
International Journal of Network Security, Vol.4, No.1, PP.99–106, Jan. 2007 99

Parallelized Scalar Multiplication on Elliptic

Curves Defined over Optimal Extension Field

Jaewon Lee, Heeyoul Kim, Younho Lee, Seong-Min Hong, and Hyunsoo Yoon

(Corresponding author: Jaewon Lee)

Department of EECS, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

305-701, Guseong-dong, Yuseong-gu, Daejeon, Korea.

(Email: {jaewon, hykim, yhlee, smhong, hyoon}@camars.kaist.ac.kr, hykim@camars.kaist.ac.kr)

(Received Sept. 21, 2005; revised and accepted Nov. 5, 2005)

Abstract

In this paper, we propose three algorithms to perform
scalar multiplication on elliptic curves defined over higher
characteristic finite fields such as the OEF (Optimal Ex-
tension Field). First, we propose an efficient scalar multi-
plication method in which the Frobenius expansion is used
on an elliptic curve defined over OEF. Second, we pro-
pose a new finite field multiplication algorithm. Third, we
propose a particular polynomial squaring algorithm. We
show that the proposed algorithms, when used together,
accelerate the scalar multiplication on elliptic curves by
two-fold.

Keywords: Elliptic curves, frobenius expansion, scalar
multiplication

1 Introduction

The elliptic curve cryptosystem was proposed by Koblitz
and Miller independently [15, 20]. Because it requires a
smaller key size than an RSA-type cryptosystem, it is pos-
sibe to implement fast and compact cryptosystems such as
ECDSA [17]. However, since elliptic curve operations are
very complicated and require finite field operations, there
has been much research on the fast implementation of el-
liptic curve cryptosystems. They can be categorized into
two groups : high-level algorithms which manage ellip-
tic curve points and low-level algorithms that accelerate
finite field operations.

First, we describe high-level algorithms. The core op-
eration is a scalar multiplication(k · P ) of a point P on
an elliptic curve in the elliptic curve cryptosystems. Be-
cause the scalar multiplication is composed of repeated
point additions and doublings, the throughput of the
cryptosystem is linearly dependent on the number of
repetitions. To reduce the number of repetitions, an
addition/subtraction-chain or a Frobenius map can be
used but the latter is known to be more efficient [8].

The base-φ expansion method which uses the Frobe-

nius map was proposed by Koblitz [16]. Koblitz’s method
can be used only for the points on the elliptic curves de-
fined over F2. Muller and Cheon et al. extended it to F2r ,
where r is a small integer less than 6 [6, 21]. Koblitz also
extended it to F3 and F7 [17]. Recently, Kobayashi et al.
proposed a base-φ expansion method that can be applied
to Fpm -rational points on an elliptic curve defined over Fp

where p is a very large prime such as 64-bit [13].

Now we describe low-level algorithms. To accelerate
finite field operations, there have been many proposals
of finite fields F2m , F(2m)n , Fpm . F2m has been widely
used because it is efficient in hardware implementation
[1, 2, 3]. However, it is not appropriate for software im-
plementation, because it comprizes many bit operations.
To remove these bit operations, composite fields F(2m)n

have been proposed [10, 22]. Two representative compos-
ite fields are F(28)13 and F(216)11 . However, it is infeasible
to use composite fields such as F(232)7 or F(264)5 , because
it requires two tables for sub-field multiplication and the
table size is too large. This means that the composite
field can not fully utilize the current 32-bit or 64-bit com-
puter architecture. To overcome this problem, Bailey and
Paar proposed Fpm and named it the OEF (Optimal Ex-
tension Field) when p satisfies some conditions. Because
such p is a prime near the register size, we can use the
CPU’s built-in operations such as multiplication and ad-
dition as sub-field operations. Currently, most efficient
software implementations use the OEF.

In this paper, we propose three algorithms. First, we
propose an efficient scalar multiplication method when
base-φ expansion is used on an elliptic curve defined over
the OEF. Whereas the base-φ expansion method requires
less point additions and doublings than the conventional
addition/subtraction-chain method, there must be a spe-
cial computation method when the used elliptic curve is
defined over a higher characteristic finite field such as an
OEF.

Second, we propose a new algorithm to improve the fi-
nite field multiplication which is the most time-consuming



International Journal of Network Security, Vol.4, No.1, PP.99–106, Jan. 2007 100

operation. When the polynomial basis representation
is used, the multiplication can be implemented by us-
ing a polynomial multiplication algorithm. Among the
existing polynomial multiplication algorithms, the KOA
(Karatsuba-Ofman Algorithm) [12] shows the best per-
formance when the number of terms is relatively small.
However, the number of terms must be a power of 2, e.g.,
4, 8, 16, · · · . In other cases, the KOA shows very poor
performance acceleration. This means that the KOA has
not much advantage when the OEF is used. We propose
a modified KOA that can be used with the OEF.

Third, we propose a new efficient polynomial squar-
ing algorithm. Generally, polynomial squaring is imple-
mented by usual multiplication algorithms. We propose
a new divide-and-conquer algorithm which is faster than
our new multiplication algorithm.

This paper is composed as follows. In Section 2, we
explain the elliptic curve and the scalar multiplication.
In Section 3, we propose a high-level algorithm that ac-
celerates the scalar multiplication procedure using base-φ
expansion. In Section 4, we propose a low-level algorithm
that accelerates the finite field multiplications and squar-
ings. In Section 5, we describe the implementation and
the experimental result. Finally, we conclude this paper
in Section 6.

2 Background

Elliptic curves are smooth curves of genus 1 having a
specified basepoint O. Such curves can be written as
the locus in the projective plane of a cubic equation
called by the Weierstrass equation of the form, E :
Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X

2Z + a4XZ2 + a6Z
3

with only one point (the base point) O = (0 : 1 : 0)
on the line at infinity. For ease of notation, we usually
write the Weierstrass equation for our elliptic curve using
non-homogeneous coordinates x = X/Z and y = Y/Z,
E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, always re-
membering that there is the extra point O out at infinity.
As usual, if a1, · · · , a6 ∈ K for some field K, then E is said
to be defined over K. Moreover, if (X : Y : Z) ∈ P

2(K)
satisfies the Weierstrass equation, then it is call the K-
rational point and E(K) = {(X : Y : Z) ∈ P

2(K)|(X :
Y : Z)is a K-rational point} forms an abelian group with
an identity element O. Moreover, we may consider ellip-
tic curves defined over Z/nZ for an integer n. For more
details, see [19].

The discrete log problem on the elliptic curve is to
compute the constant k for a given elliptic curve point
P and a scalar multiple k · P , and this is known to be
very difficult. Because this is similar to the discrete log
problem on the finite field, previous cryptosystems based
on the discrete log problem can be transformed to the
elliptic curve cryptosystem, where the core operation is a
scalar multiplication k · P for a given elliptic curve point
P and a constant k.

3 Scalar Multiplication Using

Frobenius Expansion

For a given elliptic curve E defined over Fq, Frobenius
map φ on E(Fq) is defined as follows: φ : (x, y)→ (xq, yq)
Because φ2 − tφ + q = 0 where t is a trace of φ (i.e.,
q = tφ−φ2), the scalar multiplication by q can be replaced
by the Frobenius map and a scalar multiplication by t.
Repeating this procedure, we can replace any integer by
a polynomial of the Frobenius map.

Theorem 1. For a given elliptic curve E defined over Fq,
scalar multiplication by k on E(Fqn) can be represented as
the following Frobenius equation.

k =

n+1
∑

j=0

cjφ
j , where cj ∈ {i ∈ Z| − q/2 < i ≤ q/2}

As we can see in Theorem 1, if an elliptic curve E is
defined over a small finite field Fq, the scalar multiplica-
tion k ·P can be replaced by scalar multiplications by the
smaller integers less than or equal to q/2 and the Frobe-
nius map computation. The latter operation can be done
by a simple algorithm and does not significantly affect the
total computation time.

However, when the definition field is large such as OEF,
because the coefficients (c′js) are also large, an efficient
computation method is required. Kobayashi et al. pro-
posed two computation algorithms which use the table
lookup in [13]. One uses Brickell et al.’s BGMW method
[5], but this cannot be applied when the definition field is
too large such as 232 or 264. The other uses the bit pat-
terns of the coefficients, and its complexity is the same as
the left-to-right binary exponentiation method. We pro-
pose the improvement of the latter method in this section.

3.1 Proposed Computation Algorithm

We describe the proposed computation method. The ba-
sic idea is to use a batch operation technique by changing
the computation sequence as follows.

kP =
m−1
∑

j=0

cjφ
jP, (1)

= (· · · (cm−1Pφ + cm−2P )φ + · · ·+ c2P )φ + c0P,

(2)

where cj ∈ {i ∈ Z| − q/2 × (m − 1) < i ≤ q/2 × (m −
1)}. Equation (1) is the result of the type II expansion
that is described in [13], and the original computation
sequence is to compute the repeated Frobenius map to
the P (i.e., φjP ) first, and after this, to compute scalar
multiplications by c′js. But, if we follow Equation (2),
we do the scalar multiplication (i.e., cj · P ) first, and the
Frobenius map afterwards. This can be abstracted as
follows.



International Journal of Network Security, Vol.4, No.1, PP.99–106, Jan. 2007 101

Table 1: Required time for scalar multiplication on the elliptic curve defined over Fpm , where p = 231−1, m=7. The
proposed algorithm uses type II expansion in [13], so the average Hamming weight is 11/32.

Algorithm Point Point Total
Addition Doubling

Kobayashi (type I) 7bp/2(=108) bp 9bp/2(=139)
Kobayashi (type II) 77bp/32(=75) bp 109bp/32(=106)

Proposed 44bp/32(=43) bp 76bp/32(=76)

Theorem 2. We denote dlog pe + 1 by bp. Let E be an
elliptic curve defined over Fp. Consider a scalar multipli-
cation k · P , where P is a Fpm-rational point of E and k
is a mbp-bit integer. This can be replaced by m−1 Frobe-
nius map and m scalar multiplications on the same curve
where the constants are bp-bit integers.

We describe the proposed computation algorithm using
an example. For simplicity, we assume m=3 without loss
of generality. That is, we show how to compute a ·P , b ·P ,
and c · P for the following three 12-bit integers.

a = 0101001101112

b = 1100011011002

c = 1011001001012

First, we pre-compute 2 ·P , 22 ·P , · · · , 211 ·P . We denote
by Comm(a, b, c) common bit stream of a, b, and c, and
by Comm(b, c) that of b and c. We compute the following
values.

α = Comm(a, b, c) = 0000001001002

β = Comm(b, c)− Comm(a, b, c) = 1000000000002

γ = a− Comm(a, b, c) = 0101000100112

δ = b− Comm(b, c)− Comm(a, b, c) = 0100010010002

η = c− Comm(b, c)− Comm(a, b, c) = 0011000000012

Then the result can be computed as follows.

a · P = γ · P + α · P
b · P = δ · P + β · P + α · P
c · P = η · P + β · P + α · P

The number of required point doublings is 11 for pre-
computation. The number of required point additions is
13 (1 for α · P , 0 for beta · P , 4 for γ · P , 2 for δ · P , 2 for
η ·P , and 5 for the final merging.). The following theorem
is obtained by generalization.

Theorem 3. For m random bp-bit integers, a0, a1, · · · ,
am−1, scalar multiplications (ai·P ) require bp-1 point dou-
blings and m+1

2 Hw− 1 point additions, where Hw means
the average Hamming weight of ais.

Theorems 2 and 3 allow the following statement : For
a given EFp and a rational Fpm-point P , the scalar mul-
tiplication for a m · bp-bit integer can be done with bp-1
point doublings and m+1

2 Hw − 1 point additions.
We consider the OEF Fpm , where p = 231 − 1 and

m = 7, that is used in [14]. Whereas Kobayashi et al.’s

scheme requires 106 point operations (addition or dou-
bling), the proposed scheme requires only 76 point oper-
ations. Because the number of required Frobenius map
operations is the same, there is no overhead. Therefore,
the proposed method accelerates the scalar multiplication
about 30%. Table 1 shows the required time for scalar
multiplication. Among the number of required point op-
erations, all the reduced operations are point additions
which are more time consuming operations than point
doublings. Therefore, we can expect a performance of
upgrade more than 30%.

4 Faster Multiplication and

Squaring on Finite Fields

4.1 Multiplication

Usually, polynomial multiplication algorithms can be used
for multiplication of finite field elements in polynomial
basis. For the finite field multiplication, the school book
method [4] which is simple but poor, the KOA [18], or
their hybrid method [9] is usually used. Among them, the
KOA is the fastest for finite field multiplication in elliptic
curve arithmetics. Since the KOA utilizes the divide-and-
conquer technique, it suffers from skewed splitting or re-
dundant computation, if the degree of polynomial is not
2t−1(t = 1, 2, 3, · · · ) To overcome this problem, the even-
and-odd technique was used in [18], which is intuitive and
the best solution so far. But, this still causes redundancy.

However, for the cryptographic safety of the elliptic
curve E over the finite field Fp, the order of E over Fpm ,
Nm(= #E(Fpm )) should have a large prime factor [19].
In general, if n divide m, Nn can divide Nm. Hence, if m
is even or the power of two, Nm can not have a large prime
factor. Thus a finite field Fpm with prime m, should be
used for a safe elliptic curve cryptosystem, in which case
the KOA can not work in its maximal efficiency.

From these reasons, we present a fast multiplication
algorithm for a finite field, Fpm where m = 2t + l (1 ≤
l < 2t), in polynomial basis. Consider two polynomials of
degree m− 1:

A(x) = am−1x
m−1 + · · ·+ a1x + a0,

B(x) = bm−1x
m−1 + · · ·+ b1x + b0

They can be multiplied using the result and the inter-
mediate terms from the multiplication procedure of two



International Journal of Network Security, Vol.4, No.1, PP.99–106, Jan. 2007 102

Table 2: Number of multiplications in various algorithms

degree of school book KOA proposed proposed
poly. method multiplication squaring

2 9 7 6 5
4 25 17 14 13
5 36 21 18 15
6 49 25 24 23
8 81 43 36 27
9 100 51 41 39
10 121 59 50 43
11 144 63 54 45
12 169 71 66 61
13 196 75 71 69
14 225 79 78 67

Table 3: Times needed for multiplication and squaring
School book KOA propsed mul. proposed sqr.

Pentium-Pro 10.89 6.55 5.66 4.94
UltraSparc-2 12.69 10.38 7.56 6.13

polynomials

A(1)(x) = am−2x
m−2 + · · ·+ a1x + a0,

B(1)(x) = bm−2x
m−2 + · · ·+ b1x + b0

with additional m − 1 coefficient multiplications. By re-
peating this procedure recursively, we get two polynomials
Al(x), Bl(x) with degree 2t − 1, then apply the KOA to
them. It can be formalized with Theorem 4.

Theorem 4. Consider two arbitary polynomials in one
variable of degree m−1, where m = 2t + l, with coefficient
in a finite field Fp. Those polynomials can be multiplied
with :

#MUL ≤ 2t log
2
3 + ml −

l(l − 1)

2

#ADD ≤ 6mlog
2
3 − 8m + 2 + 5

(

ml−
l(l − 2)

2

)

multiplications and additions, respectively, in Fp.

Refer appendix for the proof and an example of this
theorem. This theorem results in fewer coefficient multi-
plications as shown in Figure 1(a).

4.2 Squaring

Finite field squaring is used in elliptic curve arithmetics at
the same frequency with multiplication. But, in the pre-
vious works, squaring was considered as very simple op-
eration because, in the finite fields of characteristic two,
its time complexity is O(n) or O(1). However, in the
higher characteristic finite field, squaring is time consum-
ing operation as well and computed by same algorithm of

multiplications. We noticed that squaring could be cal-
culated in more efficient way than multiplying where the
polynomial is degree of 3t − 1(t = 1, 2, 3, · · · ).

For simplicity, suppose squaring a polynomial of degree
two:

C(x) =

4
∑

i=0

cix
i = (a2x

2 + a1x + a0)
2 (3)

First of all, get the intermediate term ,di’s, as follows:

d0 = a2
0

d1 = 2a1a0

d2 = (a2 + a1 + a0)
2 (4)

d3 = 2a2a1

d4 = a2
2

Using terms from Equation (4), the final result can be
obtained as follows:

c0 = d0

c1 = d1

c2 = d2 − (d0 + d1 + d3 + d4) (5)

c3 = d3

c4 = d4

Because in Equation (4), multiplication by two can be
implemented with the shift or addition operation, so they
are not counted as coefficient multiplications. Thus, the
result of Equation (3) can be obtained with five coefficient
multiplications while six is necessary in usual polynomial



International Journal of Network Security, Vol.4, No.1, PP.99–106, Jan. 2007 103

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Nu
m

be
r o

f M
ul

tip
lic

at
io

ns

Degree of Polynomial

Our Approach
even & odd KOA

Guajardo
Optimal

School Book

(a) Multiplication algorithms

0

10

20

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10 11 12 13 14

Nu
m

be
r o

f M
ul

tip
lic

at
io

ns

Degree of Polynomial

Our Approach
Optimal KOA

(b) Squaring algorithm compared with the KOA

Figure 1: Number of coefficient multiplications for each
algorithm

multiplication algorithms. This procedure can be ap-
plied recursively and it needs fewer number of coefficient
multiplications than usual polynomial multiplication al-
gorithms. If the degree of polynomial is not 3t−1 (t ≥ 2),
the squaring procedure can go on with our multiplicatin
algorithm. The number of coefficient multiplicatins for
polynomials of degree 2 through 14 is plotted in Fig-
ure 1(b).

5 Implementation

5.1 Environment

Our implemenation environment is as follows. We used
a PC with Pentium Pro 200 MHz microprocessor and
UltraSparc-2 168 MHz workstation. Usually a CISC
(Complex Instruction Set Computer) based PC and a
RISC (Reduced Instruction Set Computer) based work-
station possess different characteristics in various sides.
Since RISC architecture is slower than CISC in single-
precision (word size) multiplication and our approach
needs fewer number of multiplications, we believe that
more improvement will be achieved with a RISC work-
station.

We implemented our algorithms and the others over
the finite field Fpm , where p = 231 − 1 and irreducible
polynomial of x7 − 3, in C language only, then examined
the time taken for computation. We assumed that all
scalar multiplication algorithms use type II expansion in

[13], so the average Hamming weight is 11/32.

5.2 Result and Analysis

Our implementation result is summarized in Table 3.
Our finite field multiplication algorithm minimizes the

number of coefficient multiplications and improve perfor-
mance by about 27%. Also, we proposed specialized ef-
ficient finite field squaring algorithm different from usual
multiplication. Our squaring algorithm needs fewer num-
ber of coefficient multiplications in particular cases and
results in about 40.1% of improvement than general mul-
tiplications.

5.3 Scalar Multiplication Speed

In an elliptic curve cryptosystem, the number of finite
field operations required for point addition and doubling
varies according to the coordinate systems [11]. Among
various coordinate systems, we assume that the Modified
Jacobian coordinate is used [7]. The numbers of finite field
operations for one elliptic curve addition and doubling are
specified in Table 4.

Based on the above specification, we can estimate the
time taken for an elliptic curve addition, a doubling, and
a scalar multiplication as following Table 5. From this
result, we can see the overall performance of elliptic curve
cryptosystem can be improved by about two-fold.

6 Conclusion

Through the use of the elliptic curve cryptosystems, the
area of information security has tremendous potential to
assist commercial success, provide peace of mind, and im-
prove the quality of life. This paper scratches the surface
of this exciting field by outlining how security services are
provided by elliptic curve systems.

We provide the efficient ways of using the elliptic curve
cryptosystems. These can be used in mobile communuca-
tions, tiny computing systems, or ubiquitous computing
system due to the efficiency of key management and com-
putational overhead.

Acknowledgement

This work was supported by the Ministry of Science
and Technology(MOST)/Korea Sceince and Engineering
Foundation(KOSEF) through the Advanced Information
Technology Research Center(AITrc).

References

[1] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S.
A. Vanstone, “An implementation for a fast public-
key cryptosystem,” Journal of Cryptology, vol. 3, pp.
63-79, 1991.



International Journal of Network Security, Vol.4, No.1, PP.99–106, Jan. 2007 104

Table 4: Number of finite field multiplication and squaring per EC addition and doubling
EC EC Scalar Mul.

addition doubling Kobayashi [14] Proposed

FF mul. 13 4 1095 679
FF sqr. 6 4 570 378

Table 5: Estimated time for the elliptic curve operations
KOA+Kob. P.M+Kob. P.M+P.F

EC addition Pentium-Pro 124.45 103.22 ←
(µsec) UltraSparc-2 197.22 135.06 ←

EC double Pentium-Pro 52.40 42.40 ←
(µsec) UltraSparc-2 83.04 54.76 ←

EC scalar mul. Pentium-Pro 10.91 9.01 5.71

(msec) UltraSparc-2 17.28 11.77 7.45

Kob. : Kobayashi algorithm [14]
P.M : Proposed Multiplication and squaring algorithm
P.F : Proposed Frobenius map

[2] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, “An
implementation of elliptic curve cryptosystems over
F2155 ,” IEEE Journal on Selected Areas in Commu-
nications, vol. 11, no. 5, pp. 804-813, 1993.

[3] G. B. Agnew, T. Beth, R. C. Mullin, and S. A. Van-
stone”, “Arithmetic Operations in GF(2m),” Journal
of Cryptology, vol. 6, pp. 3-13, 1993.

[4] , D. V. Bailey and C. Paar, “Optimal extension fields
for fast arithmetic in public-key algorithms,” Ad-
vances in Cryptology - Crypto’98, LNCS 1462, pp.
472-485, Springer-Verlag, 1998.

[5] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D.
B. Wilson, “Fast exponentiation with precomputa-
tion,” Advances in Cryptology - Eurocrypt’92, LNCS
658, pp. 200-207, Springer-Verlag, 1993.

[6] J. H. Cheon, S.Park, S. Park, and D. Kim, “Two effi-
cient algorithms for arithmetic of elliptic curves using
Frobenius map,” Public Key Cryptography: Proceed-
ings of the First international workshop, PKC’98,
LNCS 1431, pp. 195-202, Springer-Verlag, 1998.

[7] D. V. Chudnovsky and G. V. Chudnovsky, “Se-
quences of numbers generated by addition in formal
groups and new primality and factorization tests,”
Advances in Applied Mathmetics, vol. 7, pp. 385-434,
1986.

[8] D. M. Gordon, “A survey of fast exponentiation
methods,” Journal of Algorithms, vol. 27, pp. 129-
146, 1998.

[9] J. Guajardo and C. Paar, “Efficient algorithms for
elliptic curve cryptosystems,” Advances in Cryptol-
ogy - Crypto’97, LNCS 1233, pp. 342-356, Springer-
Verlag, 1997.

[10] G. Harper, A. Menezes, and S. Vanstone, “Public-
key cryptosystems with very small key kengths”,
Advances in Cryptology Eurocrypt’92, pp. 163-173,
Springer-Verlag, 1992.

[11] T. Izu, J. Kogure, M. Noro, and K. Yokoyama, “Ef-
ficient implementation of Schoof’s algorithm,” Asi-
acrypt’98, LNCS 1514, pp. 66-79, Springer-Verlag,
1998.

[12] A. Karatsuba and Y. Ofman, “Multiplication of
multidigit numbers on automata,” Soviet Physics-
Doklady (English translation), vol. 7, no. 7, pp. 595-
596, 1963.

[13] T. Kobayashi, H. Morita, K. Kobayashi, and F.
Hoshino, “Fast elliptic curve algorithm combin-
ing frobenius map and table reference to adapt
to higher characteristic,” Advances in Cryptology -
Eurocrypt’99, LNCS 1592, pp. 176-189, Springer-
Verlag, 1999.

[14] T. Kobayashi, H. Morita, K. Kobayashi, and F.
Hoshino, “Fast elliptic curve algorithm combining
frobenius map and table reference to adapt to higher
characteristic,” Advances in Cryptology - Proceeding
of Eurocrypt’99, LNCS 1592, pp. 176-189, Springer-
Verlag, 1999.

[15] N. Koblitz, “Elliptic curve cryptosystems,” Mathe-
matics of Computation, vol. 48, pp. 203-209, 1987.

[16] N. Koblitz, “CM-curves with good cryptographic
properties,” Advances in Cryptology - Crypto’91,
LNCS 576, pp. 279-287, Springer-Verlag, 1991.

[17] N. Koblitz, “An elliptic curve implementation of the
finite field digital signature algorithm,” Advances in
Cryptology - Crypto’98, LNCS 3796, pp. 327-337,
Springer-Verlag, 1998.

[18] E. J. Lee, D. S. Kim, and P. J. Lee, “Speed-up
of Fpm arithmetic for elliptic curve cryptosystems,”
ICISC’98, pp. 81-91, 1998.

[19] A. Menezes, Elliptic Curve Public Key Cryptosys-
tems, Kluwer Academic Publishers, 1993.



International Journal of Network Security, Vol.4, No.1, PP.99–106, Jan. 2007 105

[20] V. S. Miller, “Use of elliptic curve in cryptography,”
Advances in Cryptology - Crypto’85, LNCS 218, pp.
417-426, Springer-Verlag, 1985.

[21] V. Muller, “Fast multiplication on elliptic curves over
small fields of characteristic two,” Journal of Cryp-
tology, vol. 11, pp. 219-234, 1998.

[22] E. D. Win, A. Bosselaers, S. Vandenberghe, P. D.
Gersem, and J. Vandewalle, “A fast software imple-
mentation for arithmetic operations in GF(2n),” Asi-
acrypt’96, LNCS 1163, pp. 65-76, Springer-Verlag,
1996.

Appendix

Proof of Theorem 4

Let the result of multiplication of two polynomials ,A
and B, of degree m − 2 be C′(x) =

∑2m−4
i=0 c′ix

i. If a
term of degree m− 1 is added, the multiplication C(x) =
∑2m−2

i=0 cix
i can be obtained as follows.































ci = c′i, i = 0, 1, · · · , m− 2

ci = c′i + (am−1 + ai−m+1)(bm−1 + bi−m+1)

−am−1bm−1 − ai−m+1bi−m+1

i = m− 1, · · · , 2m− 3

ci = am−1bm−1, i = 2m− 2

(6)

In the second case, ai−m+1bi−m+1 (i = m −
1, · · · , 2m − 3) can be obtained during computing C′(x)
and additional multiplication caused by the term of de-
gree m− 1 is only (am−1 + ai−m+1)(bm−1 + bi−m+1).

Therefore, the multiplication of two polynomial of de-
gree m− 1 can be calculated by KOA from the constant
term through the term of degree 2t − 1, (t = 1, 2, · · · )
which is less than m − 1 but maximal, and by repeated
application of above equation to the term of degree m−1.

�

Example of Theorem 4

Following is the example of Theorem 4 for the polyno-
mial of degree four.

C(x) = A(x) ×B(x)

= (a4x
4 + a3x

3 + a2x
2 + a1x + a0)(b4x

4+

b3x
3 + b2x

2 + b1x + b0)

=

8
∑

i=0

cix
i

(7)

The intermediate terms as Equation (8) can be ob-
tained by KOA through the term of degree three.

d0 = a0b0

d1 = (a1 + a0)(b1 + b0)

d2 = a1b1

d3 = (a2 + a0)(b2 + b0)

d4 = (a3 + a2 + a1 + a0)(b3 + b2 + b1 + b0)

d5 = (a3 + a1)(b3 + b1)

d6 = a2b2

d7 = (a3 + a2)(b3 + b2)

d8 = a3b3

(8)

Using Equation (8), the multiplication of polynomials
of degree 3 can be computed by Equation (9).

C′(x) =

(

3
∑

i=0

aix
i

)(

3
∑

i=0

bix
i

)

=

6
∑

i=0

c′ix
i

c′0 = d0

c′1 = −d0 + d1 − d2

c′2 = −d0 + d2 + d3 − d6

c′3 = d0 − d1 + d2 − d3 + d4 − d5 + d6−

d7 + d8

c′4 = −d0 − d2 + d5 + d6 − d8

c′5 = d0 − d1 − d6 + d7 − d8

c′6 = d0 − d3 + d8

(9)

The intermediate terms for the term of degree four are
in Equation (10).

d9 = (a4 + a0)(b4 + b0)

d10 = (a4 + a1)(b4 + b1)

d11 = (a4 + a2)(b4 + b2)

d12 = (a4 + a3)(b4 + b3)

d13 = a4b4

(10)

Finally, the coefficients of C(x) can be calculated as
Equation (11), using Equations (8), (9), and (10).

c0 = c′0

c1 = c′1

c2 = c′2

c3 = c′3

c4 = c′4 + d9 − d0 − d13

c5 = c′5 + d10 − d2 − d13

c6 = c′6 + d11 − d6 − d13

c7 = c′7 + d12 − d8 − d13

c8 = d13

(11)

By previous KOA, 17 coefficient multiplications are
needed to multiply the polynomials of degree four, but
we need only 14.



International Journal of Network Security, Vol.4, No.1, PP.99–106, Jan. 2007 106

Jaewon Lee Received the B.S., M.S.,
and Ph.D. degrees in Computer Sci-
ence from Korea Advanced Institute
of Science and Technology (KAIST)
in 1997, 1999, and 2005, respectively.
He is currently a senior engineer of
Samsung Electronics Co., LTD. His re-
search interests include Digital Rights

Management and Tamper-Resistant Software.

Heeyoul Kim Received the B.E. de-
gree in computer science from Ko-
rea Advance Institute of Science and
Technology (KAIST), South Korea, in
2000, the M.S. degree in computer sci-
ence from KAIST, in 2002. He is cur-
rently working toward the Ph.D. de-
gree at the Division of Computer Sci-

ence, KAIST.

Younho Lee Received the B.E. de-
gree in computer science from Ko-
rea Advance Institute of Science and
Technology (KAIST), South Korea, in
2000, the M.S. degree in computer sci-
ence from KAIST, in 2002. He is cur-
rently working toward the Ph.D. de-
gree at the Division of Computer Sci-

ence, KAIST.

Seong-Min Hong Received the B.E.
degree in computer science from
KAIST, South Korea, in 1994. He also
received the M.S. degree and Ph.D
degree in computer engineering from
KAIST in 1996 and 2000, respectively.
He is currently an research professor
in the division of Computer Science at

KAIST.

Hyunsoo Yoon Received the B.E.
degree in electronics engineering from
SNU, South Korea, in 1979, the
M.S. degree in computer science from
KAIST, in 1981, and the Ph.D. de-
gree in computer and information sci-
ence from the Ohio State University,
Columbus, Ohio, in 1988. From 1988

to 1989, with the AT & T Bell Labs. as a Member of
Technical Staff. Since 1989 he has been a faculty member
of Division of Computer Science at KAIST.


