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Abstract

Java programs can be transmitted and executed on an-
other host in bytecode format, thus the sensitive infor-
mation of the host may be leaked via these assembly-like
programs. Information flow policy can ensure data confi-
dentiality, however, conventional information flow analy-
sis mainly focused on the programs written in high-level
programming languages and is generally performed by
type checking approach, which assigns security classes
to the variables then verifies information flow policy in
program executing order. These approaches are inade-
quate to address the information flow in bytecode and
the type systems verification method is imprecise. This
paper presents a method to disclose java bytecode infor-
mation flow by dependence analysis, in which the informa-
tion flow analysis is separated to two phases to improve
precision. First is determining information dependence
relationship among the variables in the bytecode then is
verifying the security based on security class. A prototype
tool has been developed, by which the bytecode informa-
tion flow of object or class files can be analyzed.

Keywords: Dependence analysis, information flow, Java
Bytecode

1 Introduction

Bytecode, the program in Java virtual machine language
(JVML), may be loaded over the network to a remote
host, such as applets and mobile agents and may interact
with the resources and facilities of the host. If the pro-
grams access the user’s sensitive data and communicate
over network, the private information could be released.
The hosts have the option that protects sensitive infor-
mation by using access control mechanism. However, this
impairs the function of the programs, since useful pro-
grams generally need access host’s data to perform their
tasks.

To address data confidentiality problem, information

flow [11] is proposed to enforce this property. By analyz-
ing how information flows through the program, the data
could be protected from leaking to public channel.

Denning first proposed a static certification method to
verify the information flow security of a program [12].
Each program object is assigned a certain security class
and the security classes are assumed to form a lattice
structure, ordered by≤. Their method is a type-based ap-
proach to enforce secure information flow. They only pro-
vided an informal argument that their approach is sound,
that is, it certifies only secure programs. Vopano devel-
oped an elegant syntax-directed type system for annotat-
ing program variables, commands, and procedure param-
eters with security classes [16]. They also proved that
their type system ensures noninterference. Banerjee and
Naumann extended the type system of Volpano to sup-
port a more realistic object oriented sequential language
[3]. Their extension encompasses data flow via mutable
object fields and control flow via dynamically dispatched
method calls. They prove noninterference for a language
with pointers, mutable state, private fields, class-based
visibility, dynamic binding and inheritance, type casts,
type tests, and mutually recursive classes and methods.
A weak form of noninterference is used which does not
consider termination behavior to be observable because,
unfortunately, strong noninterference for a sequential lan-
guage requires loop guards to have low security which
would lead to complications for conditionals that involve
recursive calls. Type system approaches to secure infor-
mation flow are simple to implement, but they are often
too imprecise. Consider the example:

L := H ; L := 0;

where L and H correspond to low and high security vari-
ables respectively. A security-type system would reject
this program based on the first assignment, yet the pro-
gram clearly satisfies noninterference. Most type-based
approaches reject any program with insecure subprograms
because they check the program line-by-line and the con-
text of the program are ignored.
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Avvenuti [2] developed a tool for Java bytecode veri-
fication for secure information flow. Cinzia [8] proposed
an approach using standard bytecode verifier to ensure
information flow. These approaches are also essentially
an implementation of type system.

Most of these existing approaches use type checking
method to enforce information flow policy, and the re-
search about assembly-like stack-based bytecode is inad-
equate. Because Java programs are transmitted and ex-
ecuted in bytecode format and the remote host can not
get the source code of program to verify the security, the
information flow analysis for bytecode is necessary.

In the previous study of bytecode security [5, 6], the
security model is proposed and the information flow se-
curity based on dependence analysis is introduced. In
this paper the analyzing algorithm is improved and detail
implementation of the approach is presented. A method
that analyzes Java bytecode information flow to ensure
data confidentiality is proposed. This approach analyzes
bytecode information flow by disclosing information de-
pendence relations among variables then checking the se-
curity policy by computing secure classes of the variables.
Unlike type systems, which analyze and verify program
in type-level command-by-command, our approach certi-
fies the program after analyzing the whole program thus
can provide more precision. When analyzing information
dependence the security class, which depends on various
host security policies, is not involved, so the dependence
analysis can be performed and prepared beforehand. The
fixed program such as API can be analyzed and archived
to library.

The rest of the paper is organized as follows. Section 2
gives related research background. Section 3 is an intro-
duction of our approach, including verification mechanism
and an example. Section 4 introduces the prototype im-
plementation and Section 5 is the conclusion.

2 Background

2.1 Java Bytecode and JVM

In Java, programs are being compiled into a binary format
called bytecode which is a sequence of instructions of the
machine language for Java virtual machine. The bytecode
in a method are executed when that method is invoked
during the course of running a program. Each instruction
consists of a one-byte opcode specifying the operation to
be performed, followed by zero or more operands supply-
ing arguments or data used by the operation [14].

Figure 1 summarizes the instruction set of the Java
virtual machine. v is an integer, real number or the spe-
cial value null; x is a local variable; L is an instruction
address; σ and τ are a class name and valid array compo-
nent type respectively. A specific instruction, with type
information, is built by replacing the T in the instruction
template in the opcode column by the letter in the type
column. For instance, iload reprensents loading an integer
value, aload represents loading an object [14].

Instruction ::= Tpush v | pop |T store x |T load x
| prim op | ifeq L | goto L
| new σ
| invokevirtual Method-Ref
| invokeinterface Interface-Method-Ref
| invokespecial Method-Ref
| getfield Field-Ref
| putfield Field-Ref
| newarray τ | arraylength
| arrayload τ | arraystore τ
| throw | jsr L | ret x
| return | T return

Figure 1: JVM instruction set

Bytecode programs use method references, interface
method references, and field references to identify meth-
ods, interfaces methods, and fields from Java language
programs. These references contain three pieces of infor-
mation about the method of field that they describe: the
class of interface in which it was declared, the field or
method name, and its type.

Method − Ref

::= {|Class − Name, Label, Method − Type|}

Interface − Method − Ref

::= {|Interface − Name,Label, Method − Type|}

Field − Ref

::= {|Class − Name, Label, F ield − Type|}

JVM’s execution state is a pair < A, O > where A
is the activation stack and O is the current state of the
object. O(r.f) denotes the contents of field f of object
r. The semantics of the language is presented in Fig-
ure 2. An execution state of a method C.mt is a tu-
ple (B, i, M, S), where B is the bytecode corresponding
to C.mt, i is the address held by the program counter,
M : Registers → Values is the local memory, represent-
ing the current state of the local registers of B, and S ∈
Values is the current state of the operand stack. Given
x, the content of x in the memory M is denoted by
M(x). The initial state of the execution of a method
C.mt is (B, 0, M0, λ), where 0 is the address of the first
instruction, M0(x0) and M0(x1) are set to the reference
to the object and to the actual parameter respectively.
The set C is the class definitions and the set Objects =
{r1, . . . rn} is the references to instances of the classes in
C. O = Objects→ ObjectV alues denotes the domain of
object valuations. M [k/x] is used to indicate the mem-
ory M ′ which agrees with M for all registers, except for
x, which is M ′(x) = k. Similarly, O[k/r.f ] indicates the
object valuation O′, which differs from O only on field f
of object r, which is assigned k.



International Journal of Network Security, Vol.4, No.1, PP.59–68, Jan. 2007 61

2.2 Information Flow in Bytecode

The concept of secure information flow is typically for-
malized in terms of what is known as “noninterference”.
Noninterference states that confidential data may not in-
terfere with, meaning affect, public data.

The information flow model can be defined by

FM =< N, P, SC,⊕,→>

N is a set of logical storage objects or information recep-
tacles. Elements of N may be files, or program variables.
P is a set of process. SC is a set of security classes cor-
responding to disjoint classes of information. The class-
combining operator “oplus” is an associative and commu-
tative binary operator. A flow “→” relation is defined on
pairs of security classes. For classes A and B, A → B
means if and only if information in class A is permitted
to flow into class B [18].

The security requirement of the model is that a flow
model FM is secure if and only if execution of a sequence
of operations cannot violate the relation “→”. To comply
with this policy, information at a given security level is
not allowed to flow to lower levels. A security system is
composed of a set S of subjects and a disjoint set O of
objects. Each subject s ∈ S is associated with a fixed
security class C(s), denoting it clearance. Likewise, each
object o ∈ O is associated with a fixed security class C(o),
denoting its classification level. The security classes are
partially ordered by a relation ≤, which forms a lattice.

Every program variable x has a security class denoted
by x. It is assumed that x can be determined statically
and that it does not vary at run time. If x and y are
variables and there is flow of information from x to y
then it is a permissible flow if x ≤ y.

Every programming construct has a certification con-
dition. It is a purely syntactic condition relating secu-
rity classes. Some of these conditions control explicit
flows while others control implicit flows. For example, the
statement y := x has the condition x ≤ y, which means
the flow of information from the security class of x to
that of y must be permitted by the flow policy. The con-
ditions for other constructs, such as if statements, control
implicit flows. For example, there is always an implicit
flow form the guard of a conditional to its branches. In
the statement

if x > y then z := w else i := i + 1

There is an implicit flow from x and y to z and i, So
the statement has the certification condition x∨ y ≤ z ∧ i
where ∨ and ∧ denote least upper bound and greatest
bound operators respectively. The lattice property makes
it possible to enforce these conditions.

The bytecode shown in Figure 3 corresponds to a
method mt of a class A. The value of the field f of a
class B is loaded in instruction 3, which is tested by the
branch instruction 4 and has not been assigned to a vari-
able. The final value of A.f , 0 or 1, depends on the value
used in instruction 3. Even without storing instruction,
the information in B.f still flows to A.f implicitly.

B[i] = push n < (B, i, M, S) · A, O >

< (B, i + 1, M, n · S) · A, O >

B[i] = prim op < (B, i, M, n1 · n2 · S) · A, O >

< (B, i + 1, M, n · S) · A, O >

B[i] = pop < (B, i, M, v · S) · A, O >

< (B, i + 1, M, S) · A,O >

B[i] = load x < (B, i, M, S) · A, O >

< (B, i + 1, M, M(x) · S) · A, O >

B[i] = store x < (B, i, M, v · S) · A, O >

< (B, i + 1, M [k/x], S) · A, O >

B[i] = ifcond j true < (B, i, M, n · S) · A, O >

< (B, i + j, M, S) · A,O >

B[i] = ifcond j false < (B, i, M, v · S) · A, O >

< (B, i + 1, M, S) · A,O >

B[i] = goto j < (B, i, M, S) · A, O >

< (B, i + j, M, S) · A,O >

B[i] = getfield C.f < (B, i, M, r · S) · A,O >

< (B, i + 1, M, O(r.f) · S) · A, O >

B[i] = putfield C.f < (B, i, M, k · r · S) · A, O >

< (B, i + 1, M, S) · A, O[k/r.f ] >

B[i] = invoke C.mt < (B, i, M, k · r · S) · A, O >

< (B′, 0, M [r/x0][k/x1], λ) · (B, i + 1, M, S) · A,O >

B[i] = return < (B, i, M, k · λ) · (B′, j, M ′, S) · A,O >

< (B′, j, M ′, k · S) · A,O >

B[i] = load x < (B, i, M, S) · A, O >

< (B, i + 1, M, M(x) · S) · A, O >

Figure 2: JVM instruction semantics

0: iconst 0
1: istore 2
2: aload 1
3: getfield B.f
4: ifne 8
5: iconst 0
6: istore 2
7: goto 10
8: iconst 1
9: istore 2
10: aload 0
11: iload 2
12: putfield A.f
13: iload 2
14: return

Figure 3: An implicit flow in bytecode
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3 Our Approach

3.1 Overview

In our approach, the information flow is separated into
two steps: disclosing dependence relationships among
variables by transforming the bytecode instructions to a
set of definitions; verifying information flow by computing
and checking security classes.

In existing type checking method, each variable x oc-
curring in a program is declared with a particular secu-
rity class. These security classes are assumed to form a
lattice, with meet (greatest lower bound) and join (least
upper bound). The type checker computes the class of an
expression and certifies a program with information flow
rule. The advantage of using a type system as the basis
of a certification mechanism is that it is simple to imple-
ment. However, most certification mechanisms based on
types reject any program that contains an insecure sub-
program.

Consider these statements:

k := h; k := 6; (1)

h := k; k := h; (2)

h denotes a high-security variable and k denotes a low-
security variable.

The type system approaches are less precise because it
rejects the Secure Programs (1) and (2).

This paper describes a method that analyzes bytecode
secure information flow. The analysis process is divided
into two phases: variables information dependence dis-
closing and secure class computing. In the first phase,
the bytecode instructions are transformed to a set of def-
initions of variables which represents the information de-
pendence relation among variables in the program. In the
next phase, the security classes are assumed to variables
in the definition set and verify the information flow as the
traditional type checking method.

For instance, the following two instructions sequence
can be transformed to a definition-use: the local variable
r1 is used and r2 is defined.

iload 1; istore 2; ⇒ r2← r1.

Different from the method of type checking, the whole
program is analyzed and the information dependence
among variables is disclosed before the security verifica-
tion, thus can improve the analysis precision. The next
phase is secure class computing and verification. Because
the program is transformed to a sequence of definition-
use pair with no branch, the computing and verification
is simply performed by the least upper bound operation
of security class and certifying secure information flow.

The other significance of our approach is that, the first
phase can be prepared beforehand for the fixed program
such as API because this phase does not handle the se-
cure classes that corresponding to various host security
policies. So the analysis result of the first phase can be

Figure 4: An example bytecode CFG

prepared and archived to a library for the fixed programs,
thus the analysis efficiency can be improved.

3.2 Bytecode Control Flow Analysis

Given a bytecode B, the control flow graph (CFG) of the
bytecode is an ordered pair (V, A), where V is a finite set
vertices; and A is a finite set of the Cartesian product
V ×V , called arcs, i.e., A ⊆ V ×V is a binary relation on
V . For any arc (v1, v2) ∈ A, v1 is called the initial vertex
of the arc, and v2 is called terminal vertex of the arc.
Assuming that the control flow graph has one and only
one final node, if i, j ∈ A, j post dominates i, denoted by
j pd i, if j 6= i and j is on every path from i to the final
node.

In the bytecode method, each instruction is a vertex in
the CFG. There are three types of JVM instructions that
may cause control dependencies.

First, the control transfer instructions conditionally or
unconditionally cause the Java virtual machine to con-
tinue execution with an instruction other than the one
following the control transfer instruction. These instruc-
tions can cause control dependencies.

• Unconditional branch instructions: goto, goto w, jsr,
jsr w, ret.

• Conditional branch instructions: ifeq, iflt, ifle, ifne,
ifgt, ifge, ifnull, ifnonnull, if icmpeq, if icmpne,
if icmplt, if icmpgt, if icmple, if icmpge, if acmpeq,
if acmpne.

• Compound conditional branch instructions:
tableswitch, lookupswitch.

Second, in JVM, a method must return the control to
its caller after execution. The caller is often expecting a
value from the method called. JVM provides six return in-
structions. These return instructions cause another kind
of control dependencies.

• Return instructions: ireturn, lreturn, freturn,
dreturn, areturn, areturn.
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Third, another kind of special branch is the jsr. It re-
members where it came from. Instruction jsr branches to
the location specified by the label, it leaves a special kind
of value on the stack called returnAddress to represent the
return address. This causes certain control dependence.

By detecting the conditional transfer instructions, the
forks of the control flow can be determined. The joins
of the control flow can be achieved by tracing the branch
path. In our approach, the CFG is represented by:

CFG : (V, A) = {S1, S2, S3, . . . Sm}

Si ⊆ V, 1 ≤ i ≤ m

Si = {I0, I1, . . . In}

Ik = (ik, cdk)

In Si, for any two nodes i, j ∈ V and j > i, j pd i. In
short, the special graph is a chain, which is a subset of
CFG. Each element of Si is a pair (ik, cdk), in which the
i denotes instruction and cd denotes control dependence
information. Initial node I0 is the start node or a fork
while terminal node In is the end node or a join of the
method’s CFG. The scope of conditional branch can be
determined by these fork and join nodes.

To deal with implicit flows, cdk is introduced in to
represent the guard (the conditional transfer instruction)
that lead to execution of the instruction k. With this
information, the implicit information dependence can be
determined. In the programs with multiple branch nest-
ing, the cd of the node of conditional transfer instruction
can be used for the sub branch instructions to disclose the
parent control dependence. To distinguish main control
flow from the branch path, cd of the nodes in main path
is set to -1.

Given a CFG in Figure 4, the CFG is presented by:

CFG = {S1, S2, S3}

S1 = {(0,−1), (1,−1), (2, 1), (3, 2), (4, 2), (7, 1),

(11,−1), (12,−1)}

S2 = {(2, 1), (5, 2), (6, 2), (7, 1)}

S3 = {(1,−1), (8, 1), (9, 1), (10, 1), (11,−1)}

For example, node 5 depends on node 2 and node 2
depends on node 1, so node 5 depends on both node 2
and 1. These dependence relations will be used to disclose
implicit information flow.

3.3 Definition Determination

JVM is a stack-based abstract machine, in JVM most op-
erations occur via stack. Different from memory variable,
stack does not keep the value after stored to a variable. A
storing operation causes the data flow from source vari-
ables to a destination variable, which can be presented by
a definition-use pair (DUP), in which the variable loading
a value to the stack is used and the variable the value
stored from the stack is defined. Data flow in a method is
caused by a series of data loading and storing operations.
It can be presented by an ordered set of DUP.

B[i] = Tpush n |T const null < U, D, S >

< U, D, λ · S >

B[i] = prim op < U, D, v1 · v2 · S >

< U, D, (v1 ∪ v2) · S >

B[i] = pop < U, D, v · S >

< U, D, S >

B[i] = load x < U, D, v1 · v2 · S >

< U, D, (v1 ∪ v2) · S >

B[i] = T store x < U, D, v · S >

< φ, (x, v ∪ U) ∪ D, S >

B[i] = Tastore x < U, D, v1 · v2 · v3 · S >

< φ, (v1, v2 ∪ v3 ∪ U) ∪ D, S >

B[i] = ifcond j|tableswitch|lookupswitch < U, D, v · S >

< φ, (null, v ∪ U) ∪ D, S >

B[i] = iinc x < U, D, S >

< U, (x, λ) ∪ D, S >

B[i] = ldc x < U, D, S >

< U, D, x · S >

B[i] = newarray < U,D, v · S >

< v ∪ U, D, λ · S >

B[i] = anewarray x < U, D, v · S >

< v ∪ U, D, λ · S >

B[i] = getfield C.f < U, D, v · S >

< U, D, C.f · S >

B[i] = putfield C.f < U, D, v1 · v2 · S >

< Φ, (d = C.f, U ∪ v2) ∪ D, S >

B[i] = invoke C.mt < U, D, S >

< U, D, S >< U ′, D′, S′ >

B[i] = return < U, D, S >< U ′, D′, S′ >

< Φ, (ret,U ∪ U ′) ∪ D ∪ D′, S >< Φ, Φ, Φ >

Figure 5: Rules of the definition analysis

A DUP is denoted by

d← U or d← {u0, u1, . . .}

d : defined variable

U : set of used variables

In JVM, the data types are divided into two categories:
primitive types and reference types. The primitive data
flow causes the definition and use information, however,
loading or storing a reference value will not necessarily
form definition of the data. For example, an operation
that loading an object reference data to the stack may
not lead the data of the object flow to the stack because
this reference may be used to store data to the field of the
object or invoke a method of the object. To determine
the data flow, the set S and set D is introduced in. Set
S contains the variables loaded to the stack while set D
contains the DUP of the method. A temporary set U
records the variables used.

Definition determination is achieved by transforming
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Figure 6: Handling branch in control flow

bytecode instructions to an ordered set of DUPs.

B ← D

Where B is the set of bytecode instructions, D is the
definition-use set.

Figure 5 defines the rules for data dependence analysis,
in which the abstract status of an instruction information
flow is presented as a transition relation i : (S, U, D) →
(S′, U ′, D′). i is the instruction, S is a set of variables
loaded to the stack, U is a set of used variables and D is a
set of DUP. Di is a DUP corresponding to the instruction
i. Constant is denoted by λ. According to these rules, the
DUPs of the method can be achieved by analyzing these
status transformation in bytecode executing order.

The bytecode is analyzed method-by-method. In a
bytecode method, the formal arguments are treated as
local variables from 1 to n, where n is the number of argu-
ment. When the method is invoked, the variables loaded
to the stack are passed to arguments. So the dependence
relationship among these arguments is that among the
local variables.

3.4 Dependence Analysis

For determining information flow, forks and joins in the
control flow of the method need to be cleared. The defi-
nition of variables in the conditional branch also depends
on used variables in the forks. For an instance, there is a
conditional branch with two arms. The set of used vari-
able in the fork is Uf , the DUP in one arm is d1 ← U1,
in the other arm is d2 ← U2. d1 and d2 also depend on
used variables Uf , so d1 ← U1 ∪ Uf and d2 ← U2 ∪ Uf .
Then the graph of this branch is converted to a chain.
(see Figure 6).

Branch merging rule:

For Di = (di ← Ui), Dj = (dj ← Uj)

{Di} ∪m {Dj} :=
{

{di ← Ui ∪ Uj} if di = dj

{Di ∪Dj} otherwise

After the transformation, the method of bytecode is
represented by an ordered set of definition-use pairs. In-

formation flow analysis is simple based on this ordered
set.

Information transfer rule:

Di = (di ← Ui) Dj = (dj ← Uj) i < j

if di ∈ Uj and i < j

then Ui ∪Dj := (dj ← Uj ∪ Uj) (3)

The operation with respect to constant

Ui ∪ λ = Ui

Definition reaching rule:

Reach(i) := (ReachIn(i) \ kill(i)) ∪ gen(i) (4)

gen(i) := D(i)

kill(i) := ReachIn(i) ∧d D(i)

Where Reach(n) denotes the variables definition at
node n. “∧d” denotes a sub intersection operator.

For two DUPs Di = (di ← Ui) and Dj = (dj ← Uj),

{Di} ∧d {Dj} :=

{

{Dj} if di = dj

{} otherwise

When a method is invoked, if there is no output ac-
tion occurred inside, then only the DUPs among the ar-
guments, global variables and return of the method are
concerned. These definitions of local variables can be re-
moved from the DUP set.

By these rules, all local variables in the DUPs of a
method can be cleared. The dependence relationship
among the arguments, global variables and return can be
disclosed. The Programs (1) and (2) can be certified by
our approach. In (1), definition k := h is killed by the
later definition k := 6 by definition reaching Rule (4). In
(2), the program is transformed to k := k in terms of the
information transfer Rule (3).

3.5 Security Class Computation and Ver-

ification

By the information dependence analysis, the information
flow of a method is represented by a sequence of DUPs.
In order to verify the security policy, the security class of
definition should be computed. The rule of security class
computation based on DUP is as following:

• Security class of defined variable is the least upper
bound of that of used variable.
for d← {u0, u1, . . . , un}
the secure class of d will be updated to:

S′(d) := S(u0) ∨ S(u1) ∨ . . . ∨ S(un) (5)

• Constant has lowest security class.

S(λ) = ⊥ (6)
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Once the security classes of all the variables are
achieved, the security verification can be performed by
this rule:

If S′(d) ≤ S(d)

Then d← u0, u1, . . . , un is secure (7)

Regarding to the whole bytecode security verification
process, the first step is to detect and to mark all input
and output operations in the program. Next step is to
analyze DUPs of all the methods, then to compute the
security classes and verify the security policies. If there
is no monitored input/output operation inside a method,
only the DUPs among the arguments, global variables and
return of the methods are used to compute the security
class.

3.6 An Example

Here is a simple example illustrating our approach. Given
the bytecode and it’s CFG of a method in Figure 7.

Step 1, the CFG is separated to two chains:
S1= {0,1,2,3,4,5,6,7,8,9,10,11,14,15,16,17,18,19,20,21,22}

S2= {8,12,13,14}

There is a conditional branch with two arms:
b1= {12,13} and b2= {9,10,11}
Both depend on the conditional transfer instruction
at 8.

Step 2, by the rule of data dependence analysis in Figure
3, the analysis process is shown in Figure 8. r1, r2
and r3 are formal arguments of the method while r4
and r5 denote local variable in the method.

The following is the DUPs transformed from the
method foo.

DUPs = {D6, D8, D10, D13, D17, D20, D22}.

The branch arms b1 and b2 depend on the variable
used at the fork 8, Instruction 10 is in b2 and Instruc-
tion 13 is in b1. Used set in the fork is r4. The DUP
at 10 and 13 should be updated.

D10 := D8 ∪D10 = (r5← λ ∪ r4)⇒ (r5← 4)

D13 := D8 ∪D13 = (r5← λ ∪ r4)⇒ (r5← 4)

{D10} ∪m {D13} = r5← r4.

Thus, the branch can be merged, and the information
dependence pairs of this method can be represented
by the following DUP list.

{(r4← r2.f ∪ λ),

(r5← r4),

(r5← r5 ∪ r1),

(r3.f ← r5),

(ret← r5)}.

According to the Dependence analysis rules, the in-
formation dependence relation among arguments and
return can be achieved:

{(r3.f ← r2.f ∪ r1), (ret← r2.f ∪ r1)}

These DUPs show that in this method, information
from p1 and p2 may flow to the field of p3 and to the
return value.

Step 3, the security class computing.

To verify the information-flow policy, suppose r1,
r2.f and r3.f have security class 3,2 and 1 respec-
tively.

S(r1) = 3

S(r2.f) = 2

S(r3.f) = 1

So the security class of return can be computed by:
S(ret) = S(r1) ∨ S(r2.f) = 3.

On the other hand, S′(r3.f) = S(r1)∨S(r2.f) = 3 so
S(r1)S′(r3.f) > S(r3.f), an information flow policy
violation occurs when the data is stored to r3.f .

By this approach, a potential information-flow policy
violation in this method can be detected automati-
cally. To be more specific, it is at instruction 20.

4 The Tool

A prototype tool is developed based on the method de-
scribed above, which analyzes the object in method-by-
method manner. The tool is written in Java, and is com-
posed of the following components:

• Method Parser: the bytecode engineering library
(BCEL) is used to read bytecode information from
object or class file. The instructions of the methods
are transformed to an ordered set of nodes.

• Control flow Analyzer: the control flow is analyzed
by this analyzer. The control dependence is also dis-
closed in this process. The output of this component
is the CFG of the method, which described in Sec-
tion 3.2.

• Dependence analyzer: the instructions of bytecode
are transformed to an ordered set of definition based
on the rules in Section 3.3. Then the information
flow is analyzed based on the data flow rules in Sec-
tion 3.4.

• Security Verifier: secure class of input and output
objects are assigned to the variables. The secure
classes of variables are computed according to the
Rules (5) and (6), and the secure verification is per-
formed based on Rule (7).
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Figure 7: A method in bytecode and its CFG

The tool is under development, and the current ver-
sion can be used to disclosing variables dependence of the
programs without handling exception and the arguments-
return dependences of invoked API methods are prepared
in a library. The executing time for analyzing a com-
mon bytecode program with 4253 instructions is about
2783ms.

5 Conclusions

This paper described an innovative approach to provide
host data confidentiality by analyzing the Java bytecode.
This approach monitors the system access actions, analy-
ses information flow inside the Java bytecode and checks
if there is any violation that will destroy the host confi-
dentiality. The information dependence analysis and its
algorithm are described, by which the Java bytecode se-
curity verification can be more flexible, extensible and
effective and the impairment on bytecode function can
be avoided. Dependence analysis was studied in various
programming languages, and was mainly applied to com-
piler optimizing, program slicing and various software en-
gineering tasks such as program debugging, testing and
maintenance in high-level languages. In this paper, it is
introduced into Java bytecode information flow analysis.

Different from type systems method which abstractly
executes bytecode in security classes, our approach deter-
mines the information dependence of variables then com-
putes the security class to certify the program. The secure
classes which related to various host security polices are

Inst Stack Definition
0 r2
1 r2.f
2 r2.f, λ
3 r2.f ∪ λ
4 r2.f ∪ λ, λ
5 r2.f ∪ λ
6 D6 = (r4← r2.f ∪ λ)
7 r4
8 D8 = (← r4)
9 λ
10 D10 = (r5← λ)
11
12 λ
13 D13 = (r5← λ)
14 r5
15 r5, r1
16 r5 ∪ r1
17 D17 = (r5← r5 ∪ r1)
18 r3
19 r3, r5
20 D20 = (r3.f ← r5)
21 r5
22 D22 = (ret← r5)

Figure 8: Information dependence of method foo
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not involved when disclosing information dependence of
variables in the bytecode, so the DUPs of the bytecode
can be achieved in advance. For the fixed methods such as
API, the DUPs can be archived beforehand so as to avoid-
ing reiterative computation while being invoked, thus can
save a lot of time on the fly.

A prototype based on these techniques has been de-
veloped, however, the exception handling has not been
included in current version, and the DUP library for Java
API has not been built. These will be the focus area in
future research.
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