
International Journal of Network Security, Vol.4, No.1, PP.17–26, Jan. 2007 17

Data Hiding in a Kind of PDF Texts for Secret

Communication

Shangping Zhong1,3, Xueqi Cheng1,2, Tierui Chen1,2

(Corresponding author: Shangping Zhong)

Software Division, Institute of Computing Technology, Chinese Academy of Sciences1

P.O. Box 2704, Beijing 100080, P. R. China (Email: zhongshangping@software.ict.ac.cn)

Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China2

Department of Computer Science and Technology, Fuzhou University, Fuzhou 350002, P. R. China3

(Received Aug. 13, 2005; revised and accepted Oct. 1 and Nov. 5, 2005)

Abstract

In this paper, we present a novel steganographic tech-
nique for hiding data in a kind of PDF texts. We first
point out the secret channels in a kind of PDF English
texts, which are generated from documents that make the
texts justified to occupy the full line width and position
each character individually. In succession, we describe our
steganographic system PDFStego in which several strate-
gies are applied to improve security, such as making use
of redundancy to complement security; constituting two
chaotic maps to meet the Kerckhoffs principle and to pre-
vent statistical attacks, and applying the secure hash al-
gorithm to enable integrity service and blindly extracting
service. Moreover, we define the embedding capacity of
our system. PDFStego can be used to exchange sensitive
data securely or to add copyright information to the PDF
files.

Keywords: Embedding capacity1, PDFStego, PDF text,
secret channel, secure strategy, steganography

1 Introduction

1.1 Background and Related Work

Communication between two parties over long distances
has always been subject to interception. This led to the
development of encryption schemes. Encryption schemes
achieve security basically through a process of making a
message unintelligible so that those who do not possess
necessary keys cannot recover the message. Though en-
cryption can hide the content of a message, the existence
of an encrypted communication in progress can not be
hidden from a third party. Also if the third party discov-
ers the encrypted communication, they might be able to
decipher the message. The need to avoid this led to the

1This work is supported by the National High Technology Devel-

opment 863 Program of China under Grant No.2002AA119010-4.

development of steganography schemes which compensate
encryption by hiding the existence of a secret communica-
tion. Steganography provides good security in itself and
when combined with encryption becomes a powerful se-
curity tool [13].

The general model of hiding data in other data can
be described as follows. The embedded data is the mes-
sage that one wishes to send secretly. It is usually hid-
den in an innocuous message referred to as a cover-text,
or cover-image or cover-audio as appropriate, producing
the stego-text or other stego-object. A stego-key is used
to control the hiding process so as to restrict detection
and/or the recovery of the embedded data to parties who
know it (or who know some derived key value). As the
purpose of steganography is having a covert communica-
tion between two parties whose existence is unknown to a
possible attacker, a successful attack consists in detecting
the existence of this communication. Copyright marking,
as opposed to steganography, has the additional require-
ment of robustness against possible attacks [14].

All steganographic techniques share the same basic
premise: they take a media and by modifying it in a
subtle way, create meaning in it that can only be un-
derstood after a knowledgeable party examines it in a
special way. Once the data has been embedded, it may
be transferred across insecure lines or posted in public
places. Three most important properties of steganogra-
phy schemes are undetectability, perceptual transparency,
and capacity. The challenge is to embed as much data as
possible without noticeable degradation of the cover me-
dia and/or without detectable statistical changes of the
cover media under possibly attempted statistical tests. In
addition, applying the famous Kerckhoffs principle that
security must lie only in the choice of key, we can ob-
tain a definition of a secure stego-system: a stego-system
for which an opponent who understands it, but does not
know the key, can obtain no evidence (or even grounds
for suspicion) that a communication has taken place.

International Journal of Network Security, Vol.4, No.1, PP.17–26, Jan. 2007 18

PDF is a file format used to represent a document in
a manner independent of the application software, hard-
ware, and operating system used to create it. A PDF file
contains a PDF document and other supporting data. A
PDF document contains one or more pages. Each page
in the document may contain any combination of text,
graphics, and images in a device- and resolution- indepen-
dent format. A PDF document may also contain infor-
mation possible only in an electronic representation, such
as hypertext links, sound, and movies, etc. [1]. Because
of the merits of PDF documents, they have become im-
portant interchange information among diverse products
and applications.

Now, PDF documents and applications become more
and more prevalent, but steganographic algorithms using
a PDF document as a cover-object draw little attention
within the steganography community. We mention that
steganographic algorithms using a PDF image (or other
media types) as a cover-object can make use of stegano-
graphic algorithms of image or other media types. Of
course, some steganographic methods using a structured-
text as a cover-text may give us some ideas, for exam-
ple [3, 4, 8, 9, 10, 11]. Unlike an image or audio, a
structured-text has little redundancy information for se-
cret communication. In [3, 4, 8, 9, 10, 11], these stegano-
graphic methods are proposed almost by varying the line
or word or character spacing or by varying certain charac-
ter features slightly. In [12], the Steganography based on
postscript documents is presented, where info is embed-
ded in spacings, font characteristics (angles, arcs). But
these steganographic methods have some weaknesses, for
example: A. The embedding capacity is small; B. The em-
bedding capacity is hard to be estimated; C. The security
is low, etc.

In addition, the reference [16] introduces a steganog-
raphy tool wbStego4 which can hide any type of file in
Adobe PDF files. Through analyzing the open source, we
know that wbStego4 embeds one Byte data between two
Indirect Objects in an Adobe PDF file (There are four
sections: Header, Body, Cross-reference table and Trailer
in an Adobe PDF file, and the Body of an Adobe PDF file
is made up of Indirect Objects. Details of PDF structure
can be found in [1]). When we use wbStego4, we find that
the embedding capacity is very small. When we read the
FAQs of wbStego, we also find that hiding data in a PDF
file will increase its file size, and there are no general rules
for the assessment of the amount of data a PDF file can
embed.

1.2 Summary of the Approach

Although text in a PDF file is resolution-independent,
there are still reasons to consider the resolution of the tar-
get device. Text positioning, in particular, may depend
on the primary target device. In PDF files, the position-
ing model is based on 2D vector-graph positioning model.
It is possible to individually position each character in a
string that uses, for example, the “TJ” operator. This

allows precise layout of the text. In this kind of PDF
files, the positioning of each character must be specified
by numbers. When we use editor software (for example
MS Word) to edit our documents, we often make the text
be justified to occupy the full line width, so that the right
margin is not ragged. In English text, this edit format
makes the position of each character random. Further-
more, when we create the above format PDF files from
the edit format text using the PDF Writer, the integer
numbers in the “TJ” operator string have enough ran-
domness to supply us with a secret channel.

In this paper, we make use of the secret channel to
hide data. A secure steganographic system PDFStego is
described in detail in this paper. In PDFStego, apply-
ing the page description principle of the “TJ” operator
with the property of perceptual transparency, we select
some of the integer numerals in the “TJ” operator string
to hide data. The strategy of using some redundancy to
complement security is applied. The selecting of the inte-
ger numerals depends on the key. To meet the Kerckhoffs
principle and to prevent statistical attacks, two Logistic
chaotic maps [6] have been constituted. In addition, the
secure hash algorithm (SHA) [15] is applied to supply in-
tegrity service. In the stego-system, we also use some
strategies to make us able to blindly extract data from
cover-texts easily. In addition, we define embedding ca-
pacity of PDFStego. PDFStego can be used to exchange
sensitive data securely or to add copyright information to
the PDF files (cover-texts).

1.3 Paper Outline

The rest of this paper is organized as follows. Section 2
introduces how to create PDF files as cover-texts. Section
3 presents the secret channel in a kind of PDF texts. The
secure steganographic system PDFStego is described in
detail in Section 4. Simulation results are given in Section
5, followed by conclusions and future work in Section 6.

2 Creating PDF Files as Cover-

Texts

Currently, PDF files may be generated either directly
from applications or from files containing PostScript page
descriptions. Many applications can generate PDF files
directly. As shown in Figure 1, the PDF Writer, available
on both Appler Macintoshr computers and computers
running the Microsoftr Windowsr environment, acts as
a printer driver.

The resulting PDF files are platform-independent. Re-
gardless of whether they were generated on a Macintosh
or Windows computer, they may be viewed by a PDF
viewing application on any supported platform.

Although text in a PDF file is resolution-independent,
there are still reasons to consider the resolution of the
target device. Text positioning, in particular, may de-
pend on the primary target device. It is possible to in-

International Journal of Network Security, Vol.4, No.1, PP.17–26, Jan. 2007 19

Windows Application

GDI

Macintosh Application

QuickDraw

PDF Writer

PDF Files

Figure 1: Creating PDF files using PDF Writer

dividually position each character in PDF files which are
created from Microsoft Word documents by many widely-
used PDF Writers (for example, Jaws PDF Creator [7]).
In the next section, we will use this kind of PDF files as
cover-texts.

3 Secret Channel in a Kind of

PDF Texts

PDF represents text and graphics using the Adobe 2D
vector-graph positioning model which is the same model
as the one used by PostScript language. Like a PostScript
language program, a PDF page description draws a page
by placing text and graphics on selected areas.

To “draw” text, a number of text objects are encap-
sulated in a PDF files. A PDF text object consists of
operators that specify text state (for example Tf opera-
tor), text positioning (for example Tm, Td, TD operator),
and text rendering (for example Tj, TJ operator)[1]. For
each element of the “TJ” operator strings of the kind of
PDF English text, which individually position each char-
acter and are created from Microsoft Word documents
that make the text justified to occupy the full line width.
If the element is a string, “TJ” shows the string; if it is
an integer numeral, it is expressed in thousandths of an
em. (An em is a typographic unit of measurement equal
to the size of a font. For example, in a 12-point font, an
em is 12 points.) “TJ” subtracts this amount from the
current x coordinate in horizontal writing mode, or from
the current y coordinate in vertical writing mode. In the
normal case of horizontal writing in the default coordinate
system, this has the effect of moving the current point to
the left by the given amount. An example of the use of
“TJ” is shown in Figure 2 [1].

In the kind of PDF texts which individually position
each character, the “Tc” and “Tw” operators are not ap-
plied to justify characters and words spacing settings. A
page-description example of a part of a PDF text is shown
in Figure 3. The strings in the angle brackets are multi-
byte encodings of characters, and the integer numerals
between the two angle brackets are used to position each

Figure 2: Operation of “TJ” operator

Figure 3: A page-description example of a part of a PDF
text

character or word. Intuitively, the integer numerals which
are used to position words (for example 65,54,333) are big-
ger than those which are used to position characters (for
example 4, 2, 1, K).

When making an English text justified to occupy the
full line width, the x coordinates (in horizontal writing
mode) of characters are random, especially after being
changed into integer numerals in PDF texts. Therefore,
we can make use of the integer numerals to hide data.

On the other hand, from the page description principle
of the “TJ” operator, we know that a PDF text will not be
changed its perceptual transparency property if we only
change a part of small integer numerals which are used
to position characters in the PDF text. Because if it is
a small integer numeral, let i be the integer numeral, for
example: 1 ≤ i ≤ 6, and let i′ be the changed integer
numeral, 1 ≤ i ≤ 16, then the difference of perception is
as follows:

abs(i−i′)×em

1000 , “em” is a typographic unit of measure-
ment as defined above, and “abs” is the absolute-value
function. Intuitively, when the em (or font size) has a
general size, the perceptual difference is very small. We
define that the small integer numerals is the embedding
units.

In the next section, we will discuss how we select the
small integer numerals to hide data, and how we design
the secure steganographic system.

International Journal of Network Security, Vol.4, No.1, PP.17–26, Jan. 2007 20

Figure 4: The user interface of PDFStego

4 PDFStego: A Secure Stegano-

graphic System

4.1 The User Interface of PDFStego

The user interface of PDFStego is shown in Figure 4.
From Figure 4, the kind of PDF files which are presented
by the above section are regarded as cover-texts, and var-
ious media data can be embedded in one PDF file. PDF-
Stego is a symmetric steganographic system, thus, the
stego-key and derived-key should be exchanged by other
secret channel.

4.2 Approach of Randomly Selecting the

Embedding Units Based on Logistic

Chaotic Map

The famous Logistic chaotic map[6] is defined as fol-
low: Xn+1 = f(xn, /mu) = /muxn(1 − xn)), 0 ≤ µ ≤

4, x ∈ [0, 1]. When 3.57 < /mu < 4, the iteration values
(x0, x1, . . . , xn, . . . ∈ [0, 1]) are random.

We define the parameter of redundancy is φ ∈ [0, 1], for
example, φ = 10%. According to Equation (1), if yn = 1,
we use the n th embedding unit to embed data.

yn =

{

1, xn ≤ (1 − φ)
0, xn > (1 − φ)

(1)

4.3 Hiding any Type of Media File in One

PDF File

In the embedding algorithm of PDFStego, we regard a
variety of media file as a binary stream, and change every
4 bits data into a “015” integer numerals by the following
mapping: 0000 → 0; 0001 → 1;; 1111 → 15 (In the
extracting algorithm, the anti-mapping is applied). Then,
we hide these “015” integer numerals into the embedding
units defined in the Section 3 by using the following em-
bedding algorithm and extracting algorithm. Obviously,
we can also change every 3 bits(or 2 bits, or 5 bits, . . .)
data into a “07”(or “03”, or “031”, . . .) integer numer-
als by the following mapping: 000 → 0; 001 → 1;;
111 → 7 (or . . .), and select “18”(or “14”, or “132”, . . .)
integer numerals in a PDF text as the embedding units.

As we know, “015”(or “07”, . . .) decimal integer nu-
merals can denote any 4-bit(or 3-bit, . . .) binary digit.
Thus, using the below embedding algorithm and extract-
ing algorithm, various media data can be embedded and
extracted in one PDF file, and as the analysis of the Sec-
tion 3, the PDF file can remains the property of percep-
tual transparency.

4.4 Embedding Algorithm

Figure 5 shows the overview of the data embedding steps,
and the following is the text description of the embedding
algorithm.

Step 1. Create a “015” integer-numeral database (Let
it be IND.)which will be embedded in the PDF text.
IND includes:

International Journal of Network Security, Vol.4, No.1, PP.17–26, Jan. 2007 21

Stego-key

Make the

flag

string :

FlagStr 1

Embedded data

Make the integer numbers

produced by translating

the each 4 -Bits into a

decimal numeral

Make the

flag

string :

FlagStr 2

"0¡«15

IND "

Produce

the

ChaoKey

Construct two chaotic

maps : Chao 1,Chao 2 which

make the ChaoKey as the

starting point . Let the

iteration values be

Chao 1Num , Chao 2Num .

No

Keep the

integer

numeral

constant

Yes

No

Yes

Take the 1-16

numeral

transformed

from

Chao 1Num to

substitute the

integer numeral

in the ¡° TJ¡–

operator string

Yes

Take the 1 -16 numerals

transformed from the Chao 1Nums

to substitute the 1-16 numerals in

the ¡° TJ¡– operator strings .

Ransack the integer

numerals in the ¡°TJ¡–

operator strings .

NoOrderly take

one of the

numerals in the

IND to

substitute the

numeral in the

¡° TJ¡–operator

string

If the absolute value of the

integer numeral is in 1-16

If the Chao 2Num is bigger

than 10 %.

The IND has been taken to finish

Figure 5: An overview of the data embedding steps

1) Twenty “015” integer numerals (Formed to be
a flag string, and denoted as FlagStr1), which
are produced by the following steps:

• Produce a 160-bit message digest by SHA-1
algorithm with the input of the embedded
data.

• Transform each 8-Bit data from the 160-bit
message digest into a ASCII code, and take
the ASCII code as the Mod(16) function’s
input.

2) The “015” integer numerals produced by trans-
forming each 4-Bit embedded datum into a dec-
imal numeral;

3) Twenty “015” integer numerals (Formed to be
a flag string, and denoted as FlagStr2), which
are produced by the following steps:

• Produce a 160-bit message digest by SHA-1
algorithm with the input of the stego-key.

• Transform each 8-Bit data from the 160-bit
message digest into a ASCII code, and take
the ASCII code as the Mod(16) function’s
input.

Step 2. Generate a real number by regarding zero as the
whole number and FlagStr2 as the decimal fraction.
Let the real number be ChaoKey.

Step 3. Construct two Logistic chaotic maps: Chao1
and Chao2 which make ChaoKey as the starting
point. Let the iteration values of the two chaotic
maps be Chao1Num and Chao2Num.

Step 4. Scan PDF text and pick out the integer nu-
merals in the “TJ” operator strings one by one. If
the absolute value of the current integer numeral, de-
noted as i, is in the span of [1, 16], and the current
Chao2Num is bigger than the parameter of redun-
dancy φ (for example, φ = 10%), take out one inte-
ger numerals of the integer-numeral database (IND)
in sequence, denoted as j (j ∈ [0, 15]), increase j by 1
and get a numeral j+1(j+1 ∈ [1, 16]), and substitute
i by j+1. Otherwise, if the Chao2Num is smaller than
the parameter of redundancy (for example, 10%),
then take one of the “015” numerals transformed
from Chao1Num, denoted as h (h ∈ [0, 15]), increase
it by 1 and get a numeral h + 1(h + 1 ∈ [1, 16]), and
substitute i by h+1; If the absolute value of the cur-
rent integer numeral i is bigger than 16, then keep i
unchanged. If IND is not empty but we have finished
scanning the PDF text, then we come to the conclu-
sion that the PDF text is not big enough to embed
the embedding data, so return false.

Step 5. Create the iteration values of Chao1Num and
Chao2Num. If the IND is empty now, then substi-
tute the “116” integer numerals in the “TJ” opera-
tor strings by the “116” numerals transformed from

International Journal of Network Security, Vol.4, No.1, PP.17–26, Jan. 2007 22

Chao1Nums and unchanged the integer numerals big-
ger than 16 until finishing scanning the PDF text.
Otherwise, the IND is not empty, then goto Step 4.

Step 6. Obtain the stego-texts (PDF files) which is
transformed from the cover-texts (PDF files) that
have already been embedded the embedding data.

4.5 Extracting Algorithm

Figure 6 shows the overview of the embedded data ex-
tracting steps, and the following is the text description of
the extracting algorithm.

Step 1. Twenty “015” integer numerals, which pro-
duced by the following steps:

• Produce a 160-bit message digest by SHA-1 al-
gorithm with the input of the derived-key.

• Transform each 8-Bit data from the 160-bit mes-
sage digest into a ASCII code, and take the
ASCII code as the Mod(16) function’s input.

In succession, increasing the “015” integer numerals
by 1, and get the “116” numerals. Let the “116” in-
teger numerals be the flag string, denoted as FlagStr.

Step 2. Generate a real number through regarding zero
as the whole number and FlagStr as the decimal frac-
tion. Let the real number be ChaoKey.

Step 3. Construct a Logistic chaotic map: Chao2,
which make ChaoKey as the starting point. Let the
iteration values of the chaotic map be Chao2Num.

Step 4. Scan PDF text and pick out the integer nu-
merals in the “TJ” operator strings one by one. If
the absolute value of the integer numeral picked out
is in [1, 16], and the Chao2Num is bigger than the
parameter of redundancy (for example, 10%), then
take the “116” integer numeral.

Step 5.1. Regard the beginning twenty “116” integer
numerals as the integrity flag string, and let it be
CheckStr.

Step 5.2. Regard the “116” integer numerals between
the twenty-first numeral and the reciprocal twenty-
first numeral (included) as the “116” integer numer-
als figure of the embedded data, turn the extracted
“116” integer numerals into general figure, and write
to a file. Let the file be EmbeddedFile.

Step 6. Compare the twenty numerals in CheckStr
with the twenty “116” integer numerals generated
by SHA-1 algorithm and Mod(16) function using the
EmbeddedFile as the input(Using the same steps as
the Step 1.). If they are completely the same, then
the embedded data have already been extracted suc-
cessfully. Otherwise, report error that the extracted
embedded data may have been tampered and it can-
not be used.

derived -key

Make the

flag

string :

FlagStr

Produce

the

ChaoKey

Construct a chaotic map :

Chao 2 which make the

ChaoKey as the starting point .

Let the iteration values be

Chao 2Num .

No

Report error .

Yes

No

Yes

Take the 1-16 integer

numeral

Yes

Compar e the numerals in CheckStr with the twenty 1-16 integer

numerals which produced by mak ing the EmbeddedFile as the

input of the SHA algorithm and Mod (16) function , if it is not any

difference , then the embedded data have already been withdrawn

successfully ; Otherwise , report error : the extracted embedded

data can 't be used .

Ransack the integer

numerals in the ¡°TJ ¡–

operator strings .

No

Extract the integrity

flag string : CheckStr .;

Extracting the

embedded data , and

writing to a

file :EmbeddedFile .

If the absolute value of the

integer numeral is in 1-16

If the Chao 2Num is bigger

than 10%.

If the system has obtained the

flag string :FlagStr .

If the system has ransacked the

integer numerals

No

Yes

Figure 6: An overview of the embedded data extracting
steps

International Journal of Network Security, Vol.4, No.1, PP.17–26, Jan. 2007 23

4.6 Estimation of Embedding Capacity

Let cm denote the amount of character in a PDF text.
We assume that there are sk% spacing and kerning pairs
which have been defined for the font in the PDF text
(we assume that all the characters in the PDF text are
in the same font). We also assume there are se% integer
numerals whose absolute values are in the span of [1, 16].
In addition, we define that the parameter of redundancy
is pr%. Then, we estimate the embedded-data capacity
as follows:

Capacity = ((cm − cm × sk%) × se%) × (1 − pr%) (2)

Let the embedded data’s size be ed. If Capacity >
(eq×8

4 + 40), then the embedded data can be embedded
into the channel. On the other hand, if we assume there
are se% integer numerals whose absolute values are in
“18”, and if Capacity > (fraceq × 83+40), the embedded
data can be embedded into the channel. We define the
rate of capacity as follows:

ed

em
× 100% (3)

From Figure 2, we can easily find the spacing and
kerning pairs (for instance, ¡0A04¿, ¡0F06¿, ¡0A14¿ and
¡0F0D¿, etc.) which have been defined for the font in
the PDF text. Anywhere from 50 to 1000 or more kern-
ing pairs may be defined for any one font. A handful of
the thousands of possible kerning pairs: Ay, AW, KO,
wa [2]. Here, cm, sk% and se% are different in differ-
ent PDF texts, and pr% is defined by us according to the
required embedding capacity, undetectability and percep-
tual transparency.

Furthermore, we can simply regard all the integer val-
ues in secret channel (described in Section 3) as the em-
bedding units rather than just those in the 1-16 range, and
use the low 4 bits (or 2 bits, or 3 bits) of the “selected”
integer values to embed data according to the above ap-
proach. This would increase embedding capacity, or make
the changes of stego-text even less visible.

4.7 Security Analysis

4.7.1 Obeying the Kerckhoffs Principle

In this paper,we only select some of the integer numerals
in the “TJ” operator string to hide data. The selecting
of integer numerals depends on the key, and the security
of the embedding and extracting algorithms obeys the
Kerckhoffs principle.

4.7.2 The Strategy of Using Some Redundancy

to Complement Security

The strategy of using some redundancy to complement
security is applied in this paper. Figure 7 shows the re-
lation of the three kinds of numerals. The parameter of
redundancy is defined by us. Of course, the strategy can
be used to enhance the security of the Steganographic
System.

The numerals within the

TJ operator strings

The 1 -16 numerals

within the TJ operator

strings

The 1 -16 numerals

selected to embed data

Figure 7: The relation of the three kinds of numerals

The numerals within the TJ operator strings

The 1-16 numerals within the TJ operator strings

Selecting a

part of 1-16
numerals to

embed

FlagStr 1

Selecting a part

of 1-16
numerals to

embed the

embedded -data

Selecting a

part of 1-16

numerals to

embed

FlagStr 2

Random

born 1-16

numerals

Figure 8: The order of embedding data

4.7.3 The Assurance Mechanism of the Data In-

tegrity and Blind Extracting

From the above embedding and extracting algorithms, we
know that the “015” integer-numeral database (IND) in-
cludes FlagStr1, the integer numerals translated from the
embedded data and FlagStr2. The order of embedding
also depends on the constituting sequence of the IND.

Figure 8 shows the order of embedding data. Through
this way, it not only makes the system support blind
extracting, but also guarantees the embedded-data’s in-
tegrity, thus it raises the system’s practicability.

4.7.4 Possible Attacks

Steganography mainly considers passive attacks, and the
discussion of active attacks is most common for water-
marking systems [5]. A passive attacker is only able to
analyze the data he could intercept. An active attacker is
allowed to modify the data. In this paper, we only discuss
the passive attacks.

The steganographic system can prevent stego-only-
attack and emb-stego-attack (Emb means the embedded
data) through the above security strategies. Because the
integer numbers in the kind of PDF files have enough ran-
domness to supply us with a secret channel, and hiding
data in a PDF file will not increase its size, the PDFStego
can prevent general statistical attacks. For cover-stego-
attack and cover-emb-stego-attack, we can use a set of
possible cover-texts (PDF files) to make the attackers un-

International Journal of Network Security, Vol.4, No.1, PP.17–26, Jan. 2007 24

Figure 9: An overview of a cover-text

able to decide which of the possible cover-texts were really
used for hiding.

5 Simulation Results

5.1 Perceptual Transparency Property of

PDFStego

Figure 9 is an English cover-text (a PDF file) created from
an MS Word document which makes the text justified to
occupy the full line width by Jaws PDF Creator [7]. The
cover-text has six pages with 24026 characters. Figure 10
is a Lena picture with the size of 4668 Bytes. Figure 11
is the stego-text which has embedded the Lena picture.

Intuitively, the stego-text remains the property of per-
ceptual transparency.

5.2 Embedding Capacity Evaluation

In the example of Subection 5.1, the cover-text has the
following properties: cm = 24026, sk ≈ 10%, and se ≈

60%. We define that the pr is equal to 10%, and we know
ed is equal to 4668. Then, according to Equation (1) and
(??), we have:

Capacity = ((cm − cm × sk%) × se%) × (1 − pr%)

= ((24026− 24026× 10%) × 60%)

× (1 − 10%)

≈ 11676 (Units)

Of course,

Capacity ≈ 11676(Units) = 46704(Bits)

> (
ed × 8

4
+ 40) = 9376(Units)

= 37504(Bits)

the Lena picture with the size of 4668 Bytes can be em-
bedded into the cover-text, and the rate of capacity is
higher than

ed

cm
× 100% =

4668

24026
× 100% ≈ 19.43%

Figure 10: The Lena picture with the size of 4668 bytes

5.3 Performance Analysis and Compari-

son

Taking the cover-text (with 24026 characters, provided
by Subection 5.1) for example, when we use the approach
of wbStego4 [16], we find that the embedding capacity is
very small, only 107 Bytes, and hiding data in a PDF
file will increase its filesize. Moreover, when reading the
FAQs of wbStego, we find that there are no general rules
for the assessment of the amount of data (that) a PDF
file can embed, and the size of a PDF file will increase
when hiding data in it.

On the other hand, Comparing with the previous
steganographic algorithms of structure-texts in which an
embedding unit represents a single bit, the embedding
units of PDF texts are integer numerals. Thus, we can
gain much greater capacity to embed data. The previ-
ous steganographic methods which are proposed by vary-
ing characters spacing can embed data with the size of
24026 Bits at most. If we use the methods, the Lena pic-
ture with the size of 4668 Bytes(37344 Bits) can not be
embedded into a structure-text. Of course, the previous
steganographic methods [3, 4, 8, 9, 10, 11, 12] which are
proposed by varying lines or words spacing or by varying
certain character features slightly have smaller embedding
capacities than the methods which are proposed by vary-
ing characters’ spacing.

As we know, embedding capacity and the general rules
for the assessment of the amount of data that a cover-text
can embed are the two important factors of practicability.
If the size of a cover-text will increase when hiding data
in it, the steganographic system can not prevent general
statistical attacks.

Table 1 shows the results of comparative performance

International Journal of Network Security, Vol.4, No.1, PP.17–26, Jan. 2007 25

Figure 11: An overview of the stego-text which has embedded the Lena picture

analysis. Because the property of perceptual trans-
parency can not be measured well by actual methods, in
Table 1, we use “No Optically Changed” to denote percep-
tual transparency property. The embedding capacity of
PDFStego and wbStego4 are gained by taking the cover-
text (with 24026 characters, provided by Subection 5.1)
for example. From Table 1, we can easily find the good
performances of PDFStego.

In addition, for all this kind of PDF files, no matter
they are edited differently, e.g. single/double column, or
contain any combination of text, graphics, and images,
PDFStego has good performances.

6 Conclusions and Future Work

We have presented a novel steganographic technique for
hiding data in a kind of PDF texts. The steganographic
system PDFStego has been designed, analyzed and im-
plemented. Theoretic analysis and the computing results
show that the steganographic system is secure, the em-
bedding capacity is high, and the algorithm is practical.

We are currently doing more research on the stegano-
graphic technique’s resistance against various attacks.
How to evaluate the security of this steganographic sys-
tem is also a challenge in our future work.

References

[1] Adobe Systems Incorporated, Portable docu-
ment format reference manual, Version 1.3,
http://www.adobe.com. March,1999.

[2] J. H. Bear, Desktop Publishing-kerning and Tracking,
http://desktoppub.about.com/, 2005.

[3] J. T. Brassil, et al., “Electronic marking and identifi-
cation techniques to discourage document copying,”
IEEE Journal on Selected Areas in Communications,
vol. 13, no. 8, pp. 1495-1504, 1995.

[4] J. Brassil, N. F. Maxemchuk, and L. O. Gorman,
“Electronic marking and identification techniques to
discourage document coping,” in Proceedings of IN-
FORCOM’94, pp. 1278-1287, 1994.

[5] E. Franz and A. Pfitzmann, “Steganography se-
cure against Cover-Stego-Attacks,” 3th nternational
Workshop, Information Hiding 1999, LNCS 1768,
pp. 29-46, 2000.

[6] B. L. Hao, Starting with Parabolas- An Introduc-
tion to Chaotic Dynamics, Shanghai Scientific and
Technological Education Publishing House, pp. 10-
12, Shanghai, China, 1993.

[7] Global graphics software ltd..jaws PDF creator,
http://www.jawspdf.com/pdf creator/releases.html,
2005.

[8] S. H. Low and N. F. Maxemchuk, “Performance com-
parision of two text marking methods,” IEEE Jour-
nal on Selected Areas in Communications, vol. 16,
no. 4, pp. 561-572, 1998.

[9] S. H. Low, et al. “Document marking an identifica-
tion using both line and word shifting,” in Proceed-
ings INFOCOM’95, pp. 853-860, Boston, MA, Apr.
1995.

[10] S. H. Low , N. F. Maxemchuk, and A. M. Lapone,
“Document identification for copyright protection us-
ing centroid detection,” IEEE Transactions on Com-
munications, vol. 46, no. 3, pp. 372-383, 1998.

[11] N. F. Maxemchuk and S. H. Low, “Marking text
documents,” in Proceedings International Conference
Image Processing, pp. 13-17, Santa Barbara, CA.,
Oct. 1997.

[12] T. May, Cyphernomicon 14.7,
http://www.cyphernet.org/cyphernomicon
/chapter14/14.7.html, 2005.

[13] H. Noda, et al, “Bit-plane decomposition
steganograohy combined with JPEG2000 com-
pression,” 5th International Workshop, Information
Hiding 2002, Noordwijkerhout, The Netherlands,
LNCS 2578 , Springer-Verlag, pp. 295-309, Oct.
2002.

[14] F. A. P. Petitcolas, R. J. Anderson and M. G. Kuhn,
“Information hiding-A survey,” in Proceedings of the
IEEE, special issue on protection of multimedia con-
tent, vol. 87, no. 7, pp. 1062-1078, July 1999.

[15] W. Stallings, Cryptography and network security:
Principles and practice, second edition, Prentice-
Hall, Inc. 2002.

International Journal of Network Security, Vol.4, No.1, PP.17–26, Jan. 2007 26

Table 1: The results of comparative performances analysis

Performances PDFStego wbStego4 The methods which are proposed
by varying characters spacing

Perceptual
Transparency No Optically Changed No Optically Changed No Optically Changed
Embedding
Capacity About 46704 Bits 856 Bits 24026 Bits at most

Whether the Embedding
Capacity can be Defined? Yes No Yes

Whether the size of a
cover-text will increase
when hiding data in it? No Yes No

[16] wbStego Studio, The steganography tool wbStego4
http://www.wbailer.com/wbstego. 2005.

Shangping zhong received his B.S.
in Mathematics Science from Fuzhou
University, Fuzhou, China, in 1991,
and his M.S. in Computer Science and
Technology from Fuzhou University,
Fuzhou, China, in 1997, and his Ph.D.
in Computer Science and Technology
from Institute of Computing Technol-

ogy, Chinese Academy of Sciences, Beijing, China, in
2005. His current research interests include information
security and mobile communications.

Xueqi Cheng received his M.S.
in Computer Science and Technol-
ogy from Northeastern University,
Shenyang, China, in 1996. Currently,
he is a researcher in Institute of Com-
puting Technology, Chinese Academy
of Sciences, Beijing, China. His cur-
rent research interests include infor-

mation security, Information Retrieval and Service Grid.

Tierui Chen received her B.S. in
Computer Science and Technology
from Northeastern University in 2003.
Currently, she is currently pursuing
master degree in the Institute of Com-
puting Technology, Chinese Academy
of Sciences. Her research interests are
information security and digital rights

management.

