based on general n-th order LFSR sequences. Giuliani
and Gong [4] proposed a general class of LFSR-based
key agreement and signature schemes based on n-th order
characteristic sequences. These schemes have the advan-
tage that they do not require as much bandwidth as their
counterparts based on finite fields.

Digital signatures with message recovery are useful for
many applications in which small messages (e.g., 100 bits
or so) should be signed [11, 13]. For example, small mes-
sages including time, date and identifiers are signed in cer-
tified email services and time stamping services. In these
situations, it is desirable to minimize the total length of
the original messages and the appended signatures. To
date, there are many research work along this line. In [2],
Bellare and Rogway gave a RSA-based signing scheme
PSS-R which provides message recovery, and further ex-
tended to provide schemes for Rabin signatures with anal-
ogous properties. In [1], Abe and Okamoto showed a sig-
nature scheme with message recovery in the DL-type (i.e.,
elliptic curve based). In [18], Zhang et.al. proposed an
identity based message recovery signature scheme.

In this paper, we first derive a new sequence operation,
called DSO(Derived Sequence Operation), and then pro-
pose a LFSR-based signature scheme with message re-
covery which can be viewed as LFSR-based version of
existing work [1, 18]. The resulting scheme is very sim-
ple and efficient, since it only requires 1 SO1 operation
in the signing algorithm. Another appealing advantage
is that the resulting signature is only 2-tuple in Z2

P . Its
limitation is that the size of the message to be signed is
limited to fixed length. To eliminate such flaw, we ex-
tend the scheme to a LFSR-based signature scheme with
partial message recovery. In this case, the signer can sign
arbitrary messages of any bit-length. We also support the
schemes with security analysis.

The paper will proceed as follows. After some prelim-
inary work, Section 3 will describe a new sequence op-
eration DSO based on existing operations SO1 and SO2.
Section 4 will present our LFSR-based signature scheme
with message recovery. We will give its security analysis
in Section 5. Section 6 will extend the scheme in Section
4 to the scenario where the message to be signed can be of
any bit-length. The paper will end with some concluding
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remarks.

2 Preliminaries

2.1 LFSR Sequences

Let q be a prime or a power of prime, f(x) = xd−a1x
d−1+

a2x
d−2−. . .+(−1)dad, ai ∈ GF (q) be an irreducible poly-

nomial over GF(q), and let α be a root of f(x) in the
extension GF(qd).

A sequence s = {sk} over GF(q) is said to be a
LFSR sequence generated by f(x) if sk+d = a1sk+d−1 −
a2sk+d−2 + . . . + (−1)d+1adsk for all k ≥ 0, where
a1, . . . , ad are elements of GF(q). If an initial state of
s = {sk} is given by sk = tr(αk), k = 0, 1, . . . , d − 1,
where tr(·) is the trace map from GF (qd) to GF (q),
then {sk} is called a d-th order characteristic sequence.
Let the periodic of sk be P , we may define sk = sP+k

for all k ≤ 0, thus we can consider the sequence {sk}
with indices running over all integers. We denote s̄i =
(si, si+1, . . . , si+d−1) the i-th state of the LFSR sequence,
and define the set Ak = (sk, s2k, . . . , srk), where r is de-
fined by

r =







d − 1 for general q and d,
d/2 if q = p2, and d is even,
(d − 1)/2 if q = p2 and d is odd.

The set Ak = (sk, s2k, . . . , srk) need smaller bits for
representation than that in the ordinary case. For mare
details, see [4, 6, 7, 9, 17].

2.2 LFSR-based Complexity Problems

There are two main operations in LFSR-based cryptosys-
tems.

Sequence Operation 1(SO1): Given Ak and an
integer l , where 0 ≤ k, l < P , compute Akl.

Sequence Operation 2(SO2): Given states s̄k and s̄l

for some 0 ≤ k, l < P , compute s̄k+l.
Both SO1 and SO2 can be performed efficiently by

existing algorithms [4].

Definition 1. The LFSR-Based Discrete Logarithm
Problem (LFSR-DLP) is, given (q, d, P, A1, Al), to find
l.

Definition 2. The State-Based Discrete Logarithm Prob-
lem (S-DLP) is, given (q, d, P, s1, sl), to find l.

Definition 3. LFSR-DLP Assumption. We say that
the LFSR-DLP problem is (t, ε)-hard if for all t-
time adversary A, we have: AdvLFSR−DLP (A) =
Pr [A(q, d, P, A1, Al) = l|0 ≤ l < P ] < ε.

Definition 4. S-DLP Assumption. We say that
the S-DLP problem is (t, ε)-hard if for all t-
time adversary A, we have: AdvS−DLP (A) =
Pr [A(q, d, P, s1, sl) = l|0 ≤ l < P ] < ε.

It was proven that the LFSR-DLP and S-DLP are com-
putationally equivalent to the DLP [4].

2.3 Secure Signatures

The strongest notion of security for signature schemes
was defined as follows [5].

Secure Signature: A signature scheme S =<
KeyGen,Sign,Verify > is existentially unforgeable under
an adaptive chosen message attack if it is infeasible for
a forger F who only knows the public key to produce a
valid message-signature pair after obtaining polynomially
many signatures on messages of its choice from the signer.

More concretely, for any probabilistic polynomial time
forger F , there does not exist a non-negligible probability
ε such that

Adv(F) = Pr

















(pk, sk) = KeyGen(1l),
Mi = F(pk, M1, σ1, ..., Mi−1, σi−1),
σi = Sign(sk, Mi)(i = 1, ..., k)
(M, σ) = F(pk, M1, σ1, ..., Mi, σi),
M 6= Mi(i = 1, ..., k)
Verify(pk, M, σ) = accept

















≥ ε.

Exact Security of Signatures: A forger F
(t, qH , qS , ε)-breaks the signature scheme S =<
KeyGen, Sign, Verify > under an adaptive chosen
message attack if after at most qH queries to the hash
oracle, qS signature queries to the signature oracle
and t processing time, F outputs a valid forgery with
probability at least ε.

2.4 Notations

In this paper, we will use some notations listed as follows.
|q|-the length of q in bits;
[m]k1 -the most significant k1 bits of m;
[m]k2

-the least significant k2 bits of m.

3 New Sequence Operation

This section describes a new sequence operation, called
DSO, which is derived from SO1 and SO2. We believe
that combining SO1 and SO2, the new sequence opera-
tion can be useful to construct other new LFSR-based
cryptographic primitives.

DSO: Given A1, sk, and an integer l, where 0 ≤ k, l < P ,
compute skl.

Theorem 1. There exists an efficient algorithm that per-
forms the new sequence operation DSO.

Proof. We show by a constructive method that Theorem
1 holds, i.e., we will construct an efficient algorithm to
execute DSO. The algorithm is depicted as follows.
Input: A1, sk, l, P prime.
Output: skl.
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1) Compute Akl from Ak and l using SO1.

2) For 1 ≤ i < d, compute Akl+i as follows:

a. compute l−1 such that ll−1 = 1 mod P ;

b. compute sil−1 from A1 and il−1 using SO1;

c. compute sk+il−1 from sk and sil−1 using SO2;

d. compute Ak+il−1 from sk+il−1 using SO2;

e. compute Akl+i from Ak+il−1 and l using SO1.

3) Obtain skl = (skl, skl+1, . . . , skl+d−1) from
Akl, Akl+1, . . . , Akl+d−1.

Remark: In step 2, we can obtain sil−1 =
(sil−1 , sil−1+1, ..., sil−1+d−1) due to the fact that we
have A1, il−1, il−1 + 1,..., il−1 + d − 1 and the se-
quence operation SO1. We can compute Ak+il−1 =
(sk+il−1 , s2(k+il−1), ..., sr(k+il−1)) from sk+il−1 since we
can run the sequence operation SO2 r − 1 times.

In the following sections, we will use SO1, SO2, and the
new sequence operation DSO to construct LFSR-based
signatures with message recovery.

4 LFSR-Based Signature Scheme

with Message Recovery

Digital signatures with message recovery are useful for
many applications in which small messages (e.g., 100 bits
or so) should be signed. For example, small messages
including time, date and identifiers are signed in certified
email services and time stamping services. In these
situations, it is desirable to minimize the total length
of the original messages and the appended signatures.
To date, there are many research work along this line
[1, 2, 11, 13]. Current section presents a LFSR-based
signature scheme with message recovery. The proposed
scheme is somewhat related to conventional Schnorr
signatures [15] and consists of four algorithms Init,

KeyGen, Sign, and Verify as depicted below.

Init: Given the security parameter 1k, the algorithm Init

generates the Domain parameters: q, d, P, A1. Moreover,
to produce a signature with message recovery on some k1-
bit message, three hash functions H : {0, 1}∗ −→ {0, 1}k,
F0 : {0, 1}k1 −→ {0, 1}k0, F1 : {0, 1}k0 −→ {0, 1}k1,
k = k0 + k1, are also required.

KeyGen: To obtain his secret key and corresponding
public key, a user randomly chooses ω(0 ≤ ω < P ), and
computes sω . The user’s key pair is (ω, sω). He keeps
ω secret, while sω may be made public by the trusted
entity CA.

Sign: To sign some message m with his secret key ω, the
signer acts as follows. If all these steps are performed suc-
cessfully, the receiver will obtain a valid signature (h, σ)
with message recovery on the message m.

1) Pick randomly a number k (0≤ k < P );

2) Compute Ak from A1 and k using SO1;

3) Set m′ = F0(m)||(F1(F0(m))
⊕

m);

4) Compute h = H(Ak) + m′;

5) Set σ = k − hω;

6) Output (h, σ) as the signature with message recovery
on the message m.

Note that unlike the standard signatures [4], the re-
sulting signature (h, σ) in our scheme is only a 2-tuple,
which is with message recovery, i.e., the message m does
not have to be transferred along with the signature (h, σ)
as explained in the following algorithm.

As for the computational costs, besides some evalu-
ations of hash functions and simple modular addition,
to produce a valid signature only requires 1 sequence
operation SO1 [4]. Thus, our signature generation
algorithm is really very simple and efficient.

Verify: Upon receiving a signature (h, σ) on some mes-
sage from the signer with public key sω, any verifier can
perform the following tasks to recover the corresponding
message hidden in the signature and check its validity.

1) Compute sσ from A1 and σ using SO1;

2) Compute sωh from sω and h using DSO;

3) Determine sσ+hω from sσ and shω using SO2;

4) Compute Ak from sσ+hω using SO2;

5) Set m′ = h − H(Ak);

6) Parse m′ as m′ = [m′]k0 ||[m′]k1
;

7) Recover the message m as m = [m′]k1

⊕

F1([m
′]k0);

8) Accept the signature (h, σ) and the recovered mes-
sage m if the following equation holds:[m′]k0 =
F0(m); reject otherwise.

This ends the description of our LFSR-based signature
scheme with message recovery. The following section will
give a simple security analysis.

5 Security Analysis

5.1 Correctness

From SO1, SO2, and DSO, it is straightforward to check
that the property of correctness holds.
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5.2 Unforgeability

As for the property of unforgeability of the proposed sig-
nature scheme with message recovery, we show by the
following theorem that it is secure if the S-DLP assump-
tion holds. In fact, using the generic technique ID re-
duction lemma [12], it is possible to construct a formal
security reduction for the LFSR-based signature scheme.
For brevity, however, we adopt an informal proof that is
much easier to understand.

Theorem 2. If a valid signature of our proposed scheme
can be generated without the knowledge of the secret key
of the signer, then the S-DLP problem can be solved in
polynomial time.

Proof. Suppose that without the knowledge of the secret
key of the signer, any third party A can successfully con-
struct on the message m∗ a valid signature (h∗, σ∗) with
message recovery which can pass the verification algo-
rithm. Since m∗ is hidden in the value m′ and F0, F1, H
are hash functions whose outputs can be viewed as ran-
dom numbers, A must have the capability of computing
the value Ak with non-negligible probability in polyno-
mial time. To achieve his goal, A may have the following
two ways.

On the one hand, A may try to obtain Ak by computing
k directly from the equation k = σ + hω which contains
one secret parameter ω only known to the signer, thus the
adversary A cannot produce a valid Ak by this way.

On the other hand, A may first pick a random k, there-
fore he can compute Ak, and sk. Then the adversary can
compute h∗ from Ak and m∗. But he cannot determine
the value of σ∗ from sσ∗ which can be produced from sk

and sh∗ω, since he faces the difficulty of solving S-DLP
problem.

Combining all these above, the soundness of the conclu-
sion follows. This completes the proof of Theorem 2.

6 LFSR-based Signatures with

Partial Message Recovery

Section 4 manages to propose a LFSR-based signature
scheme with complete message recovery. In that scheme,
however, there exists a serious limitation, i.e., the size
of the message to be signed is fixed to k2 bit-length.
This means that the scheme cannot deal with the message
whose size is larger than k2, in other words, the scheme
cannot sign the messages of arbitrary lengths. To elim-
inate such limitation, this section will propose a LFSR-
based signature scheme with partial message recovery.

The scheme also consists of four algorithms, Init,

KeyGen, Sign, and Verify. Thereinto, Init, KeyGen are the
same as those in Section 4.

Sign: To sign some message m with his secret key ω, the
signer acts as follows.

1) Parse the message m as m = m0||m1, where m1 is of
k1 bit-length;

2) Pick randomly a number k (0≤ k < P );

3) Compute Ak from A1 and k using SO1;

4) Set m′ = F0(m1)||(F1(F0(m1))
⊕

m1);

5) Compute h = H(m0, Ak) + m′;

6) Set σ = k − hω;

7) Output (m0, h, σ) as the signature on the message m.

Verify: Upon receiving a signature (m0, h, σ) on some mes-
sage, any verifier can perform the following tasks to re-
cover the corresponding message hidden in the signature
and check its validity.

1) Compute sσ from A1 and σ using SO1;

2) Compute sωh from sω and h using DSO;

3) Determine sσ+hω from sσ and shω using SO2;

4) Compute Ak from sσ+hω using SO2;

5) Set m′ = h − H(m0, Ak);

6) Parse m′ as m′ = [m′]k0 ||[m′]k1
;

7) Recover the partial message m1 as m1 =
[m′]k1

⊕

F1([m
′]k0);

8) Accept the signature (m0, h, σ) and the recovered
message m = m0||m1 if the following equation
holds:[m′]k0 = F0(m1); reject otherwise.

This ends the descriptions of our LFSR-based signa-
tures with partial message recovery. The proofs of sound-
ness, security analysis are similar to those of LFSR-based
signatures with complete message recovery as stated in
Section 5. We omit those details here.

7 Conclusions

We have presented a new sequence operation DSO. Com-
bining DSO and existing sequence operations, other new
LFSR-based cryptographic primitives can be easily con-
structed. We then proposed a LFSR-based signature
scheme with message recovery and a LFSR-based signa-
ture scheme with partial message recovery. We supported
the schemes with simple security analysis. The proposed
schemes take advantage of the efficiency of computation,
representation and bandwidth.
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