
International Journal of Network Security, Vol.4, No.1, PP.81–89, Jan. 2007 81

On Software Implementation of Fast DDP-based

Ciphers

Nikolay A. Moldovyan1, Peter A. Moldovyanu1, and Douglas H. Summerville2

(Corresponding author: Nikolay A. Moldovyan)

Specialized Center of Program Systems ”SPECTR”,1

Kantemirovskaya, 10, St.Petersburg 197342, Russia. (Email: info@cobra.ru)

Binghamton University, 2

PO Box 6000, Binghamton NY, 607-777-2942. (Email: dsummer@binghamton.edu)

(Received Sept. 17, 2005; revised and accepted Oct. 16 & Nov. 23, 2005)

Abstract

Data-dependent (DD) permutations (DDP) are discussed
as a cryptographic primitive for the design of fast hard-
ware, firmware, and software encryption systems. DDP
can be performed with so called controlled permutation
boxes (CPB) which are fast while implemented in cheap
hardware. The latter defines the efficiency of the em-
bedding of CPB in microcontrollers and microprocessors
when adding a new instruction that allows one to perform
DDP. Different types of fast software and firmware en-
cryption algorithms combining DDP with fast arithmetic
operations are described. The proposed ciphers are free
of the key preprocessing that provides high performance
in the case of frequent change of keys. Presented results
show the ciphers are secure against differential analysis.
Other attacks are also considered.

Keywords: Block cipher, cryptanalysis, data-dependent
permutations, differential characteristics, fast encryption,
software implementation

1 Introduction

Data-dependent (DD) permutations (DDP) suites well to
the design of fast and secure block ciphers [12]. The
DDP can be performed with so called controlled permuta-
tion (CP) boxes (CPB) of different orders [12, 17], which
are fast while implemented in cheap hardware. In cer-
tain sense DDP represent generalization of the DD ro-
tations (DDR) used earlier in cryptosystems RC5 [14],
RC6 [15],and MARS [4]. DDP have significantly more
different modifications as compared with DDR (from 2n

to n! versus n, where n is the size of the transformed
data subblock). CPB can be easily embedded in micro-
controllers and general purpose CPUs and used while de-
signing fast firmware and software encryption systems.
The hardware-oriented cryptosystem SPECTR-H64 [7] is
an example of 64-bit ciphers extensively using DDP. In

one round of SPECTR-H64 two mutually inverse CPB
operations of the first order are performed on the right
data subblock providing efficient hardware implementa-
tion. That twelve-round cipher uses also several other
sound structural features which can be used in the design
of new cryptosystems.

In present paper we propose a variant of the fast CPB
instruction and consider the design and security of the
block DDP-based ciphers oriented to firmware and soft-
ware implementation.

The paper is organized in the following way: In the
second section we characterize DDP performed with
CPB presenting detailed structure of the symmetric CPB
used in the designed cryptalgorithms. Use of the sym-
metric CPB simplifies realization of the design criteria
corresponding to selection of the current modifications of

DDP. A variant of the switchable CPB P
(e)
32;32 suitable for

embedding in microcontrollers and CPUs is described.
Addition of the CP instruction in the standard set of the
CPU commands require only about 1800 additional tran-
sistors to be formed when manufacturing CPU. In Section
3 we present two 64-bit block ciphers appropriate for
firmware implementation and a software-oriented 128-bit
cipher. These fast firmware and software-oriented ciphers

are based on DDP performed with P
(e)
32;32-instruction and

simple arithmetic operations. In Section 4 we consider
differential properties of the used DDP as well as security
estimation of the proposed ciphers.

Notation: Let {0, 1}s denote the set of all s-bit
binary vectors X = (x1, ..., xs). Let /X/ denote numeri-
cal value (or simply value) of the vector (x1, ..., xs) and
/X/ =

∑s
i=1 xi2

i−1.

Let X ⊕ Y denote the bit-wise XOR operation per-
formed on X and Y : X, Y ∈{0, 1}s.

Let Y = X<<<k denote rotation operation to the least
significant bits of the word X by k bits.

Let X = (Xl, Xh) denote concatenation of binary vec-

International Journal of Network Security, Vol.4, No.1, PP.81–89, Jan. 2007 82

Y

m
n

n X
V

x1 x2

v
 P2;1

y1 y2

 a) xn-1 xn x1 x2 x3 x4

vn/2 v1 v2

P2;1

P2;1

P2;1

yn-1 yn

y1 y2 y3 y4

b) c)

Pn;m

Figure 1: Notation of the CP boxes P2;1 (a) and Pn;m (c)
and structure of the active layer (b)

tors Xl, Xh∈{0, 1}n/2. Then for X∈{0, 1}n we can write
Xl = (x1, ..., xn/2) and Xh = (xn/2+1, ..., xn).

Let “+n” (“−n”) denote addition (subtraction) mod-
ulo 2n. Let Y = X +n A (Y = X −n A) denote op-
eration on X and A output of which is vector Y that
/Y/ = /X/ +n /A/ (/Y/ = /X/ −n /A/).

2 Design of the Controlled Per-

mutations

DDP can be easy performed with well-known intercon-
nection networks (IN) [1, 5] which were proposed to con-
struct key-dependent permutations [9, 13]. However such
use of IN do not effectively thwarts differential cryptanal-
ysis [2, 16]. Different types of IN can be constructed using
elementary switching elements P2;1 (Figure 1a) as elemen-
tary building blocks performing controlled transposition
of two input bits x1 and x2. In the general case each
P2;1-box is controlled with one bit v and forms two-bit
output (y1, y2), where (y1, y2) = (x1, x2), if v = 0, and
(y1, y2) = (x2, x1), if v = 1. So called layered IN con-
tain several unified active layers (Figure 1b) separated
with fixed permutations. A layered IN represents a su-
perposition L(V1) ◦π1 ◦L(V2) ◦π2 ◦ ... ◦πS−1 ◦L(Vs), where
πj , j = 1, 2, ..., s− 1, are fixed permutations defining par-
ticular type of IN, V = V1, V2, · · · , Vs is the controlling
vector, and s = 2m/n is the number of active layers L(Vi),
i = 1, 2, ..., s, each of which contains n/2 boxes P2;1. Lay-
ered IN are fast and cheap in hardware, therefore they
are attractive to be used as CPB performing DDP. In this
paper a layered CPB with n-bit input and m-bit control
input is denoted as Pn;m (Figure 1c). In present paper
dotted lines corresponding to CP boxes indicate the con-
trolling bits.

One can easy construct the layered box P−1
n;m which is

inverse of Pn;m-box: P−1
n;m =L(Vs)◦π−1

s−1◦L
(Vs−1)◦π−1

s−2◦...◦

π−1
1 ◦L(V1). In accordance with the structure of the CPB

Pn;m and P−1
n;m we shall assume that in CPB denoted as

Pn;m the boxes P2;1 are consecutively numbered from left
to right from top to bottom and in CPB denoted as P−1

n;m

the boxes P2;1 are numbered from left to right from bot-
tom to top. Thus, the vector Vj controls the j-th active
layer in the box Pn;m and the (s−j+1)-th layer in P−1

n;m.
Figure 2 presents examples of the layered CPB. We shall

indicate controlling vector as upper index: P
(V)
n;m. All pos-

sible values /V/ specify some set of fixed permutations
{Π0, Π1, ..., Π2m−1}. We shall call them modifications of

P 1;2

P4;4

P4;4

c)

V1

V2
V3

P 1;2

P 1;2

P 1;2

a)

V1

V2

P
1;2

P 1;2

P 1;2

P 1;2

P4;4 P4;4

-1 -1
d)

V3
V2

V1
P 1;2

;2

P 1;2

P 1;2

P 1;2

b)

 V1

V2
P 1;2

P 1;2

P 1;2

P 1;2

Figure 2: Structure of the first-order boxes P4;4 (a), P−1
4;4

(b), P8;12 (c), and P−1
8;12 (d)

the CPB operation P
(V)
n;m. The following two definitions

we use according to [12].

Definition 1. The CPB Pn;m and P−1
n;m are mutual in-

verses, if for all possible values of the vector V the cor-
responding CP modifications Π/V/ and Π−1

/V/ are mutual
inverses.

Definition 2. The CPB Pn;m-box is called a CP box
of the order h (1 ≤ h ≤ n), if for arbitrary index set
i1, i2, ..., ih and arbitrary index set j1, j2, ..., jh (iα 6= iβ
and jα 6= jβ for α 6= β) there is at least one vector V
which specifies a permutation Π/V/ moving xiα

to yjα
for

all α = 1, 2, ..., h.

Using a Benes-like recursive structure of IN one can
construct CPB of the first, second, ..., (n/4)th, and
nth orders containing log2n, log2n + 1,...,2log2n − 2, and
2log2n−1 layers [17]. In algorithms below we shall use the
second-order boxes P32;96 (Figure 3a) and P−1

32;96 (Figure
3b). These CPB are constructed using boxes P8;12 (Fig-
ure 2c) and P−1

8;12 (Figure 2d) as main building blocks.
The connection between outputs of P8;12 and inputs of
P−1

8;12 is described as the following fixed permutational in-
volution I:

I = (1)(2, 9)(3, 17)(4, 25)(5)(6, 13)(7, 21)(8, 29)

(10)(11, 18)(12, 26)(14)(15, 22)(16, 30)(19)

(20, 27)(23)(24, 31)(28)(32).

Due to symmetric structure mutually inverse CPB P32;96

and P−1
32;96 differ only with the distribution of controlling

bits over boxes P2;1.
When performing DDP operations with the boxes

P32;96 we form 96-bit controlling vector depending on
32-bit data subblock. Let L be a controlling data
subblock. Thus, bits of L = (l1, ..., l32) are used on the
average three times while defining the controlling vector.
When designing respective extension box it is reasonable
to use the following criteria:

Criterion 1 [7]. Let X = (x1, ..., x32) is the input

vector of the P
(V)
32;96-box. Then for all L and i the bit

xi should be permuted depending on six different bits of L.

Criterion 2. For all L each bit li, where i ∈ {1, 2, ..., 16},
should not influence the permutation of the bit xi and
each bit lj, where j ∈ {17, 18, ..., 32}, should not influence

International Journal of Network Security, Vol.4, No.1, PP.81–89, Jan. 2007 83

 X 1 8 9 16 17 24 25 32

V6

V5

V4

V3

V2

V1

P8;12 P8;12 P8;12 P8;12

P
-1

8;12 P
-1

8;12 P
-1

8;12 P
-1

8;12

V1

V2

V3

V4

V5

V6

a) b)

Y 1 8 9 16 17 24 25 32

Figure 3: Structure of the CP boxes P32;96 (a) and P−1
32;96

(b)

the permutation of the input bits moved to yj.

Criterion 3. For all i the bit li should define exactly
three bits of V .

We suppose that Criterion 1 (2) should improve differ-

ential (nonlinear) characteristics of the P
(V)
32;96-box. Below

we use the extension box E forming the controlling vector

V for CPB P
(V)
32;96. This extension box defines distribution

of the controlling bits li over boxes P2;1 described in Ta-
ble 1, where lines indicate active layers and bits of the
controlling data subblock L are written at the positions
of the respective elementary switching boxes. Let some
32-bit data subblock L is the input of the E-box. Let the
vector V = (V1, V2, V3, V4, V5, V6), where ∀i Vi ∈ {0, 1}16,
be the output of the E-box. The extension box E pro-
vides the correspondence between L and V specified in
Table 1.

Due to symmetric structure of P32;96 its modifications
Π/V/, where V = (V1, V2, ...V6), and Π/V ′/, where V ′ =
(V6, V5..., V1) are mutually inverse. This property of the
symmetric CPB can be used in order to construct switch-
able CP boxes. This idea can be realized using very simple

transposition box P
(e)
96;1 implemented as some single layer

CPB consisting of three parallel single-layer boxes P
(e)
2×16;1

(Figure 4a). Input of each P
(e)
2×16;1-box is divided into

16-bit left and 16-bit right inputs. The box P
(e)
2×16;1 con-

tains 16 parallel P
(e)
2;1 -boxes controlled with the same bit e.

For example, P
(0)
2×16;1(U) = U and P

(1)
2×16;1(U) = (Uh, Ul),

where U = (Ul, Uh) ∈ {0, 1}32. The left (right) inputs

of the P
(e)
2;1 -boxes correspond to the left (right) 16-bit in-

put of the box P
(e)
2×16;1. If the input vector of the box

P
(e)
96;1 is (V1, V2, ...V6), then at the output of P

(e)
96;1 we have

V ′ = (V1, V2, ..., V6) (if e = 0) or V ′ = (V6, V5, ..., V1) (if

e = 1). Structure of the switchable CPB P
(L,e)
32;32 is shown

in Figure 4b.

In hardware the box P2;1 can be implemented using

12 transistors. The operational box P
(L,e)
32;32 can be im-

plemented with 1728 transistors. This figure is less than

number of transistors required to implement an antici-
pated carry adder performing the addition modulo 232.
The time delay of some CP box is defined by the number
of active layers. Time delay of one layer is approximately
equal to that of the XOR operation (t⊕). Time delay of

the P
(L,e)
32;32 -box operation (6t⊕) is less than that of the ad-

dition modulo 232 with high-speed carry. Straightforward

estimates show that the P
(L,e)
32;32 -instruction can be added

in microprocessor within less than 0.3 mm2. Thus, the

CPB P
(L,e)
32;32 can be easily implemented as a new fast in-

struction of some 32-bit processors and microcontrollers.

Another interesting variant is embedding the nine-

layer CP box P
(V)
32;144 of the maximal order h = 32

[6]. The operation P
(V)
32;144(X) can perform arbitrary

given bit permutation on 32-bit words. The hardware
implementation cost of this instruction is about the same

as that of the switchable CPB P
(L,e)
32;32 . The time delay

of the operation P
(V)
32;144 is about 9t⊕. Performing the

operation P
(V)
32;144 takes 1-2 cycles (depending on the

architecture of the hypothetical microcontroller or CPU).

Operation P
(V)
32;144 can be used for cryptographic purposes

(construction of fast ciphers and hash functions) and for
some other special purposes. For example, the instruc-

tion P
(V)
32;144 allows to perform on a 32-bit word X =

(X1, X2, X3, X4) different variants of rotation operation:
Y = X<<<g, Y = (X<<<g1

1 , X<<<g2

2 , X<<<g3

3 , X<<<g4

4),
Y = ((X1, X2)

<<<g2 , (X3, X4)
<<<g5), Y =

(

X<<<g1

1 , (X2, X3, X4)
<<<g6

)

, where g ∈ {0, 1}5,
g1, g2, g3, g4 ∈ {0, 1}3, g5 ∈ {0, 1}4, and g6 ≤ 10111.
In addition to being well-suited towards cryptographic

purposes, P
(V)
32;144 can be used for fast and efficient imple-

mentations of a number of common software functions. A
prominent example is the bit-reversal permutation, which
is used in a number of Fast Fourier Transform (FFT)
algorithms. A large number of multimedia applications
apply the Discrete Cosine Transform (DCT) or Discrete
Fourier Transform (DFT) as steps in the processing of
multimedia data. Many implementations rely on the
FFT to perform these transforms. On a general-purpose
uniprocessor, a bit-reversal operation can require 50

or more cycles to execute. The instruction P
(V)
32;144

could perform a single bit-reversal in as little as one
cycle. Other permutations could be used to dramatically
increase the performance of higher-radix FFTs.

Thus, the CP-box instruction P
(V)
32;144 can replace the

already embedded rotation operation, economizing hard-
ware resources and reducing to a minimum the hardware
cost of the implementation of the CP-box instruction. If
the CPU makers support encryption method based on
DDP, then cryptographers will have the possibility to de-
velop different variants of the software-oriented ciphers
and hash functions based on DDP providing performance
400 - 1000 Mbit/s and more. In present paper we consider

the instruction P
(L,e)
32;32 which is oriented to cryptographic

use.

International Journal of Network Security, Vol.4, No.1, PP.81–89, Jan. 2007 84

Table 1: Distribution of bits of vector L in P32;96-box

V1 l7 l8 l1 l2 l16 l15 l10 l9 l5 l6 l3 l4 l11 l12 l13 l14
V2 l9 l10 l11 l12 l1 l2 l7 l8 l13 l14 l15 l16 l5 l6 l3 l4
V3 l13 l14 l15 l16 l5 l6 l3 l4 l1 l2 l7 l8 l9 l10 l11 l12
V4 l21 l22 l29 l30 l25 l26 l23 l24 l31 l32 l27 l28 l17 l18 l19 l20
V5 l31 l32 l27 l28 l17 l18 l19 l20 l29 l30 l25 l26 l21 l22 l23 l24
V6 l19 l20 l23 l24 l27 l28 l29 l30 l21 l22 l17 l18 l32 l31 l25 l26

X

1

e

(e)

P2x16;1

(e)

P2x16;1

(e)

P2x16;1

(e)

P96;1

 E

(L,e)

P32;32

(e)

P96;1
 P32;96

32

32

96 96 32

L

Y

V3 V1

V’2 V’3 V’1 V’4 V’5 V’6

V’ V

V2 V4 V5 V6
 b) a)

e

 1

16

Figure 4: Structure of the switchable CP boxes P
(e)
96;1 (a)

and P
(L,e)
32;32 (b)

3 Firmware- and Software Ori-

ented Ciphers

3.1 Firmware-suitable 64-bit Block Ci-

phers

We propose two variants of the firmware-oriented ciphers
Cobra-F64a and Cobra-F64b with 64-bit input and 128-
bit key K = (K1, K2, K3, K4), where ∀i Ki ∈ {0, 1}32.
No secret key preprocessing is used. While performing j
round transformation subkeys are used directly as round

32-bit subkeys Q
(1,e)
j , Q

(2,e)
j , where j = 1, ..., R+1 and

e = 0, 1. The number of rounds is R = 16 for Cobra-F64a
and R = 20 for Cobra-F64b. Correspondence between
secret key and round keys is defined by Table 2 and the
following formulas:

(Q
(1,1)
1 , Q

(1,1)
R+1) = (Q

(1,0)
R+1 , Q

(1,0)
1),

(Q
(2,1)
1 , Q

(2,1)
R+1) = (Q

(2,0)
R+1 , Q

(2,0)
1), and

(Q
(1,1)
j , Q

(2,1)
j) = (Q

(2,0)
R−j+2, Q

(1,0)
R−j+2) for all j = 2, . . . , R.

Input 64-bit data block X is divided into two 32-bit
subblocks A and B. Encryption and decryption described
by the general formula Y = F(e)(X, K) are performed in
two stages (Figure 5): (1) R rounds with e-dependent pro-

cedure Crypt(e) and (2) final transformation. The value
e = 0 corresponds to encryption and e = 1 corresponds
to decryption. Due to peculiarities of the structure of the
round transformation of Cobra-F64a and Cobra-F64b ini-
tial transformation is not used. For both ciphers the data
ciphering algorithm can be represented as follows:

1) For j = 1 to R−1 do:

 a)

A B
A

P32;32
(A,e)

B

b)

Crypt(e)

Crypt(e)

B A
c)

Crypt(e)

Final

transformation

32

P32;32
(A,e)

P32;32
(A,e)

32 32 32 32

+ 32

Qj
(1,e)

Qj
(2,e)

Qj
(2,e)

Qj
(1,e)

<<<8

<<<8

Figure 5: Procedure Crypt(e) of Cobra-F64a (a) and
Cobra-F64b (b) and general transformation scheme (c)

{(A, B) := Crypt(e)(A, B, Q
(1,e)
j , Q

(2,e)
j) ;

(A, B):= (B, A)}.

2) For j = R do:

{(A, B) := Crypt(e)(A, B, Q
(1,e)
j , Q

(2,e)
j)}.

3) Perform final transformation: Y = (Yl, Yh) := (A ⊕

Q
(1,e)
R+1, B⊕Q

(2,e)
R+1) for Cobra-F64b or Y = (Yl, Yh) :=

(A−
32

Q
(1,e)
R+1, B +

32
Q

(2,e)
R+1) for Cobra-F64a, where Y

is the 64-bit output data block.

The procedure Crypt(e) is described in Figure 5a (for
Cobra-F64a) and in Figure 5b (for Cobra-F64a). Both

variants of the procedure Crypt(e) are based on the in-

struction P
(L,e)
32;32 in which the controlling vector is specified

with the left data subblock. Such DDP contributes mostly
to the security of Cobra-F64a and Cobra-F64b. The last
cipher uses only one DDP operation in each round versus
two DDP operations in one round of Cobra-F64b. For
this reason we define to perform 20 encryption rounds
with Cobra-F64b and 16 rounds with Cobra-F64a.

In a cheap implementation these ciphers provide per-
formance about 20 Mbit/s for some microcontroller work-
ing at 30 MHz.

International Journal of Network Security, Vol.4, No.1, PP.81–89, Jan. 2007 85

Table 2: Key scheduling in Cobra-F64a (F64b and S128) for encryption

j = 1 2 3 4 5 6 7 8 9 10 11

Q
(1,0)
j = K1 K2 K3 K4 K2 K1 K4 K3 K1 K2 K4

Q
(2,0)
j = K4 K3 K1 K2 K3 K2 K1 K4 K2 K3 K1

j = 12 13 14 15 16 17 18 19 20 21

Q
(1,0)
j = K3 K1 K4 K2 K3 K1 K4 K3 K1 K2

Q
(2,0)
j = K2 K3 K1 K3 K4 K2 K1 K4 K2 K3

3.2 Software Encryption System Cobra-

S128

While having possibility to use a fast CP-box instruction

P
(L,e)
32;32 described in Section 2 one can use the following

design criteria:

1) Operation P
(L,e)
32;32 should be used to perform DDP,

i.e. controlling vector should be dependent on one of
data subblocks.

2) Encryption round should combine CP-box operation
with fast operations (XOR, addition and subtraction
modulo 232, transposition of 32-bit words).

3) The cipher should be free of the key preprocessing.
This provides higher rapidity in the case of frequent
change of keys.

4) Encryption and decryption should be performed with
the same algorithm. Reason for this design crite-
rion is to provide cheaper hardware implementation
if necessary.

Using these criteria we have developed 128-bit block ci-
pher Cobra-S128. It is a twelve-round iterated cryptosys-
tem with 128-bit secret key K = (K1, K2, K3, K4) repre-
sented as concatenation of four 32-bit subkeys. While

ciphering subkeys Q
(e)
j are used directly as round 32-

bit subkeys Q
(1,e)
j and Q

(2,e)
j which for j = 1, ..., 12

and e = 0, 1 are specified with Table 2 and the fol-

lowing correspondence formulas: Q
(1,1)
j = Q

(2,0)
R−j+1 and

Q
(2,1)
j = Q

(1,0)
R−j+1.

Input 128-bit data block X is divided into four 32-bit
subblocks A, B, C, and D (Figure 6a). Data ciphering
described by the general formula Y = F(e)(X, K) is per-
formed in three stages (Figure 6b): (1) initial transforma-
tion, (2) execution of twelve encryption rounds, and (3)
final transformation. Transformation of the input data
block can be represented as follows:

1) Execute initial transformation: (A, B, C, D) := A ⊕

Q
(1,e)
1 , B ⊕ Q

(1,e)
2 , C ⊕ Q

(1,e)
3 , D ⊕ Q

(1,e)
4).

2) For j = 1 to 11 do: {(A, B, C, D) :=

Crypt(e)(A, B, C, D, Q
(1,e)
j , Q

(2,e)
j); (A, B, C, D) :=

(B, A, D, C)}

A

P32;32
(B,e)

32

B C D

A B C D

a)

P32;32
(C,e)

P32;32
(C,e)

P32;32
(B,e)

P32;32
(B,0)

P32;32
(C,1)

32

b)

128-bit ciphertext

128-bit plaintext

Initial

transfomation

Crypt
(e)

Final

transfomation

Crypt
(e)

R

e
n

cr
y

p
ti

o
n

ro

u
n

d
s

Crypt
(e)

Qj
(1,e)

Qj
(2,e)

Figure 6: Encryption round of Cobra-S128 (a) and general
structure of the cipher (b)

3) For j = 12 do: {(A, B, C, D) := Crypt(e)(A, B, C,

D, Q
(1,e)
j , Q

(2,e)
j);

4) Perform final transformation: Y := (A ⊕ Q
(2,e)
12 , B ⊕

Q
(2,e)
11 , C⊕Q

(2,e)
10 , D⊕Q

(2,e)
9), where Y is 128-bit out-

put data block.

The second stage is performed using subkeys Q
(1,e)
j and

Q
(2,e)
j and procedure Crypt(e) described in Figure 6a.

The value e = 0 corresponds to encryption and e = 1 cor-
responds to decryption. We have estimated that Cobra-
S128 can provide performance about 400 Mbit/s for some
hypothetical Pentium-like processor having CP-box in-

struction P
(e)
32;32. To measure ”real” encryption speed we

have composed a program implementing a model of ci-
pher Cobra-S128 in which each CP-box operation have
been replaced by addition modulo 232 operation. Such
model-based experiment showed performance 430 Mbit/s
for twelve rounds and 650 Mbit/s for eight rounds. Using
transformations analogous to that of Cobra-S128 we have
also composed models implementing several DDP-based
hash functions which have shown perfomance 1 - 2 Gbit/s.

International Journal of Network Security, Vol.4, No.1, PP.81–89, Jan. 2007 86

Hash functions are faster as compared with ciphers with
analogous structure of transformation, since they do not
require the intermediate transformed data blocks to be
saved. Detailed description and the analysis of the DDP-
based hash functions represent a topic of the individual
research.

4 Security Estimation of the

DDP-based Ciphers

Security of the DDP-based ciphers described above is

based on the properties of the P
(L,e)
32;326-box operations. It

is easy to see that a single input bit of the box P
(L,e)
32;32

moves to each output position with the same probability
provided L is a uniformly distributed random variable.
Avalanche effect is caused by the use of data to define
the value of the controlling vector V ′ (see Figure 4). One
bit of the vector L influences three bits of V ′. Each con-
trolling bit influences two bits of the input data subblock.
Thus, when performing one CP-box operation one bit of
the controlling data subblock influences 6 bits of the per-
muted binary vector X .

Let ∆q be the difference with arbitrary q active (non-
zero) bits. Let ∆q|i1,...,iq

be the difference with q active
bits and i1, ..., iq be the numbers of digits corresponding
to active bits. Note that ∆1 corresponds to one of the

differences ∆1|1, ∆1|2, ..., ∆1|32. Let P (∆q
F
→ ∆g) be the

probability that input difference ∆q transforms into out-
put difference ∆g while passing some operation F. Let

P (R) = P (∆q
R
→ ∆g) be the probability that ∆q trans-

forms into ∆g while passing through R encryption rounds.

Let us consider the box P
(L,e)
32;32 in the case when some

difference with one active bit ∆L
1 corresponds to some con-

trolling data subblock L. Passing through the extension
box (see Figure 4) this difference forms difference ∆V

3 at
the controlling input of the internal CP box P32;96. Thus,
the difference ∆L

1 influences three switching elements P2;1

of the box P32;96 permuting six different bits of the per-
muted vector X . Depending on the input value and input
difference ∆X

q of the P32;96-box the output differences ∆Y
g

with different number of active bits can be formed. Ta-
ble 3 presents probabilities of different output differences
corresponding to differences ∆L

q′ and ∆X
q with few active

bits (q′, q∈{0, 1, 2}).

Differential cryptanalysis of Cobra-S128.

Our best variant of the differential cryptanalysis (DC)
corresponds to two-round characteristic with difference
∆2 = (∆A

1 , ∆B
0 , ∆C

0 , ∆D
1). The fact that differential char-

acteristics with few active bits are the most efficient ones
seems to be a general property of the DDP-based ciphers
(see for example DC of RC5 [3, 8]). The difference ∆2

passes two rounds in the following way (see Figure 7). It
is easy to see that this difference passes the first round
with probability 1 and after swapping subblocks it trans-
forms in ∆2 = (∆A

0 , ∆B
1 , ∆C

1 , ∆D
0).

DDP

DDP

DDP

DDP

DDP

DDP

DDP

DDP

DDP

DDP

DDP

DDP

p 2
-6

 p 2
-1

0

0

0

0

0

0

0
0

1 1

1
1

1

1

1

1

1
0

0 1

p 2
-6

p=1

1

1
1

1

0

0

0

0

0

p=2
-3

p=2

-3

p=2
-3

p=2
-3

p=2
-3

p=2
-3

p=1

p=1

p=1

p=1

Qj
(2,e)

Qj
(1,e)

Qj+1
(1,e)

Qj+1
(2,e)

1

A

0

B
0

C

1

D

0

A

1

B

1

C

0

D

1

D

0

C
0

B

1

A

Figure 7: Formation of the two-round differential charac-
teristic in Cobra-S128

In the second round at different steps of the round
transformation the subblocks B and C with one active bit
are combined two times using modulo 232 addition oper-
ation. Each of these two modulo 232 additions produces
at its output zero difference with probability p1 ≈ 2−6

(p′1 = 2−5 corresponds to the probability that for the
current differences ∆B

1|i and ∆C
1|i′ we have i = i′ and

p′′1 ≈ 2−1 corresponds to the probability that no carry
bits are formed). In addition to this each active bit influ-
ences three DDP operations. Each DDP operation pro-
duces no active bits in the respective transformed data
subblock with probability p2 = 2−3. While combining

differences ∆B
1 and ∆C

1 with subkeys Q
(1,e)
j+1 and Q

(2,e)
j+1 ,

respectively, the modulo 232 addition and subtraction op-
erations produce on the average no active bits with prob-
ability p

+
≈ 2−1 and p

−
≈ 2−1, respectively. Taking into

account these elementary events forming the two-round
characteristic we obtain its probability:

P (2) = p2
1p

6
2p+p

−
≈ 2−32.

Using these value one can calculate the minimal number
Rmin = 8 of the encryption rounds for which Cobra-S128
is undistinguishable from a random cipher while using dif-
ferential cryptanalysis. Indeed, for eight rounds of Cobra-
S128 we have P (8) = P 4(2) ≈ 2−128 < Prand = 2−118,
where Prand is the probability to have output difference
(∆A

0 , ∆B
1 , ∆C

1 , ∆D
0) in the case of the random cipher.

International Journal of Network Security, Vol.4, No.1, PP.81–89, Jan. 2007 87

Table 3: Values of probability P

(

(

∆X
q

P
(L,e)
32;32
−→ ∆

(Y)
g

)

/

∆L
q′

)

∆X
0 →∆Y

0 ∆X
0 →∆Y

2 ∆X
0 →∆Y

4 ∆X
1 →∆Y

1 ∆X
1 →∆Y

3

∆L
0 1 0 0 1 0

∆L
1 2−3 1.5 · 2−2 1.5 · 2−2 1.17 · 2−3 1.59 · 2−2

∆L
2 2−6 1.5 · 2−4 1.88 · 2−3 1.38 · 2−6 1.88 · 2−4

∆X
1 →∆Y

5 ∆X
2 →∆Y

0 ∆X
2 →∆Y

2 ∆X
2 →∆Y

4 ∆X
2 →∆Y

6

∆L
0 0 0 1 0 0

∆L
1 1.41 · 2−2 1.55 · 2−9 1.08 · 2−3 1.36 · 2−2 1.15 · 2−2

∆L
2 1.06 · 2−2 1.55 · 2−8 1.38 · 2−6 1.69 · 2−4 1.72 · 2−3

p=2
-3

p=2
-3

p 2
-6

p 2
-1

p 2
-1

p 2
-1

1

1

1
0

0 1

1

1

1

0

0

p=1

p=2
-3

p=2
-3

p=1

p=2
-3

p=2
-3

p=1
p 2

-1

p 2
-1

p=1
p 2

-1

p 2
-1

p=2
-5

a) b)
0

1

1

1
1 1

1 1

1

0

1 0

0
1

1

0

0

>>>8

>>>8

>>>8

>>>8

0

1

0

0

A
1

B

0

A

1

B

1

B

0

A

1

B 0

A

1

A

1

B

Figure 8: Formation of tree-round characteristic in Cobra-
F64a (a) and two-round characteristic in Cobra-F64b (b)

Security of the firmware encryption systems.

As in the case of Cobra-S128 the best characteristics of
Cobra-F64a and Cobra-F64b correspond to differences
with few active bits. The best characteristics of these
ciphers are three-round iterative characteristic for Cobra-
F64a (Figure 8a) with probability P (3) ≈ 2−21 and two-
round one for Cobra-F64b (Figure 8b) with probability
P (2) ≈ 2−12. Results of our DC-security estimation of
the ciphers Cobra-F64a and Cobra-F64b are presented
in Table 4, where for comparison we present also our re-
sults on DC of SPECTR-H64. Obtained results show that
all considered DDP-based ciphers are secure against DC.
Our analysis has also shown that SPECTR-H64’s secu-
rity against DC is more sensitive to the structure of the
extension box as compared with Cobra-F64a and Cobra-
F64b. In hardware SPECTR-H64 seems to be faster
as compared with Cobra-F64a and Cobra-F64b. How-
ever except CPB permutations the hardware-oriented ci-
pher Spectr-H64 uses an additional specially designed

cryptographic primitive (operation G [7]) that makes
the firmware implementation significantly more expen-
sive. Besides, the ciphers Cobra-F64a and Cobra-F64b
are significantly faster in software provided the CPB in-

struction P
(L,e)
32;32 is implemented.

Rough linear cryptanalysis (LC). Detailed analysis
of the linear characteristics of the CP-box operations we
present in [6]. Our preliminary LC of the ciphers Cobra-
S128, Cobra-F64a, and Cobra-F64ba has shown that they
are secure against linear attacks. Our preliminary study
of their security against LC has shown that structures of
these ciphers are also suitable for calculation of the biases
of the linear characteristics in the case of few active bits.
Our rough analysis has shown that the best one-round
linear characteristics have bias b ≤ 2−6 In accordance
with these results the ciphers are undistinguishable with
LC from a random cipher for R ≥ 7.

Comments on other attacks. High degree of the
algebraic normal form and the complexity of the Boolean
function describing round transformation of the described
ciphers prevent the interpolation and high order differen-
tial attacks. In spite of the use of very simple key schedul-
ing the described ciphers are secure against slide attack
due to non-periodic use of the round subkeys and data-
dependent subkey transformations.

Comments on key scheduling. The used key
scheduling is secure against basic related-key attacks. In
spite of the simplicity of the key schedule the ”symmet-
ric” keys K ′ = (X, Y, X, Y) or K ′′ = (X, X, X, X) are
not weak, since encryption and decryption require change
of the parameter e. Indeed, from Figure 5 and 6 it
is easy to see that for all considered ciphers we have
F(e=0)(C, K ′′) 6= M , where C = F(e=0)(M, K ′′). For
comparison we can note that for all X the key K ′′ =
(X, X, X, X) is weak for SPECTR-H64 that does not use
switchable CPB operations. It seems to be difficult to cal-
culate a semi-weak key-pair for the ciphers Cobra-S128,
Cobra-F64a, and Cobra-F64b, if it is possible at all. In
the case when keys are not changed often one can use one
of the known key scheduling procedures providing pseu-
dorandom generation of the round keys.

International Journal of Network Security, Vol.4, No.1, PP.81–89, Jan. 2007 88

Table 4: DC-security estimation of the DDP-based ciphers

Cipher R Difference Probablity Prand Rmin

Cobra-S128 12 (∆A
1 , ∆B

0 , ∆C
0 , ∆D

1) P (2) = 2−32 2−115 8
Cobra-F64a 16 (∆A

1 , ∆B
0) P (3) = 2−21 2−59 9

Cobra-F64b 20 (∆A
0 , ∆B

1) P (2) = 2−12 2−59 10
SPECTR-H64 12 (∆A

0 , ∆B
1) P (2) = 1.1 · 2−13 2−59 10

5 Conclusion

In the present paper we have shown that DDP, earlier
used in several hardware-oriented 64-bit ciphers, can be
also effectively used when designing fast cryptosystems
suitable to software implementation. We have proposed
to embed some CP-box instruction in general purpose
processors and in different types of microcontrollers and
smart cards. A simple variant of the fast switchable

P
(L,e)
32;32-box instruction has been designed and used in one

128-bit software and two firmware-oriented 64-block ci-
phers illustrating efficiency of the cryptographic use of

this instruction. More advanced P
(V)
32;144-box instruction

can perform all possible bit-permutation operations on
32-bit words. Each of such operations can be specified
by the controlling vector V and it is not difficult to find
value /V/ for all possible permutational operations in-
cluding special ones. This spreads significance of the ad-
vanced CP-box instruction far beyond cryptographic ap-
plications and can attract serious attention of the CPU

manufactures, since a cheap embedding of the P
(V)
32;144-

box instruction imparts attractive properties to the gen-
eral purpose processors. One of the lasts is the possi-
bility to get more than 500 Mbit/s encryption speed in
software. The ability to perform special permutations,
such as bit-reversal, can significantly improve the perfor-
mance of multimedia applications which rely on efficient
DCT and DFT algorithms. Comparing with other CPB
instruction architectures [10, 11] the proposed one is char-
acterized in its reversibility providing very fast implemen-
tation of mutually inverse bit permutations of arbitrary
type.

Regarding cryptographic use we have shown that CP-
box operations are efficient primitive contributing signifi-
cantly to the security against differential and linear crypt-
analysis. DDP suite well to estimating security against
these attacks. We hope that this work will attract more
attention of cryptographic community to DDP in respect
of the cryptanalysis of the published cryptalgorithms and
designing new DDP-based block ciphers, hash functions,
and key expansion algorithms.

Acknowledgement

This work was carried out as part of the AFRL funded
project #1994p which supported the authors.

References

[1] V. E. Benes, Mathematical Theory of Connecting
Networks and Telephone Trafic, Academic Press,
New York, 1965.

[2] A. Biryukov and S. Even, Cryptanalysis of the Ports
Interconnection Network Block Cipher, Technical re-
port CS-0887, Technion (reported at DIMACS’97
“Cryptography and network security”).

[3] A. Biryukov and E. Kushilevitz, “Improved crypt-
analysis of RC5,” in Advances in cryptology - EU-
ROCRYPT’98 Proceedings, LNCS 1403, pp. 85-99,
Springer-Verlag, 1998.

[4] C. Burwick, D. Coppersmith, and E. D’Avingnon et
al., “MARS - a candidate cipher for AES,” in 1st
AES Candidate Conference Proceedings of Venture,
California, Aug. 20-22, 1998.

[5] C. Clos, “A study of nonblocking switching net-
works,” Bell System Technical Jornal, vol. 32, pp.
406-424, 1953.

[6] N. D. Goots, A. A. Moldovyan, and N. A.
Moldovyan, “Variable bit permutations: linear char-
acteristics and pure VBP-based cipher,” Computer
Science Journal of Moldova, vol. 13, no. 1, pp. 84-
109, 2005.

[7] N. D. Goots, A. A. Moldovyan, and N. A.
Moldovyan, “Fast encryption algorithm SPECTR-
H64,” in Proceedings of the International workshop
“Methods, Models, and Architectures for Network Se-
curity”, LNCS 2052, pp. 275-286, Springer-Verlag,
2001.

[8] B. S. Kaliski and Y. L. Yin, “On differential and lin-
ear cryptanalysis of the RC5 encryption algorithm,”
in Advances in cryptology - CRYPTO’95 Proceed-
ings, LNCS 963, pp. 171-184, Springer-Verlag, 1995.

[9] M. Kwan, “The design of the ICE encryption algo-
rithm,” in Proceedings of the 4th International Work-
shop, Fast Software Encryption - FSE ’97, LNCS
1267, pp. 69-82, Springer-Verlag, 1997.

[10] R. B. Lee, Z. J. Shi, and X. Yang, “Efficient permu-
tation instructions for fast software cryptography,”
IEEE Micro, vol. 21, no 6, pp. 56-69, 2001.

[11] R. B. Lee, Z. J. Shi, R. L. Rivesr, and M. J. B.
Robshaw, “On permutation operations in Cipher De-
sign”, in Proceedings of the International Conference
on Information Technology: Coding and Computing
(ITCC’04), vol. 2, pp. 569-579, Las Vegas, Nevada,
Apr. 5-7, 2004.

International Journal of Network Security, Vol.4, No.1, PP.81–89, Jan. 2007 89

[12] A. A. Moldovyan and N. A. Moldovyan, “A cipher
based on data-dependent permutations,” Journal of
Cryptology, vol. 15, no. 1, pp.61-72, 2002.

[13] M. Portz, “A generallized description of DES-based
and Benes-based permutationgenerators,” Advances
in Cryptology - ASIACRYPT ’92, Workshop on the
Theory and Application of Cryptographic Techniques,
LNCS 718, pp. 397-409, Springer-Verlag, 1992.

[14] R. L. Rivest, “The RC5 encryption algorithm,” in
Proceedings of the 2nd International Workshop “Fast
Software Encryption - FSE’94”, LNCS 1008, pp. 86-
96, Springer-Verlag, 1995.

[15] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L.
Yin, “The RC6 block cipher,” in 1st AES Candidate
Conference Proceedings of Venture, California, Aug.
20-22, 1998.

[16] B. V. Rompay, L.R. Knudsen, and V. Rijmen, “Dif-
ferential cryptanalysis of the ICE encryption algo-
rithm,” in Proceedings of the 6th International Work-
shop, “Fast Software Encryption - FSE’98”, LNCS
1372, pp. 270-283, Springer-Verlag, 1998.

[17] N. Sklavos, N. A. Moldovyan, A. A. Moldovyan, and
O. Koufopavlou, “CHESS-64, a block cipher based
on data-dependent operations: design variants and
hardware implementation efficiency,” Asian Journal
of Information Technology, vol. 4, no. 4, pp. 323-334,
2005.

Nikolay A. Moldovyan is an hon-
ored inventor of Russian Federation
(2002), a chief researcher with the Spe-
cialized Center of Program Systems
”SPECTR”, and a Professor with the
Saint Petersburg Electrical Engineer-
ing University. His research interests
include computer security and cryp-

tography. He has authored or co-authored more than
50 patents and 200 scientific articles, books, and reports.
He received his Ph.D. from the Academy of Sciences of
Moldova (1981). Contact him at: nmold@cobra.ru.

Peter A. Moldovyanu is a division
head with the Specialized Center of
Program Systems ”SPECTR”. His re-
search interests include cryptography,
communication and network security.
He has authored or co-authored 6
patents and more than 40 scientific pa-
pers. He received his Ph.D. from the

St. Petersburg State University of Information Technolo-
gies, Mechanics, and Optics (2004). Contact him at:
ma@cobra.ru.

Douglas H. Summerville is an As-
sociate Professor in the Department
of Electrical & Computer Engineering
at the State University of New York
at Binghamton. His research interests
include computer and network secu-
rity, intrusion detection, and network-
ing. He has authored or co-authored

more than 30 scientific articles. He received his Ph.D.
in Electrical Engineering from the State University of
New York (1997) and B.E. in Electrical Engineering
from The Cooper Union for the Advancement of Science
and Art, New York, (1991). Contact him at: dsum-
mer@binghamton.edu.

