
International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 45

Injecting Heterogeneity Through Protocol

Randomization

Li Zhuang1, J. Doug Tygar2, and Rachna Dhamija3

(Corresponding author: Li Zhuang)

Computer Science Division, U. C. Berkeley1

Soda Hall #1776, Berkeley, CA 94720, USA (Email: zl@cs.berkeley.edu)

Computer Science Division & SIMS, U. C. Berkeley2

Center for Research on Computation and Society, Harvard & SIMS, U. C. Berkeley3

(Received Aug. 15, 2005; revised and accepted Sept. 15, 2005)

Abstract

In this paper, we argue that heterogeneity should be an
important principle in design and use of cryptographic
protocols. We use automated formal analysis tools to
randomly generate security protocols as a method of in-
troducing heterogeneity. We present the results of sim-
ulations for the case of two party authentication proto-
cols and argue that choosing protocols randomly out of
sets numbering in the hundreds of millions is practical
and achievable with an acceptable overhead. To realize
the simulation, we implemented a highly efficient protocol
verifier, achieving approximately two orders of magnitude
improvement in performance compared to previous work.

Keywords: Computer security, memory symptom, virus
detection

1 Introduction

Can we improve the operational security of protocols by
randomizing them? A few years ago, this would have
simply been unthinkable, but in recent years, with the
development of powerful automated protocol generation
systems [5, 15, 21, 23, 24, 26, 37], it has become feasible.
Suppose that two parties need to perform an operation,
such as authentication. They use the following approach:

Step 1: Two parties agree to use randomized protocol
generation

Step 2: They agree on a random seed

Step 3: They then use that seed to generate the same
random protocol

Step 4: They execute the generated randomized protocol

This paper explains how each of these steps can be
accomplished. We suggest the use of protocols that are

chosen at random from a very large set of protocols satis-
fying specific security and functional properties. By using
security protocol analysis tools, we can generate millions
of protocols which satisfy the same security specification.
Thus, different pairs (or groups) of communicating par-
ties can use different protocols with the same functional-
ity. Even with this broad sketch, concerns immediately
rise. Here are two common concerns:

1) In Step 2, one needs to have a way to generate a
random seed, and generating a random seed itself re-
quires a seed agreement protocol. Have we realized
any advantages? Answer: in most cases choosing
a random seed is simpler than other secure proto-
cols, so we still enjoy advantages. (We discuss this
at greater length in Section 4.2).

2) If one has a common random seed in Step 2, why not
just skip step 3 and execute a standard library proto-
col in Step 4 – using the common key for encryption?
Answer: using a fixed protocol with encryption may
still be vulnerable to known problems in the protocol,
and moreover the entire exchange will be vulnerable
to traffic analysis. (We discuss this at greater length
in Section 4.4).

What advantages can randomized protocol generation
bring to the table? To understand this, we must step
back a little and look at the broader context of security
protocols. Security protocols often have flaws in them.
These flaws are sometimes inherent in the protocol itself
and sometimes arise from operational use of a protocol.
For example, the Needham-Schroeder public key authen-
tication protocol [28] has inherent flaws — even in the
presence of a correct implementation and correct opera-
tor use, an adversary can still disrupt the protocol. Once
an attack is discovered for one protocol, all implementa-
tions of that protocol become similarly vulnerable. Even
worse, “attack scripts”, viruses and worms can be written
to automatically exploit these vulnerabilities.

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 46

Diversity, which plays an important role in ensuring
robustness in biological systems, may also have an im-
portant role to play in securing a distributed computing
environment. To introduce diversity into computer sys-
tems, we can create software components that are similar
in functional behavior but that contain variations in de-
sign or data [9, 20]. This forces an attacker to create a
new attack for each software instance.

In this paper, we argue that heterogeneity should be
an important principle in design and use of cryptographic
protocols. Our first goal is to make it difficult for an
attacker to discover or to exploit flaws in security pro-
tocols because of the large space of protocols that must
be analyzed. Our second goal is to prevent widespread
automated attacks on protocols by making any successful
attack hard to replicate. Finally, we suggest the use of
rapidly changing protocols so that any vulnerability that
may exist with a specific protocol will be short-lived.

We explain how to generate and verify heterogeneous
protocols that satisfy particular security properties in Sec-
tion 2. In Section 3, we present the results of a simulation
of random protocol generation for two party authentica-
tion. In Section 4, we discuss the security benefits and
tradeoffs involved in applying heterogeneity to protocol
design. Finally, we provide an overview of related work
in Section 5 and our conclusions in Section 6.

2 Protocol Generation

In practice, how can we hope to feasibly find a large num-
ber of correct and secure protocols that are equivalent
in functionality? Clearly, enumerating millions of proto-
cols with a given property is undesirable; not only would
the enumeration require excess amounts of computation,
but storing all possible protocols would be highly waste-
ful of space. In this paper, we propose generating ran-
dom protocols on the fly. We use two-party authentica-
tion protocol as an example to illustrate the process. To
analyze two-party authentication protocols, we selected
Athena [30, 31, 36, 37, 38] as our formal verification tool.
However, the framework we introduce applies to different
types of security protocols and protocol analysis tools. In-
stead of using a formal analysis tool to find the single most
efficient protocol, we are interested in finding a random
(and fairly efficient) protocol that satisfies a particular
property.

In practice, a protocol generator has several logical
components. First, we generate pseudo-random proto-
cols (which may or may not satisfy any particular secu-
rity requirements). We then use a formal analysis tool
to automatically test the pseudo-random protocols to see
if they are secure with respect to the required security
requirements. Finally, if they do satisfy the security re-
quirements, we automatically generate code to realize the
protocols.

To appreciate the ideas behind pseudo-random proto-
col generators, first recall the structure of the familiar

pseudo-random number generator. This generator con-
sists of two parts: a sequence generator F and a number
generator B. Seeds are chosen from of a set S of potential
seeds, called a seed space. Our functions satisfy additional
properties, namely F : S → S and B : S → {0, . . . , n−1}.
We start with an initial seed s0 and generate a subsequent
sequence s0, s1, s2, . . . using the rule si+1 = F (si). We
then generate random numbers by applying B to the S
values in turn: B(s0), B(s1), B(s2), . . . to yield a sequence
of numbers1.

Now consider an application with specific requirements
on the output. For example, suppose that instead of gen-
erating numbers uniformly over {0, . . . , n−1}, we wish to
uniformly generate prime numbers less than n. There are
some efficient ways of doing this [22], but for the sake of
discussion, consider a brute force approach. We run the
pseudo-random number generator and test each number
as it is generated. If it is not a prime, we discard it and
generate another. The resulting sequence will consist of a
uniform pseudo-random sequence of prime numbers. We
call the space of acceptable output values, in this case,
primes less than n, a valid output space.

We can view pseudo-random protocol generators simi-
larly. However, instead of B taking a seed and transform-
ing it into a number, we now map S into random sets
of message exchanges (i.e., a protocol). Instead of using
primality as a test of whether to keep an output, we use a
formal protocol verifier to see if it satisfies particular se-
curity properties such as two party authentication or key
exchange. As above, our set of seeds forms a seed space
and the set of protocols surviving the security test forms
a valid output space, or in this case, a valid protocol space.

We can now posit a Protocol Generating Function
(PGF) described by the following algorithm in Figure 1
and illustrated in Figure 2. The s is a random seed in
Figure 1, and given ways to define B and F (see the fol-
lowing subsections), the question of choosing a protocol
at random is solved.

Two challenges of injecting heterogeneity in design and
use cryptographic protocols are:

• Protocol validness: Our automatically generated
protocols should be valid and at least as secure as
manually designed protocols. To achieve this, we pro-
pose the use of a high quality protocol verifier. We
chose to use Athena as our protocol verifier for two-
party authentication protocols because of its quality
and efficiency in verifying authentication protocols.
However, our general scheme also allows other veri-
fiers and other types of protocols to be used.

• Protocol space size: Ideally, the protocol space
should be sufficiently large that an adversary with

1We assume our pseudo-random number generation is strong in
the sense of Yao [44], namely the sequence of values is both uni-
formly distributed and cryptographically secure. That is, given
s0, . . . , sm no polynomial time algorithm can predict sm+1 with
probability greater than 1/n + ε for any ε > 0.

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 47

Input: seed s

Output: protocol p

repeat {
p = B(s);
s = F (s);

} until (p satisfies security conditions)

Figure 1: Protocol generation function

Function
Seed Space

Protocol Generating
Valid

Protocol Space

Figure 2: Overview of random protocol generation

high probability is unable to guess the protocol dur-
ing the period of time it is used. However, increasing
the protocol space also has a drawback: a large pro-
tocol space will, by necessity, include protocols that
are longer than the most efficient protocol, increas-
ing the overhead involved. As we show below, this
increase in overhead is small.

The procedure of picking a protocol randomly and uni-
formly from the space of valid protocols is illustrated in
Figure 3. In our simulation, both the early pruning and
the full protocol verification steps use the corresponding
steps built into Athena.

2.1 Efficiency of Protocol Generation

The protocol generation scheme proposed above raises
some questions about efficiency:

• How many protocols must be generated on average
before a protocol that passes our security test is
found? We call this number N .

• What is the average time T to find a valid protocol?

The answer to the second question determines whether
the protocol generation scheme is practical. If the verifi-
cation time of a protocol is a constant, T is proportional to
N . In general, the formal analysis of a security protocol is
not a cheap operation. However, we do not need to per-
form a complete analysis for each protocol enumerated.
By using some simple criteria, most invalid protocols can
be pruned at a very early stage. We suggest using two
stages of pruning protocols — an initial fast early prun-
ing step and a later more exhaustive verification step in
protocol generation which is similar to Song et al. in [37].
The key insight here is that by using a set of efficient early
pruning policies, most invalid protocols are pruned in the
first stage. We call a protocol that passes early pruning a
candidate protocol. To measure the efficiency of two-stage
protocol generation, we define the following values:

• p1: the probability that a protocol passes early prun-
ing, i.e., the ratio of candidate protocols to all pro-
tocols.

• p2: the probability that a candidate protocol is valid,
i.e., the ratio of valid protocols to candidate proto-
cols.

• t1: the average time required for the early pruning
step. (In practice, this value is the same whether a
protocol turns out to be a candidate protocol or not.)

• t2a: the average verification time if a candidate pro-
tocol is invalid.

• t2b: the average verification time if a candidate pro-
tocol is valid.

Now we can compute N , which is the expected num-
ber of tests before a valid protocol, and T , which is the
expected time needed to find a valid protocol:

N =
1

p1p2
,

T = (
1

p1
− 1) ·

1

p2
· t1 + (

1

p2
− 1) · (t1 + t2a)

+(t1 + t2b).

The following example illustrates the effect of early
pruning in reducing T . Suppose that the verification
time for both valid and invalid protocols are the same:
t2a=t2b=t2. If early pruning is efficient and takes 0.01% of
the verification time, t1=10−4t2. Let p1=0.1 and p2=0.5.
It follows that N=20 and T=2t2. Without early prun-
ing, T=Nt2=20t2 is much longer than the result achieved
with early pruning, 2t2. In fact, the values in this exam-
ple agree with what we achieved in our simulation of two-
party authentication protocols using Athena (Section 3).

2.2 Message Format

In this section, we introduce our formal representation of
protocols and messages, which follows the representation
used in the Athena and is generally applicable to different
types of security protocols with minor changes.

A message consists of a sender, a receiver and a mes-
sage body, as shown in the following:

Sender → Receiver : MsgBody

We follow Athena [38] in defining MsgBody (see Fig-
ure 4). Data represents a piece of public data such as
the names of the participating principals in the protocol.
IndData contains generated independent data, for exam-
ple, nonce values. Data and IndData are two types of
Variables. Key refers to the general cryptographic keys in-
cluding asymmetric public keys, asymmetric private keys
and symmetric keys. Variable and Key are two types of

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 48

Valid?

END: Output p

Early pruning: pass?

applying strict security
requirements.

Protocol verification by

requirements

Early pruning by:
- system requirements
- weak security

s = F (s)

Y

Y

N

N

Protocol p = B(s)

(1)

(2)

(3)

START: Initial seed s

Figure 3: Protocol generation

MsgBody ::≡ Term[, Term...]

Term ::≡ Variable | {MsgBody}Key

Variable ::≡ Data | IndData

Key ::≡ PublicKey | PrivateKey | SymmetricKey

Figure 4: The format of MsgBody

Concatenate KAB

NA PA

Encrypt

Figure 5: Example: the message tree of {NA, PA}KAB

atomic terms. Term[, Term...] is a message body with
one or more terms. Finally, {MsgBody}Key indicates that
MsgBody is encrypted using Key.

For example, {NA, PA}KAB
is a valid message body,

where PA is Data, the name of principal A in the proto-
col, NA is IndData, the nonce generated by A, and KAB

is the symmetric key shared between the two principals A
and B. A message can also be represented using a mes-
sage tree as shown in Figure 5. The depth of a message
tree is called message depth. The message depth of the
message shown in Figure 5 is 3. The number of rounds in
a protocol is the number of messages transmitted between
the principals.

Given a variable set, {PA, PB, NA, NB}, several three-
round protocols are randomly selected from all protocols.
These are shown as examples in Figure 6. All five pro-
tocols have three messages (round=3). Each message in
the protocols is formed by concatenation or/and encryp-
tion of variables PA, PB , NA, and NB. We will refer to
these examples again to illustrate the protocol generation,
pruning and verification steps in the following sections.

2.3 Enumerating All Protocols

In Figure 6, we illustrate some protocols from the space
of all protocols created from the set of variables {PA, PB,
NA, NB}. In general, we can enumerate all protocols from
a set of variables as follows. First, we enumerate all pos-
sible messages that can be formed from these variables.
Given a maximum message depth, the number of all pos-
sible messages will not go to infinity. Then, a protocol is
composed of randomly selected messages.

The size of a protocol space is determined by the num-
ber of possible messages at each round and the total num-
ber of rounds allowed. Suppose that in t-round proto-
cols, there are mk possible messages in the k-th round
(1 ≤ k ≤ t): msgk

1 , · · · , msgk
mk

. Then the size of the

protocol space is: m1 × m2 × · · · × mt.
A protocol ID is defined as

si = (msg1
i1

, msg2
i2

, · · · , msgt
it
),

where msgk
ik

is the ik-th message in the k-th round. That
is, protocol ID si is a vector of all its message ID’s. si

is used as an input to the function B, which generates a
protocol from a random value.

A variable set for a message round is the set of Variables
that can appear in a message of that round. For example,
in a two-party authentication protocol, the variable set for
the first round is {PA, PB , NA} and for the second round
is {PA, PB , NA, NB} (see Figure 6 for an example).

For a message round, given a set of Variables (VarSet),
a set of Keys (KeySet), and maximum message depth,
all possible messages can be enumerated in the follow-
ing way. Suppose VarSet = {v1, v2, · · · , vn} and KeySet =
{k1, k2, · · · , km}. The number of all possible messages of
depth d is represented as M(d).

depth = 1 : M(1) = |VarSet| = n

depth = 2 : M(2) = |concatenation of msgs of depth 1|

+|encryption of msgs of depth 1|

= (2n − 1) + n ∗ m

· · · · · ·

depth = d : M(d) = 2M(d−1) − 1 + M(d − 1) ∗ m

For example, the first message in a two-party authen-
tication protocol is composed of a three variables set
Var = {PA, PB, NA} and a key set Key = {KAB}. Then,
M(1) = 3, M(2) = 23 − 1 + 3 ∗ 1 = 10, M(3) =
210 − 1 + 10 ∗ 1 = 1033, M(4) = 21033 − 1 + 1033.

The calculations above show that the number of pos-
sible messages increases (more than) exponentially as the
maximum message depth increases, which in turn in-
creases the complexity of the message. However, we can

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 49

A → B : PA, PB

B → A : NA

A → B : NB

(a)

A → B : PA, PB

B → A : {NB , PA}KAB

A → B : NA

(b)

A → B : NA

B → A : NB, {NA}KAB

A → B : NB, {PB}KAB

(c)

A → B : NA, PA

B → A : {NA, NB , PB}KAB

A → B : NB

(d)

A → B : NA, PA

B → A : {NA, NB , PB}KAB

A → B : {NA, NB}KAB

(e)

Figure 6: Example: Three-round protocols formed by {PA, PB, NA, NB}. (a) is eliminated because it is unreasonable;
(b) fails in early pruning; (c) is eliminated by the protocol verifier; (d) and (e) are valid outputs of our random protocol
generator given “two-party authentication” as security specification

greatly reduce the number of all possible messages if we
apply restrictions. For example, the messages enumerated
above may have redundancy, e.g. terms encrypted by the
same key more than once. Restrictions can be added to
remove some redundancies. It is easy to prove that the
maximum message depth is 2 × |KeySet| + 2 = 2m + 2,
if we disallow multiple-encryption by the same key (see
Appendix A).

2.4 Review of Athena

Athena is a formal verifier for authentication protocols.
In this section, we very briefly review the two steps that
we use from it: early pruning and protocol verification.

2.4.1 Preliminary Pruning

A protocol is unreasonable if some of its messages cannot
be generated by the principal who executes it, and rea-
sonable otherwise. Protocol (a) in Figure 6 is an unrea-
sonable protocol. In the second message of protocol (a),
B cannot send nonce NA because B does not yet know
it, since NA is generated by A. Unreasonable protocols
are eliminated early, and only reasonable protocols are
subjected to protocol level pruning as discussed below.

A candidate protocol is a protocol which passes some
simple pruning policies. The pruning rules depend on
the security requirements of the final valid protocol. We
use two-party authentication protocols to illustrate these
pruning rules. The pruning techniques we use here are
taken from [38]. Pruning is done at two levels: the mes-
sage level and the protocol level.

Message-level pruning eliminates messages which are
syntactically undesirable. For example, if we wish to ex-
clude multiple encryptions, we would screen for messages
encrypted more than one time by the same key, for exam-
ple, {{NA}K1

}K1
, or more strictly, {{NA}K1

}K2
. A mes-

sage with the features above are referred to as ill-formed
messages as compared to well-formed messages.

Protocol level pruning examines each message in the
protocol, viewed as a single whole. In an authentication
protocol, the protocol level pruning screens for two obvi-
ous flaws:

• Impersonation attacks. Every message sent between
principals potentially increases the knowledge of a
third party eavesdropper. If after any number of
rounds, we have a message that could be generated

by an eavesdropper, the protocol is considered flawed
and is then eliminated.

• Replay attacks. We check whether the principals use
nonces correctly. For example, they should send a
nonce in the first several messages and reply them
correspondingly.

All candidate protocols that survive early pruning are
sent to a protocol verifier, where a stronger (and slower)
verification step is executed. Since pruning is fast and
cheap, separating the screening into two levels offers sig-
nificant advantages. For example, given “two-party au-
thentication” as our security specification in Figure 6,
protocol (b) is eliminated in early pruning because it does
not pass the impersonation attack test, and protocols (c)
(d) (e) pass the early pruning and are sent to the protocol
verifier.

When inserting heterogeneity in other types of security
protocols, we can use a different protocol verifier. For
any verifier, it is possible to design a set of early pruning
criteria according to the security protocol specifications,
as we did with Athena.

2.4.2 Protocol Verification

We use the Strand Space method [41] for verifying can-
didate protocols. We briefly review the key algorithms:
Given a security protocol and its security requirements,
we verify whether a list of security requirements are sat-
isfied by the protocol. For example, the security spec-
ification that “the initiator and responder authenticate
each other” is expressed by the following formulas in
Athena [36].

∀CP .CP |= (initiator[PA, PB, NA, NB]

=⇒ responder[PA, PB, NA, NB])

∀CP .CP |= (responder[PA, PB, NA, NB]

=⇒ initiator[PA, PB , NA, NB])

The first formula expresses that “the initiator authenti-
cates responder”, i.e., if the protocol claims to an initiator
A, that A has completed the protocol with a responder B
and nonce values NA and NB, then a corresponding re-
sponder B must exist who has executed a protocol with A,
also using nonce values NA and NB. The second formula
similarly expresses that “the responder authenticates the
initiator.” The implication of the security specification
is that A and B will successfully authenticate each other

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 50

Table 1: Average time to generate three round authentication protocols
Cost ≤12 ≤15

The probability that a protocol passes early pruning (p1) 0.49% 6.4%
The probability that a candidate protocol is valid (p2) 37.72% 53.86%

Average time early pruning (t1) (ms) 4e-3 4e-3
Average verification time for invalid protocols (t2a) (ms) 14 19

Average verification for valid protocols (t2b) (ms) 22 22
Expected number of tests before a valid protocol (N) 541.04 29.01

Expected time taken before a valid protocol is found (T) (ms) 47.28 38.39
T/t2b 2.15 1.75

even if zero to an unlimited number of attackers exist.
That is, protocols that pass the Athena verifier are secure
even if zero to an unlimited attackers exist.

Protocol execution in Athena is represented as states.
Athena transforms verification into a proof search of a
state tree. Starting from an initial state, the verification
process is a process of goal-binding. A set of inference
rules is applied to each state and yields a set of subse-
quent states, growing a proof tree rooted from the initial
state. If the proof tree grows to include a bad state that
violates the security specification, we report that the pro-
tocol is incorrect. If the proof tree is completed with no
bad states, we report that the protocol is correct.

Variables, concatenation, and encryption are each as-
signed a cost metric, so that every message has a cost
metric. For example, each variable is assigned a single
unit cost, a concatenation is assigned a zero unit cost,
and each encryption is assigned a single unit cost. The
cost of message {PA, NA}KA

is therefore 1+1+0+1 = 3.
The cost of a protocol is the sum of cost of every message
in the protocol. To control protocol cost, a cost threshold
is set and protocols exceeding that threshold are pruned.

Athena [36] attempts to find the protocol with low-
est possible cost satisfying a security specification. Our
goal is somewhat different. Instead, we wish to generate
a large number of protocols that satisfy an input security
specification. For example, in Figure 6, the protocols (c),
(d), and (e) are sent to the verifier. Protocol (c) is elimi-
nated because it suffers from a man-in-the-middle attack.
Both (d) and (e) pass the verifier and will be used as valid
protocols, even though (e) is not as efficient as (d)2.

3 Implementation and Simulation

of Two-Party Authentication

We built a random protocol generator that supports two
party authentication to test our ideas. Although we used
symmetric key algorithms for our test, our experience
with automatic protocol generation suggests that asym-
metric encryption will yield similar results.

2Note that Protocol (e) is actually the ISO/IEC 9787 symmetric-
key three pass mutual authentication protocol [16]

Song and her collaborators implemented verification in
Athena using SML [30, 31, 37, 38]. In this paper, we reim-
plemented it in Java to make the operation much faster
and to integrate well with other parts of our system. Ca-
sual inspection suggests that our Java version is approx-
imately several hundreds times faster than the original
SML version, although the original also supported ad-
vanced user interface functions not supported in our ver-
sion. The performance improvement was achieved by: 1)
adding a stronger early pruning heuristic; 2) changing the
order of state tree expansion in the strand space model
such that invalid subtrees are cut early; 3) fixing bugs in
the previous SML implementation.

Our experiments were performed on a Pentium-IV
3.0GHz running Linux with 1GB of memory. Our exper-
iments allowed us to compute values for the parameters
p1, p2, t1, t2a and t2b (see Section 2). These are presented
in Table 1 and discussed below.

3.1 Preliminary Pruning

Preliminary pruning winnows the space of all possible pro-
tocols into a smaller set of candidate protocols. As an ini-
tial step, we generated the set of all well-formed messages
once and stored them onto a hard drive for later use. The
number of well-formed messages are shown in the follow-
ing table for the case of one to two keys and three to four
variables:

|KeySet| = 1 |KeySet| = 2

|VarSet| = 3 63 511

|VarSet| = 4 255 4095

The space of all protocols is more compact if we use
only well-formed messages (see Section 2.4.1) to enumer-
ate protocols, which eliminates the need for message level
pruning. In a two-party authentication protocol using
only two nonces, the variable set for the first message
is (PA, PB, NA), from which 63 well-formed messages are
composed. The variable set for the second and later mes-
sages are a subset of (PA, PB, NA, NB), from which 255
well-formed message are composed. (If more than two
nonces are used, the variable set will include more nonces
and thus form more messages.) For a three-round pro-
tocol enumerated from these messages, the number of all
protocols is 63 ∗ 255 ∗ 255 = 4096575 ≈ 4.10 × 106.

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 51

Table 2: Protocol-level pruning results for 3 to 6 round two-party authentication protocols. (A) Number of reasonable
protocols generated under the cost threshold; (B) Number of protocols that fail impersonation attack test; (C)
Number of protocols that fail replay attack test; (D) Number of candidate protocols left (and its ratio p1 in all
protocols). Note: the sum of the (B), (C) and (D) is larger than (A), because some protocols are eliminated for both
impersonation attacks and replay attacks

rounds cost≤9 cost≤12 cost≤15 cost≤18 cost≤21 cost≤24 cost≤27
A 21122 210532 977607 2110418 2549249 2581571 2582823
B 9903 132363 574493 1022907 1116873 1119390 1119392

3 C 13087 64400 148237 204807 220983 222433 222447
D 255 20108 262373 890208 1218897 1247252 1247488

(0.006%) (0.49%) (6.4%) (21.73%) (29.75%) (30.44%) (30.45%)
A 68154 1970803 2.964× 107 2.599 × 108 1.343× 109 3.957 × 109 6.736× 109

B 26435 1285501 2.227× 107 1.898 × 108 8.745× 108 2.207 × 109 3.267× 109

4 C 51770 776119 5.369× 106 1.970 × 107 4.215× 107 6.071 × 107 6.968× 107

D 178 54889 2.926× 106 5.293 × 107 4.300× 108 1.693 × 109 3.404× 109

A 2.504× 108 5.254 × 109

B 1.822× 108 4.155 × 109

5 C 7.215× 107 7.441 × 108

D 1.073× 107 5.106 × 108

A 1.013× 109

B 6.941× 108

6 C 3.802× 108

D 2.074× 107

We assigned a cost metric of a single unit cost for the
use of a name or nonce, and we assigned encryption a
single unit cost. With these cost assignments, the total
cost of a three-round authentication protocol is at most
27. All reasonable protocols under the cost threshold are
sent on to protocol-level pruning.

In our experiment, we considered a variety of different
values for the number of message rounds, ranging from 3
to 6. The experimental results for the number of protocols
at each pruning stage are shown in Table 2.3

The average time for the early pruning test on a pro-
tocol was 4 · 10−3 ms in our experiment. This value is
proved to be almost constant, even as the number of mes-
sage rounds increased or the cost threshold increased. For
the case of three round protocols, the values of parameter
p1 were computed for later use (Section 3.3) according to
the following formula:

of candidate protocols

of all protocols
=

of candidate protocols

4096575
,

where 4096575 is the number of all three-round authenti-
cation protocols shown above.

3.2 Protocol Verification

In the protocol verification step, we winnowed the space of
candidate protocols to yield the space of valid protocols.
We focused on finding 1) the number of valid protocols;

3To indicate the trend, we present the results for 5-round and 6-
round protocols using cost thresholds of 15 and 18. Time constraints
prevented us from using higher cost thresholds that produced sig-
nificantly more protocols.

and 2) the time taken for verification. We examined the
verification of three round protocols with a cost threshold
of 12 and 15.

3.2.1 The Number of Valid Protocols

Table 3 shows that the ratio of valid protocols to candi-
date protocols (p2) is significant, especially when the cost
threshold increases. The increase in cost reflects the in-
crease complexity of protocols. Our experiments surpris-
ingly suggest that complicated candidate protocols are
more likely to be valid than simpler protocols.

3.2.2 Verification Time

Table 5 shows the time used per protocol in early pruning
and verification. Early pruning time (t1) is dwarfed by
the time taken to verify a candidate protocol (t2a or t2b).
That is, t1 � t2a and t1 � t2b.

Median verification time does not significantly increase
as the cost threshold increases. However, this is not true
for the mean verification time — a small fraction of the
candidate protocols require an extremely long time for
verification. The distribution of verification time with
cost threshold 12 is shown in Figure 7 and 8. For the cost
threshold of 15, the distribution is similar. (Note that
both diagrams abbreviate the x axis since only a small
number of protocols require more than 2500 ms.)

Table 5 shows that valid protocols take longer to verify
than invalid ones take to fail verification. This is gener-
ally true because the verifier tests more strand states for
valid protocols than for invalid protocols. Statistics for

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 52

Table 3: Ratio of valid protocols to candidate protocols
Cost ≤12 ≤15

Candidates 20108 262373
Valid Candidates 7585 141311

(p2) (37.72%) (53.86%)
Invalid Candidates 12623 121062

(1 − p2) (62.28%) (46.14%)

Table 4: Number of verification states
12 15

States # of MEAN 9.3 14.68
verifying an MEDIAN 9 9

invalid protocol MAX 382 734
States # of MEAN 25.76 35.77
verifying a MEDIAN 12 13

valid protocol MAX 755 755

Table 5: Time used in protocol generation
12 15

Average early pruning time per protocol - t1 4e-3ms 4e-3ms
Verification time per MEAN 35.10ms 100.48ms
protocol for invalid MEDIAN 14ms 19ms

protocols - t2a MAX 9485ms 19190ms
Verification time per MEAN 133.85ms 244.84ms

protocol for valid MEDIAN 22ms 22ms
protocols - t2b MAX 11335ms 16715ms

the number of states and their distribution (cost ≤ 12)
are shown in Figure 9 and 10. When the cost threshold
is set at 15, the distribution is similar.

3.3 Protocol Generation Time

Given the simulation results from Tables 2, 3 and 5, we
can compute two performance related parameters defined
in Section 2: N , the average number of protocols that
must be tested before a valid protocol is found, and T ,
the average time required to find a valid protocol. We are
also interested in T/t2b, which is the ratio of total time
to the verification time of valid protocols. Table 1 shows
the values of N and T for a three-round authentication
protocol as the cost threshold is set to 12 and 15.

Table 5 shows that t2a and t2b all increase as cost
threshold increases, but t2a/t2b remains roughly constant.
This is because verification time increases proportionally
for both valid and invalid protocols. Given t1 � t2a and
t1 � t2b, we have (C is a constant):

T

t2b

=
(1

p1

− 1) 1
p2

t1 + (1
p2

− 1)(t1 + t2a) + (t1 + t2b)

t2b

≈ (
1

p2
− 1)

t2a

t2b

+ 1 ≈ (
1

p2
− 1)C + 1

Therefore, T/t2b decreases as p2 increases. Table 3
show that p2 increases as cost threshold increases, thus,
we expect T/t2b is even smaller for higher threshold than
15.

4 Discussion and Future Work

In this section, we explore the security benefits and trade-
offs in applying heterogeneity to the design and use of
cryptographic protocols. We also discuss open problems
and future work.

4.1 Application Scenarios

Heterogeneous protocols are beneficial to applications in
which the failure of some machines is tolerated but the
failure of all machines is not acceptable. For example, in
a system designed for data redundancy and distributed
storage, it may be acceptable if a number of machines
(e.g., 30%) are faulty [17]. However, in order to prevent
catastrophic data loss, at least one machine or a given
subset of the machines must function properly. If such a
system is designed using homogeneously configured ma-
chines, it is possible for all machines to fail in the pres-
ence of an automated replicated attack. To guarantee
that failures among individual machines are independent,
each software component in individual machines should
be diversified while providing the same high-level inter-
face.

Protocol heterogeneity is not a panacea for all attacks
on security protocols. In particular, heterogeneity is de-
signed to prevent protocol-based attacks where the at-
tacker gain is proportional to the number of machines
compromised. By significantly increasing the cost and
difficulty for each attack, protocol heterogeneity can slow
down, if not completely stop, automatically replicated at-
tacks. Heterogeneity may not prevent those attacks for
which it is sufficient to compromise one machine. Slow-
ing down the attack replication process is beneficial to
the distributed computing environment (e.g. the network
infrastructure) and thus protects the population of com-
puters as a whole.

Protocol heterogeneity itself is not enough to diversify
machines. Rather, protocol heterogeneity can be used
as a basic building block, along with other approaches
to diversify software, to increase diversity in computer
populations. When homogeneous protocols are used, the
protocol layer is a single point of failure in systems that
require diversity.

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 53

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500#
of

 v
al

id
 p

ro
to

co
ls

 (
lo

g-
sc

al
e)

verification time (ms)

Figure 7: The distribution of verification time (t2b) for
valid protocols

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500#
of

 in
va

lid
 p

ro
to

co
ls

 (
lo

g-
sc

al
e)

verification time (ms)

Figure 8: The distribution of verification time for (t2a)
invalid protocols

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400#
of

 v
al

id
 p

ro
to

co
ls

 (
lo

g-
sc

al
e)

of states

Figure 9: The distribution of number of states in verifi-
cation for valid protocols

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400#
of

 in
va

lid
 p

ro
to

co
ls

 (
lo

g-
sc

al
e)

of states

Figure 10: The distribution of number of states in verifi-
cation for invalid protocols

4.2 Seed Agreement

We have shown in previous sections how a valid protocol
can be generated from a seed s. In order to reach the
same protocol, the communicating parties first agree on
a common seed s. In most cases, choosing a random seed
is simpler than other secure protocols. A seed agreement
method ideally reveals the seed to both parties and yields
a seed value that can not be controlled by either party.
This property is important in preventing an adversary
from forcing a particular protocol to be chosen out of the
space of valid protocols. Below we provide alternative
methods for seed creation.

In cases where the seed is public, we assume that the
protocol is also public (because it is possible to derive the
seed and thus the protocol). For example, if weak time
synchronization is possible, the seed could simply be a
function of the IP addresses of the communicating ma-
chines and the time or date. Suppose A wants to initiate
a session with B, the protocol to be used is generated by
a seed s as discussed in Section 2, s = H ′(IPA, IPB, time),
where IPA and IPB are IP addresses of A and B, H() is
an one-way function and “time” can be “date”, “hour” or
“minute” depending on how fast we want the protocol to
be changed and how accurate our time synchronization is.
Section 3 shows that protocol generation is cheap, so the
overhead of generating a new protocol is not a concern.

In this example, an attacker must generate all possible

valid protocols for various times in the immediate future
and discover flaws in these protocols. An attacker must
have knowledge of a specific IP, and have the resources
to spoof that IP address, in order to mount attack at
some specific time. Then the malicious user must wait for
the corresponding time to mount the attack. This attack
can only succeed against a small number of machines in
the whole network and only for the short time that the
protocol is used.

There are at least three security benefits that can be
achieved with heterogeneous protocols using public seeds.
First, an attacker must spend some effort in deriving the
seed and generating many protocols before attacking a
protocol as usual. Second, it is very difficult to construct
an automatically replicated attack across the whole net-
work. Even if an attacker is able to mount a successful at-
tack for one pair of communicating parties, he is not able
to easily replicate that attack across the network with
other parties using other short-lived protocols. Finally,
since the duration of use of each protocol is short, any
vulnerabilities introduced by a flawed protocol are lim-
ited, in contrast to homogeneous protocols where flaws
may exist until discovered or exploited.

Thus, heterogeneous protocols do not rely on “security
by obscurity”. The robustness of heterogeneous protocols
does not rely on keeping the seed secret or on hiding flaws
in protocols. Assuming a non-perfect protocol verifier, we

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 54

do not claim that protocol heterogeneity prevents all pos-
sible attacks on all peers. Instead, heterogeneity increases
robustness and fault-tolerance of the entire network by
making attacks more difficult to mount and replicate.

In some cases, we may want to increase the difficulty of
an attack by preventing third parties from easily obtain-
ing the seed, which requires an extra seed exchange step.
Seed exchange can occur offline (in the most secure case)
or through a online seed handshake protocol. Communi-
cating parties can decide to handshake a new seed at any
time, with any frequency. As an example, we present a
seed exchange protocol in Appendix B. In the case of pri-
vate seeds, an adversary must first discover the seed and
then find the corresponding protocol before mounting an
attack. For short-lived uses of protocols drawn from large
protocol spaces, this is likely to be difficult or intractable.

4.3 Dependence on the Security of Pro-

tocol Generators and Verifiers

What is the impact on heterogeneous protocols if the veri-
fier is flawed? To analyze this, suppose that a fraction p of
valid protocols generated from a specific protocol genera-
tor are “truly” correct and secure. The higher the quality
of a generator is, the closer p is to 100%. When we say a
verifier is flawed, it means that p < 100%.

In theory, automatic protocol verification tools such
as Athena can be proved to be correct. However we
can never claim that a specific implementation (e.g., our
Athena implementation) of a formal verification method
(e.g., the strand space model) is without flaws. In the case
of heterogeneous protocols, a flaw in the verifier imple-
mentation may introduce some flawed protocols into the
valid protocol pool, depending on p, but will not result
in flaw in every protocol generated. A flawed heteroge-
neous protocol, like a flawed homogeneous protocol, can
introduce serious vulnerabilities to communicating par-
ties using that protocol. As discussed above, some secu-
rity benefits to a population of computers may still apply
because of the difficulty in replicating attacks. Reducing
the duration of use of protocols will also mitigate vulner-
abilities.

Another difficulty in using automated protocol gener-
ation tools is the problem of “incomplete specifications.”
Often, it is difficult to specify the complete list of require-
ments that a security protocol must meet if it is to sat-
isfy application needs. If the specification is incomplete,
flawed protocols can be introduced into the valid protocol
pool. In contrast, humans design protocols based on the
stated specifications, but also using their knowledge and
intuition to avoid security flaws. In this sense, human-
generated protocols are much more robust to “incomplete
specification” failure than computer-generated protocols
are.

To limit the number of flawed protocols introduced in
the valid pool, several verifiers can be used together. To
further introduce diversity, different sets of verification
tools can be used at different points in a network. This

solution may present challenges for interoperability and
deserves further study.

4.4 Comparing Protocol Heterogeneity

to Other Approaches

There are other approaches to achieve heterogeneity at
protocol layer. For example, we can encrypt any ho-
mogeneous protocol with an exchanged (random) sym-
metric key. Suppose all messages in a t-round protocol
P = {m1, · · · , mt} are encrypted by a symmetric key K.
However, the result is another t-round homogeneous pro-
tocol P ′ = {(m1)K , · · · , (mt)K}. The entire exchange of
messages will be vulnerable to traffic analysis. To reduce
the vulnerabilities of a single key, K must be changed
often, which presents key management challenges.

Another option to introduce heterogeneity is to vary
the implementation rather than the protocol. However,
in practice, we can generate many more protocols than im-
plementations. Therefore, the heterogeneity achieved by
protocol randomization is much higher than that achieved
with multiple implementations of a single protocol.

4.5 Heterogeneity and Standardization

When comparing the benefits of diversified software or
communication protocols to standardized homogeneous
software or protocols, we can not ignore the cost sav-
ings and security benefits of standardization. Homoge-
neous software is a larger target of attack, because a larger
number of machines can be compromised with the same
cost to an attacker. Homogeneous software is also sub-
ject to greater scrutiny and security analysis, because of
the larger benefit that can be achieved by discovering one
vulnerability (in preventing a larger number of attacks).
Once a vulnerability is discovered in the homogeneous
case, it is more likely to be addressed or patched, if it
affects a larger number of machines.

Furthermore, heterogeneous software can impose
higher interoperability and maintenance costs. In general,
it is easier to maintain multiple machines if they have the
same configuration. Currently, building and maintaining
diversified systems is more difficult than the homogeneous
case and may incur extra cost.

5 Related Work

Formal verification tools for security protocol analysis
have been studied for many years (an incomplete sampling
includes [5, 15, 21, 23, 24, 26, 37]). One influential direc-
tion of research investigates the use of model checking
systems for protocol verification, using Murφ [7, 8, 26], a
finite-state machine verification tool. After modeling the
protocol and desired properties into Murφ language, the
Murφ system checks if all reachable states of the model
satisfy a given specification through explicit state enu-
meration. Murφ is a more general tool than Athena and

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 55

has been used for analyzing many different types of secu-
rity protocols [25, 33, 34, 35]. But Murφ suffers from a
state space explosion problem, as do other model checker
methods.

Our work is related to other approaches to automati-
cally diversify software to improve security. Forrest, So-
mayaji and Ackley first proposed several methods for
achieving software diversity based on techniques such as
adding or deleting non-functional code, randomization in
code order and randomization in memory allocation [11].
Several researchers have used randomization to mitigate
attacks that exploit memory programming errors, such
as buffer overflows. Chew and Song [4] proposed ran-
domization of system call mappings, global library entry
points, and stack placement. Xu, Kalbarczyk and Iyer de-
veloped Transparent Runtime Randomization, modifying
the Linux kernel to randomly relocate a program’s stack,
heap, shared libraries and parts of its runtime control
data structures inside the application memory address
space [42]. PaX uses address space layout randomization
(ASLR) to randomize the base address of the heap, code,
stack, and data regions [29]. Bhatkar, DuVarney and
Sekar implement similar address obfuscations, however,
they randomly transform object files and executables at
link-time and load-time, instead of modifying the oper-
ating system or compilers [2]. Cowan, Beattie, Johansen
and Wagle describe a compiler technique to defend against
pointer related buffer overflows by randomizing (encrypt-
ing) pointers when stored in memory [6]. Barrantes et al.
prevent binary code injection attacks by using random-
ized instruction set emulation (RISE), an instruction set
obfuscation technique implemented at the machine emu-
lator level [1]. The idea of automating diversity to secure
software and systems continues to be an active area of re-
search [3, 20]. Researchers have also argued that diversity
in operating systems can improve network’s resistance to
distributed attacks [13].

6 Conclusion

In this paper, we argue that heterogeneity should be an
important principle in design and use of cryptographic
protocols. We designed a scheme for randomly generating
security protocols as a method of introducing heterogene-
ity. In order to simulate a random protocol generator, we
implemented a highly efficient protocol verifier, achieving
approximately two orders of magnitude improvement in
performance. In our simulation for the case of two party
authentication protocols with three rounds, we found that
the number of candidate protocols that passed the verifier
was high (up to 54%) and that the average time to gen-
erate a random valid protocol was on the order of 38-47
ms. This leads us to believe that choosing protocols ran-
domly out of sets numbering in the hundreds of millions
is practical and achievable with an acceptable overhead.

7 Acknowledgments

This work was in part funded by the United States Postal
Service and US National Science Foundation contracts
EIA-01225989 and CCS-0424422. The views in this paper
are those of the authors and do not necessarily reflect the
views of the US government or any funding sponsor.

References

[1] Barrantes, Ackley, Forrest, Palmer, Stefanovic, and
Zovi, “Randomized instruction set emulation to dis-
rupt binary code injection attacks,” in Proceedings of
the 10th ACM CCS conference, pp. 281–289, 2003.

[2] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address
obfuscation: An efficient approach to combat a broad
range of memory error exploits,” in Proceedings of the
12th Usenix Security Symposium, pp. 105-120, 2003.

[3] Carnegie Mellon University Cylab, Cyberdiversity.
Carnegie mellon researchers tap biology to fend off
computer worms, virus attacks, 2004.

[4] M. Chew and D. Song, Mitigating buffer overflows
by operating system randomization, Technical Report
CMU-CS-02-197, 2002.

[5] E. M. Clarke, S. Jha, and W. R. Marrero, “Partial
order reductions for security protocol verification,”
Tools and Algorithms for Construction and Analysis
of Systems, pp. 503-518, 2000.

[6] C. Cowan, S. Beattie, J. Johansen, and P. Wa-
gle, “PointGuard: Protecting pointers from buffer
overflow vulnerabilities,” in Proceedings of the 12th
USENIX Security Symposium, IEEE Computer So-
ciety Press, pp. 91-104, 2003.

[7] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang,
“Protocol verification as a hardware design aid,” in
International Conference on Computer Design, pp.
522-525, 1992.

[8] D. L. Dill, “The Murφ verification system,” in
Proceedings of the Eighth International Conference
on Computer Aided Verification CAV, Rajeev Alur
and Thomas A. Henzinger, vol. 1102, pp. 390-393,
Springer Verlag, New Brunswick, NJ, USA, 1996.

[9] D. Evans, What biology can (and can’t)
teach us about security, Invited talk
at USENIX Security Symposium, 2004,
http://www.cs.virginia.edu/ evans/talks/usenix04/.

[10] Federal Information Processing Standards Publica-
tion, Data encryption standard (DES), no. 46-2,
1993.

[11] S. Forrest, A. Somayaji, and D. Ackley, “Building
diverse computer systems,” in Proceedings of the
Sixth Workshop on Hot Topics in Operating Systems,
IEEE Computer Society Press, pp. 67-72, 1997.

[12] A. O. Freier, P. Karlton, and P. C. Kocher,
The SSL Protocol (Version 3.0), Mar. 1996,
http://wp.netscape.com/eng/ssl3/ssl-toc.html.

[13] D. Geer, R. Bace, P. Gutmanm, P.Metzger, C.
P. Pfleeger, J. S. Quarterman, and B. Schneier,

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 56

CyberInsecurity: The cost of monopoly. How
the dominance of Microsoft’s products poses
a risk to security, Computer and Commu-
nications Industry Association Report, 2003,
http://www.ccianet.org/filings/cybersecurity
/cyberinsecurity.pdf.

[14] O. Goldreich, Secure multi-party computation, Final
(incomplete) draft, version 1.4, 2002.

[15] N. Heintze, J. D. Tygar, J. Wing, and H. C. Wong,
“Model checking electronic commerce protocols,” in
Proceedings of the USENIX 1996 Workshop on Elec-
tronic Commerce, pp. 147-164, Nov. 1996.

[16] International Standards Organization, Information
technology - Security techniques entity – Authentica-
tion mechanisms part 3: Entity authentication using
symmetric techniques, ISO/IEC 9798, 1993,

[17] F. Junqueira, R. Bhagwan, K. Marzullo, S. Savage,
and G. M. Voelker, “The phoenix recovery system:
Rebuilding from the ashes of an Internet catastro-
phe,” in Proceedings of HotOS IX: The 9th Work-
shop on Hot Topics in Operating System, pp. 73-78,
May 2003.

[18] J. Kelsey, B. Schneier, and D. Wagner, “Protocol In-
teractions and the Chosen Protocol Attack,” in Se-
curity Protocols, 5th International Workshop April
1997 Proceedings, pp. 91-104, Springer-Verlag, 1998.

[19] V. Klima, O. Pokorny, and T. Rosa, “Attacking
RSA-based sessions in SSL/TLS,” in CHES, LNCS
2779, 3-540-40833-9, pp. 426-440, Springer-Verlag,
2003.

[20] J. Knight, GENESIS: A farmework for
achieving component diversity, DARPA Self-
regenerative Systems PI Kickoff Meeting, 2004,
http://www.cs.virginia.edu/genesis
/darpa.srs.kickoff.ppt.

[21] G. Lowe, “ Breaking and fixing the Needham-
Schroeder public-key protocol using FDR,” Tools and
Algorithms for the Construction and Analysis of Sys-
tems (TACAS), vol. 1055, pp. 147-166, Springer-
Verlag, Berlin Germany, 1996.

[22] U. M. Maurer, “Fast generation of prime numbers
and secure public-key cryptographic parameters,”
Journal of Cryptology: the journal of the Interna-
tional Association for Cryptologic Research, vol. 8,
no. 3, pp. 123-155, Summer, 1995.

[23] C. A. Meadows, “A model of computation for the
NRL protocol analyzer,” CSFW, pp. 84-89, 1994.

[24] C. A. Meadows, “Formal verification of crypto-
graphic protocols: A survey,” in ASIACRYPT: Ad-
vances in Cryptology – ASIACRYPT: International
Conference on the Theory and Application of Cryp-
tology, LNCS 917, pp. 135-150, Springer-Verlag,
1994.

[25] J. C. Mitchell, V. Shmatikov and U. Stern, “Finite-
state analysis of security protocols,” Computer Aided
Verification, pp. 71-76, 1998.

[26] J. C. Mitchell, M. Mitchell, and U. Stern, “Au-
tomated analysis of cryptographic protocols using

Murφ,” in Proceedings of the IEEE Symposium on
Security and Privacy, pp. 141-153, May 1997.

[27] K. D. Mitnick, W. L. Simon, and S. Wozniak, The
art of deception: Controlling the human element of
security, John Wiley & Sons 1 edition, Oct. 2002.

[28] R. M. Needham and M. D. Schroeder, “Using en-
cryption for authentication in large networks of com-
puters,” Communications of the ACM, ACM Press,
0001-0782, vol. 21, no. 12, pp. 993-999, 1978.

[29] PaX Team, Documentation for the PaX project,
2003, http://pax.grsecurity.net/docs/index.html.

[30] A. Perrig and D. Song, “A first step towards the
automatic generation of security protocols,” in Sym-
posium on Network and Distributed Systems Security
(NDSS), pp. 73-83, 2000.

[31] A. Perrig and D. Song, “Looking for diamonds in the
desert — extending automatic protocol generation to
three-party authentication and key agreement proto-
cols,” in Proceeding of 13th IEEE Computer Security
Foundations Workshop, pp. 64-76, 2000.

[32] R. L. Rivest, A. Shamir, L. M. Adelman, A method
for obtaining digital signatures and public-key cryp-
tosystems, no. MIT/LCS/TM-82, pp. 15, 1977.

[33] V. Shmatikov and U. Stern, “ Efficient finite-state
analysis for large security protocols,” in PCSFW:
Proceedings of The 11th Computer Security Founda-
tions Workshop, IEEE Computer Society Press, pp.
106-116, 1998.

[34] V. Shmatikov and J. C. Mitchell, “Analysis of a fair
exchange protocol,” in Proceeding of the 7th Annual
Symposium on Network and Distributed System Se-
curity, pp. 119-128, 2000.

[35] V. Shmatikov and J. C. Mitchell, “Finite-state anal-
ysis of two contract signing protocols,” Theoretical
Computer Science, pp. 419-450, June 2002.

[36] D. Song, An automatic approach for building secure
systems, Ph.D. Thesis, Berkeley, 2000.

[37] D. Song, S. Berezin, and A. Perrig, “Athena: A
novel approach to efficient automatic security pro-
tocol analysis,” Journal of Computer Security, vol.
9, no. 1/2, pp. 47-74, 2001.

[38] D. Song, A. Perrig, and D. Phan, “AGVI — Auto-
matic generation, verification, and implementation
of security protocols,” in Proceedings of 13th Con-
ference on Computer Aided Verification (CAV), pp.
241-245, 2001.

[39] SSH Communications Security Inc., Cryp-
tography A-Z: Random number generator,
http://www.ssh.com/support/cryptography
/algorithms/random.html.

[40] J. Steiner, C. Neuman, and J. Schiller, “An authenti-
cation service for open network systems,” in Proceed-
ings of the USENIX Winter Conference, pp. 191-202,
Feb. 1988.

[41] J. Thayer, J. Herzog, and J. Guttman, “Strand
spaces: Proving security protocols correct,” Journal
of Computer Security, pp. 191-230, 1999.

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 57

[42] J. Xu, Z. Kalbarczyk and R. Iyer, Transparent run-
time randomization for security, Technical Report
UILU-ENG-03-2207, 2003.

[43] A. Yao, “How to generate and exchange secrets,” in
Proceedings of the 27th IEEE Symposium on Foun-
dations of Computer Science, pp. 162-167, 1986.

[44] A. C. Yao, “Theory and applications of trapdoor
functions,” in 23rd Annual Symposium on Founda-
tions of Computer Science, pp. 80-91, Nov. 1982.

Appendix A: Proof of Maximum

Message Depth

In Section 2.3, we mentioned that the maximum mes-
sage depth is 2 × |KeySet| + 2 = 2m + 2, if we disallow
multiple-encryption by the same key. Here we present an
informal proof. Because no key can be used to do en-
cryption twice, the most complicated message is formed
by “concatenation - encryption - · · · - concatenation - en-
cryption - concatenation - variable”, where “encryption”
shows up at most |KeySet| times. That is, in the message,
there are at most |KeySet| of encryptions, |KeySet| + 1 of
concatenations and one level of variable. All these add up
to |KeySet|+ (|KeySet|+ 1) + 1 = 2× |KeySet|+ 2. Thus,
the maximum message depth is 2×|KeySet|+2 = 2m+2.

Appendix B: A Variant of SSL Sup-

porting Online Seed Exchange

In Section 4.2, we discussed the use of secret seeds in
automatically generating protocols. In this section, we
discuss secret seeds in more detail, and we present an
online common (secret) seed exchange protocol that is
based on SSL and multi-party secure computation [14,
43].

In the most secure case, the seed exchange can occur
offline, which is made more practical by the small size
of the seed. In this scenario, two parties first agree on
an initial seed s(0) and may also share a pseudo random
function s(i+1) = fK(s(i)) which is based on their shared
secret key K. This ensures that the protocols used in
future communications will only be known by the parties
themselves.

We can also use an online seed handshake protocol.
The frequency of seed exchange can occur once per ses-
sion, once per several sessions, or can be low as only once
for a pair of hosts. As one example, we present a seed
exchange protocol based on SSL and multi-party secure
computation below. In this protocol, the seed is derived
from the contributions of both parties, which is not the
case in normal SSL. After the initial seed s(0) is agreed
upon, seeds used in next sessions are generated the same
as the offline case above without executing the handshake
protocol during each session. To avoid the danger of long
time secrets (i.e. the sequence of {s(i)} originated from

s(0)), the two parties can restart the handshake process
at some random time.

The SSL protocol [12] is a good example of protocol
that supports handshaking shared secrets between com-
municating parties. While in many configurations it also
supports secure authentication of one or more parties, one
of its valid configurations supports shared secret exchange
without authentication. The customized SSL handshake
protocol in Figure 11 provides a general framework for
sharing a secret. In this protocol, the client and server
each decide the content of their own secret and share it
with the other party in a secure way. However, in some
cases, secrecy from outsiders is not enough. That is, the
common seed also requires a contribution from both par-
ties so that neither party has full control over the seed
that is finally selected.

Suppose that A and B wish to establish a common
seed s. Initially, A has secret sA and B has sB, where
sA ∈ {0, 1}∗ and sB ∈ {0, 1}∗ are selected uniformly at
random. The established common seed s should be

s = H(sA, sB),

where H is a one way function known by both A and
B. To prevent B from controlling the selection of s,
A uses secret (symmetric) key SKA to protect its se-
cret: {sA}SKA

. Similarly, B uses {sB}SKB
. A will

not send B the key SKA until it receives {sB}SKB
, and

vice versa. After both parties receive the encrypted se-
cret from each other, they send out their protection key
(SKA or SKB). This process is similar to the coin flip-
ping problem in multi-party secure computation, where
no party opens its own commitment until it receives the
other commitments [14]. The seed handshake protocol
is shown in Figure 12. Note that s will be unknown
to an outside observer if the protocol is executed suc-
cessfully. In Figure 12,

{

sA, {checksum(sA)}K′

A

}

SKA

and
{

sB, {checksum(sB)}K′

B

}

SKB

are commitments of sA and

sB. The checksum prevents the following attack: Suppose
that one of the two parties, A, is malicious, and wishes
to force an initial seed value of s0, thereby forcing the
selection of protocol p = PGF(s0). A prepares a set of
keys SKi satisfying

Q = {0}SK0
= {1}SK1

= · · · · · · = {n}SKn
.

A sends Q as its {sA}SKA
. He then defers sending his

key SKA until he receives B’s key SKB. At this point, A
knows sB. A computes H(i, sB) for every i = 1, 2, · · · , n
to see if there exists a i0 such that H(i0, sB) = s0. A can
force the common seed to be s0 by sending SKi0 as its
SKA. In our protocol, to correctly open the commitments,
A and B have to send each other the original SKA and
SKB, which were previously used for encryption. The
checksum is actually in the format of {checksum(sA)}K′

A

and {checksum(sB)}K′

B
, which can also be viewed as the

commitments of KA and KB. Therefore, a malicious man-
in-the-middle can not change the public key KA and KB

to his own public keys.

International Journal of Network Security, Vol.4, No.1, PP.45–58, Jan. 2007 58

ClientKeyExchange
Change Secret
Finished

Change Secret

Finished

Application DataApplication Data

ServerClient

ClientHello

ServerHello
ServerKeyExchange

Figure 11: The customized SSL handshake protocol for
shared secret exchange only

A → B :
〈

{

sA, {checksum(sA)}K′

A

}

SKA

, KA

〉

B → A :
〈

{

sB, {checksum(sB)}K′

B

}

SKB

, KB

〉

A → B : {SKA}K′

A

On receiving the message, B

- Uses KA to decrypt SKA;

- Use SKA to decrypt sA and {checksum(sA)}K′

A

- Use KA to decrypt checksum(sA) and verify

checksum. If not correct, protocol fails.

B → A : {SKB}K′

B

On receiving the message, A repeats what B did

in the previous step.

Figure 12: The seed handshake protocol. KA and KB

are the public keys of A and B. K ′
A and K ′

B are the
corresponding private keys

Note that this is a seed exchange protocol, without au-
thentication, that can be used with heterogeneous authen-
tication protocols. If A and B successfully agree on the
same s, the protocol guarantees that no outsider knows s.
A man-in-middle, C, may attempt to agree on one seed,
s′, with A and on another seed, s′′, with B. However,
C will not be able to authenticate with A or B, because
the heterogeneous authentication protocol will fail. For
heterogeneous protocols that are not authentication pro-
tocols, an authentication component be added to the seed
exchange.

Li Zhuang is a Ph.D. student at
Electrical Engineering and Computer
Sciences Department at U. C. Berke-
ley. Her research interests include pri-
vacy, networking and operating sys-
tems. Before coming to Berkeley, she
got her master and bachelor degrees in
Computer Science from Tsinghua Uni-

versity, Beijing, China.

J. Doug Tygar is Professor of Com-
puter Science at UC Berkeley and also
a Professor of Information Manage-
ment at UC Berkeley. He works in the
areas of computer security, privacy,
and electronic commerce. His current
research includes privacy, security is-
sues in sensor webs, digital rights man-

agement, and usable computer security. His awards in-
clude a National Science Foundation Presidential Young
Investigator Award, an Okawa Foundation Fellowship,
a teaching award from Carnegie Mellon, and invited
keynote addresses at PODC, PODS, VLDB, and many
other conferences. Doug Tygar has written three books;

his book Secure Broadcast Communication in Wired and
Wireless Networks (with Adrian Perrig) is a standard ref-
erence and has been translated to Japanese. He designed
cryptographic postage standards for the US Postal Service
and has helped build a number of security and electronic
commerce systems including: Strongbox, Dyad, Netbill,
and Micro-Tesla. He served as chair of the Defense De-
partment’s ISAT Study Group on Security with Privacy,
and was a founding board member of ACM’s Special In-
terest Group on Electronic Commerce. He helped create
and remains an active member of TRUST (Team for Re-
search in Ubiquitous Security Technologies). TRUST is a
new National Science Foundation Science and Technology
Center with headquarters at UC Berkeley and involving
faculty from Berkeley, Carnegie Mellon, Cornell, Stan-
ford, and Vanderbilt. Before coming to UC Berkeley, Dr.
Tygar was tenured faculty at Carnegie Mellon’s Computer
Science Department, where he continues to hold an Ad-
junct Professor position. He received his doctorate from
Harvard and his undergraduate degree from Berkeley.

Rachna Dhamija is a Postdoctoral
Fellow at the Center for Research on
Computation and Society at Harvard
University. Her research interests span
the fields of computer security and hu-
man computer interaction. She re-
ceived a Ph.D. from the School of In-
formation Management and Systems

at U.C. Berkeley in 2005. Her thesis focused on the design
and evaluation of usable systems for user and server au-
thentication. Prior to Berkeley, she worked on electronic
payment system privacy and security at CyberCash.

