
International Journal of Network Security, Vol.3, No.3, PP.290–295, Nov. 2006 290

Attacks on An ISO/IEC 11770-2 Key
Establishment Protocol

Zhaohui Cheng and Richard Comley

(Corresponding author: Zhaohui Cheng)

School of Computing Science, Middlesex University

The Burroughs Hendon, London NW4 4BT, UK. (Email: {m.z.cheng, r.comley}@mdx.ac.uk)

(Received Oct. 7, 2005; revised and accepted Nov. 9, 2005)

Abstract

Two possible types of attack (a replay attack and a type
attack) on a key establishment protocol (mechanism 12)
standardised in ISO/IEC 11770-2 are described and two
solutions are proposed.

Keywords: Cryptography, cryptanalysis, key establish-
ment protocol

1 Introduction

In this paper we demonstrate that a server-based proto-
col standardised as key establishment mechanism 12 in
ISO/IEC 11770-2 [7] is vulnerable to a replay attack and
also, depending on the implementation, to a type attack.
We propose two possible solutions to fix these problems.

Mechanism 12 in [7] is specified as Protocol 1, where
all the optional text fields are ignored (the notation used
throughout the paper is summarised in Table 1.

Protocol 1: ISO/IEC 11770-2 key establishment mecha-
nism 12

1. A → S : {TV PA, B, KAB}KAS

2. S → A : {TV PA, B}KAS
, {TS/NS , KAB, A}KBS

3. A → B : {TS/NS , KAB , A}KBS
, [{TA/NA, B}KAB

]
4. B → A : [{TB/NB , A}KAB

]

Protocol 1 is a two-party key transport protocol with a
trusted server (often called a three-party protocol in the
literature). Basically the protocol assumes that all par-
ties, including the server in the system have loosely syn-
chronised clocks (or synchronised sequence numbers) and
each user shares a long-term secret key with the trusted
server. The initiator (the user who sends the first mes-
sage in a run of a protocol) controls session key generation
and wishes to transport the chosen session key securely to
the responder (the user with whom the initiator wants to
securely communicate later) with the help of the trusted
server. An optional handshake in the protocol is designed

Table 1: Notation

X The distinguish identifier of entity X
S A trusted server

{M}K The encryption of message M with key
K to provide both confidentiality and in-
tegrity

TV PX A time variant parameter, such as a ran-
dom number, a timestamp or a sequence
number generated by entity X

KXY The key intended to be shared by entity X
and Y

RX A random number chosen by entity X
TX A timestamp issued by entity X
NX A sequence number issued by entity X

TX/NX A timestamp or a sequence number issued
by entity X

CX An attacker C impersonating entity X
[M ] An optional message M

X, Y The result of the concatenation of data
strings X and Y

to provide entity authentication and key confirmation.
The standard allows the initiator to use one of three

different types of time variant parameter (TV P ) to secure
the freshness of an established session key. However, we
show that the protocol is seriously flawed if a random
number or a timestamp is used for the TV P .

2 Attacks on the Protocol and

Fixing Variants

2.1 A Replay Attack

If the TV P field contains a random number, Protocol 1
suffers from a replay attack. Note that the two parts of
message (2) use two different freshness mechanisms, but
these two mechanisms are not securely associated. More



International Journal of Network Security, Vol.3, No.3, PP.290–295, Nov. 2006 291

precisely, the initiator uses a random number to check the
freshness of the first part of message (2) and the responder
uses a timestamp (or a sequence number) to verify the
freshness of message (3), which is equal to the second part
of message (2) as generated by the server S. However S
has no means of verifying that message (1) is fresh.

Attack 1: Replay attack on Protocol 1 using random num-
bers

1. A → S : {RA, B, KAB}KAS

2. S → A : {RA, B}KAS
, {TS/NS, KAB, A}KBS

3. A → B : {TS/NS, KAB, A}KBS

1′. CA → S : {RA, B, KAB}KAS

2′. S → CA : {RA, B}KAS
, {T ′

S
/N ′

S
, KAB, A}KBS

3′. CA → B : {T ′

S
/N ′

S
, KAB, A}KBS

The attack (Attack 1) using a compromised session
key [6] proceeds as follows. Suppose that attacker C has
recorded one valid run of the protocol between A and B
and has, by some means, successfully recovered the session
key KAB established in that run. C launches an attack
by impersonating A to initiate a new run of the proto-
col by replaying the first recorded message (1) as message
(1′). The attacker intercepts message (2′) sent as a reply
to A by S and sends the second part of message (2′) to B
as message (3′). Because message (3′) includes the new
timestamp T ′

S
(or the new sequence number N ′

S
) issued

by the trusted server S, B will accept KAB as the valid
session key to be used with A. Clearly the protocol’s goal
to achieve key freshness is thwarted. Even with the key
confirmation option the protocol is still vulnerable to the
attack. Note that when a sequence number is used in the
optional messages, C needs to know A’s current sequence
number N ′

A
which is normally assumed to be predictable.

One way of preventing this attack would be to use a
timestamp or a sequence number for TV PA, and to re-
quire the server to check the freshness of TV PA. How-
ever, as we show below, another attack still applies in this
case.

2.2 A Type Attack

Even if an implementer of Protocol 1 uses a timestamp for
TV PA, a type attack (see, for example, [4, 5]) may become
feasible, depending on the details of the implementation.

The type attack (Attack 2) works as follows (for sim-
plicity we suppose that the identifier field and the key field
are of the same size. More sophisticated attacks can be
launched following the same rationale without the restric-
tion, such as the example shown in Appendix 1). First
attacker C chooses a victim user V and a user B whom
it wants to impersonate to V . Then C initiates a run of
the protocol in which it pretends to intend to send user
B a session key equal to the identifier V . Whether or not
this will be possible in practice depends on whether the
identifier V would be accepted as a valid key value by the
server S, which is why we describe the attack as being

implementation-dependent. After receiving message (2)
from S, C replays part 2 of message (2) to S as the first
message (1′) of a new run of the protocol to impersonate
B. After receiving message (1′), S will treat the identifier
C as the chosen session key of this run between B and
V . The freshness check based on timestamp TS will suc-
ceed. C intercepts message (2′) and forwards part 2 of
the message to the victim V . After checking the validity
of message (3′), V will treat the identifier C as the session
key for use with B.

Attack 2: Type attack on Protocol 1 using timestamps

1. C → S : {TC , B, V }KCS

2. S → C : {TC , B}KCS
, {TS, V, C}KBS

1′. CB → S : {TS, V, C}KBS

2′. S → CB : {TS, V }KBS
, {T ′

S
, C, B}KV S

3′. CB → V : {T ′

S
, C, B}KV S

Similarly, if we suppose that the server cannot differ-
entiate a valid random number from a timestamp (or a
sequence number), e.g. both use a 32-bit integer, the
aforementioned type attack is also feasible to the proto-
col using a random number for the TV P , e.g. Attack 3.

Attack 3: Type attack on Protocol 1 using random num-
bers

1. C → S : {RC , B, V }KCS

2. S → C : {RC , B}KCS
, {TS/NS , V, C}KBS

1′. CB → S : {TS/NS , V, C}KBS

2′. S → CB : {TS/NS , V }KBS
, {T ′

S
/N ′

S
, C, B}KV S

3′. CB → V : {T ′

S
/N ′

S
, C, B}KV S

2.3 Fixing Variants

Possible means to fix the identified vulnerabilities are now
described. In fact, the three types of TV P have very dif-
ferent security properties. We prefer to treat the protocol
using a different TV P as a different protocol. The pro-
tocol using a sequence number for the TV P is the most
robust one among three (please see some security analysis
of the protocol using sequence number in Appendix 2).

When the protocol uses a random number in the TV P ,
it is faced with two types of attack, a replay attack and
a type attack. ISO indicates in Annex A of [7] that if the
replay detection is required, the protocol should not be
used in this way. However, we find that the protocol can
be modified to prevent the replay attack. Although the
server cannot check the freshness of message (1) when the
TV P uses a random number, we propose a simple strategy
to counter the replay attack, i.e. the server S secretly
transmits the content that will be used as message (3)
to the initiator in message (2). The variant is specified
as Protocol 2. Without the long-term secret key KAS ,
attacker C cannot recover the part {TS, KAB, A}KBS

in



International Journal of Network Security, Vol.3, No.3, PP.290–295, Nov. 2006 292

message (2), and so cannot generate a message (3) to
deceive B into accepting an old session key. The replay
attack is thus prevented. Note that the type attack is
essentially a replay attack. Hence Protocol 2 also defeats
the aforementioned type attack.

Protocol 2: Fixed protocol using random numbers

1. A → S : {RA, B, KAB}KAS

2. S → A : {RA, B, {TS/NS , KAB , A}KBS
}KAS

3. A → B : {TS/NS , KAB , A}KBS
, [{TA/NA, B}KAB

]
4. B → A : [{TB/NB , A}KAB

]

When the protocol merely uses a timestamp and the
server checks the correctness of the TV P field, we must
deal with the type attack. To prevent the attack, we
can tweak Protocol 1 by switching the positions of the
identifier A and the session key in message (2) and (3)
respectively.

Protocol 1’: Tweaked version of Protocol 1 using times-
tamps

1. A → S : {TA, B, KAB}KAS

2. S → A : {TA, B}KAS
, {TS, A, KAB}KBS

3. A → B : {TS, A, KAB}KBS

The tweaked version (Protocol 1’) is essentially simi-
lar to the wide-mouthed-frog protocol [?]. Unfortunately,
just as the wide-mouthed-frog protocol, Protocol 1′ is vul-
nerable to a reflection attack (Attack 4) [1, 5, 9]. In the
attack, attacker C can keep the server generating an up-
to-date message containing the key KAB until it compro-
mises the key.

Attack 4: Reflection attack on Protocol 1’

1. A → S : {TA, B, KAB}KAS

2. S → A : {TA, B}KAS
, {TS, A, KAB}KBS

3. A → B : {TS, A, KAB}KBS

1′. CB → S : {TS, A, KAB}KBS

2′. S → CB : {TS, A}KBS
, {T ′

S
, B, KAB}KAS

1′′. CA → S : {T ′

S
, B, KAB}KAS

2′′. S → CA : {T ′

S
, B}KAS

, {T ′′

S
, A, KAB}KBS

However, by introducing asymmetry between message
(1) and (3), another variant (Protocol 3) which uses times-
tamps, can prevent the described attack, if the implemen-
tation processes every byte of a received message1. We
stress here that the position of the message components
is critical to the security of the protocol. More systematic
strategies to counter replay attacks can be found in [2].
The same strategy as adopted by Protocol 2 also works
here. Hence we suggest a fixed universal protocol (Pro-
tocol 4) suitable for all the three different types of time

1A poor implementation not processing a received message com-

pletely will suffer from the reflection attack.

variant parameter. Moreover, now it seems that the po-
sitions of the identifier A and the session key in message
(2) and (3) are immaterial to the security of Protocol 4.

Protocol 3: Fixed protocol using timestamps

1. A → S : {TA, B, KAB}KAS

2. S → A : {TA, B}KAS
, {TS, B, KAB, A}KBS

3. A → B : {TS, B, KAB, A}KBS
, [{TA, B}KAB

]
4. B → A : [{TB, A}KAB

]

Protocol 4: The fixed universal protocol

1. A → S : {TV PA, B, KAB}KAS

2. S → A : {TV PA, B, {TS/NS , KAB , A}KBS
}KAS

3. A → B : {TS/NS , KAB , A}KBS
, [{TA/NA, B}KAB

]
4. B → A : [{TB/NB , A}KAB

]

3 Conclusion

Serious vulnerabilities in a server-based key establishment
protocol standardised by ISO/IEC has been identified.
Possible solutions to prevent these attacks are also pro-
posed. One alternative to use of a modified version of
the flawed protocol is to adopt an alternative (but sound)
standardised protocol, such as the four-pass authentica-
tion protocol in [8], although in which the server controls
the key generation.

4 Acknowledgement

We would like to thank Chris Mitchell for his comments
and constructive criticism.

References

[1] R. Anderson and R. Needham, “Programming sa-
tan’s computer,” Computer Science Today: Recent
Trends and Developments, LNCS 1000, pp. 426-440,
Springer-Verlag, 1995.

[2] T. Aura, “Strategies against replay attacks,” in
10th IEEE Computer Security Foundations Work-
shop, pp. 59-69, 1997.

[3] M. Burrows, M. Abadi, and R. Needham, “A logic of
authentication,” in Proceedings of the Royal Society
of London, vol. 426, pp. 233-271, 1989.

[4] U. Carlsen, “Cryptographic protocol flaws,” in Pro-
ceedings 7th IEEE Computer Security Foundations
Workshop, pp. 192-200, 1994.

[5] J. Clark and J. Jacob, “Attacking authentication
protocols,” High Integrity Systems, vol. 1, no. 5, pp.
465-473, Aug. 1996.



International Journal of Network Security, Vol.3, No.3, PP.290–295, Nov. 2006 293

[6] D. E. Denning and G. M. Sacco, “Timestamps in
key distribution protocols,” Communications of the
ACM, vol. 24, vol. 8, pp. 533-536, Aug. 1981.

[7] ISO, Information Technology-security Techniques-
key Management - Part 2: Mechanisms Using Sym-
metric Techniques, ISO/IEC 11770-2, 1996.

[8] ISO, Information Technology-security Techniques-
entity Authentication - Part 2: Mechanisms Us-
ing Symmetric Encipherment Algorithms, ISO/IEC
9798-2, 2nd edition, 1998.

[9] C. J. Mitchell, “Limitations of challenge-response en-
tity authentication,” Electronics Letters, vol. 25, pp.
1195-1196, 1989.

Appendix 1. Implementation Ex-
amples Vulnerable to the Type At-

tack

Suppose in a system with a large number of users, each
user is identified by a 32-bit integer and a session key is
a 64-bit random number (key size is immaterial in the
following attack. We use short session keys merely for
better paper format). An implementation of Protocol 1
(mechanism 12 in [7]) whose message formats (we call
this type of message format a typeless message format)
are defined using C language as follows is vulnerable to
the type attack presented in the paper.

/*A-->S: message 1*/ struct msg1{

unsigned int timestampe;

unsigned int id;

unsigned int key[2];

};

/*S-->A: part (a) of message 2*/ struct msg2a{

unsigned int timestampe;

unsigned int id;

};

/*S-->A: part (b) of message 2*/ struct msg2b{

unsigned int timestampe;

unsigned int key[2];

unsigned int id;

};

/*A-->B: part (a) of message 3*/ struct msg3a{

unsigned int timestampe;

unsigned int key[2];

unsigned int id;

};

/* option part of message 3 and 4*/ struct option{

unsigned int timestamp;

unsigned int id;

};

Suppose the current timestamp is 0x00000001 and C’s
(B’s and V ’s, resp.) identifier is 0x0000000C (0x0000000B

and 0x0000000F, resp.). X denotes any 4-bit number.
The messages of the type attack can be detailed as Fig-
ure 1.

In fact, it is unnecessary that the identifier field has
to be an integer. The attack also works in some imple-
mentations where users are identified by character strings.
Furthermore, we stress that the positions of the elements
in the messages is crucial to the security of Protocol 3.
We show an example to demonstrate these points. The
following protocol (Protocol 5) is our first attempt to fix
the protocol using a timestamp for TV PA. The only dif-
ference between Protocol 5 and Protocol 3 is the position
of responder’s identifier in message (2) and (3). But an
implementation of Protocol 5 using a typeless message for-
mat is still possibly vulnerable to the type attack, even if
it processes every byte of a received message.

Protocol 5: Partially-fixed protocol using timestamps

1. A → S : {TA, B, KAB}KAS

2. S → A : {TA, B}KAS
, {TS, KAB, A, B}KBS

3. A → B : {TS, KAB, A, B}KBS
, [{TA, B}KAB

]
4. B → A : [{TB, A}KAB

]

Suppose in a system, each user is identified by a char-
acter string and a session key is a 128-bit random number.
In an implementation, each party uses a special symbol
to indicate the end of a string (in fact even using an extra
length field for each string, the attack is still possible),
for example, in C language, the commonly used symbol is
‘\0’ and a character is represented by 8 bits. Assume the
current timestamp is 0x00000001 and attacker C’s identi-
fier is “michael” and user B and V ’s identifier is “richard”
and “c.chris@msn.com” respectively. The messages of the
attack are presented in Figure 2.

Appendix 2. Using Sequence Num-

bers in the Protocol

Now let us investigate the feasibility of applying the iden-
tified attacks on the protocol using a sequence number
for the TV P . In the system, each user has a synchro-
nised sequence number with the server. The standard
does not specify how to synchronize the sequence num-
bers between entities. However, in an unreliable network
with parallel running sessions it is not an easy task to
synchronize these numbers. In the standard, the server
S is required to include its own sequence number NS in
the second part of message (2), which means S has only
one sequence number shared with all the users and will
update its sequence number after each run of the proto-
col. This method introduces a problem in practice when
parallel sessions are allowed. For example, both A and B
initiate a run of the protocol with the same responder D.
S first generates the reply to A. Hence part 2 of message
(2) replied to A includes a smaller sequence number than
the one included in message (2) to B. However, it is pos-



International Journal of Network Security, Vol.3, No.3, PP.290–295, Nov. 2006 294

C → S : Message 1. {00000001
︸ ︷︷ ︸

TC

, 0000000B
︸ ︷︷ ︸

B

, 0000000FXXXXXXXX
︸ ︷︷ ︸

K

}KCS

S → C : Message 2a. {00000001
︸ ︷︷ ︸

TC

, 0000000B
︸ ︷︷ ︸

B

}KCS

S → C : Message 2b. {00000001
︸ ︷︷ ︸

TS

, 0000000FXXXXXXXX
︸ ︷︷ ︸

K

, 0000000C
︸ ︷︷ ︸

C

}KBS

CB → S : Message 1′. {00000001
︸ ︷︷ ︸

TS

, 0000000F
︸ ︷︷ ︸

V

, XXXXXXXX0000000C
︸ ︷︷ ︸

K′

}KBS

S → CB : Message 2′a. {00000001
︸ ︷︷ ︸

TS

, 0000000F
︸ ︷︷ ︸

V

}KBS

S → CB : Message 2′b. {00000002
︸ ︷︷ ︸

T ′

S

, XXXXXXXX0000000C
︸ ︷︷ ︸

K′

, 0000000B
︸ ︷︷ ︸

B

}KV S

CB → V : Message 3′a. {00000002
︸ ︷︷ ︸

T ′

S

, XXXXXXXX0000000C
︸ ︷︷ ︸

K′

, 0000000B
︸ ︷︷ ︸

B

}KV S

CB → V : Message 3′b. {00000002
︸ ︷︷ ︸

T ′

C

, 0000000F
︸ ︷︷ ︸

V

}K′

V → CB : Message 4′. {00000002
︸ ︷︷ ︸

T ′

V

, 0000000B
︸ ︷︷ ︸

B

}K′

Figure 1: Message details of type attack on Protocol 1

C → S : Message 1. {00000001
︸ ︷︷ ︸

TC

, richard\0
︸ ︷︷ ︸

B

, c.chris@msn.com\0
︸ ︷︷ ︸

K

}KCS

S → C : Message 2a. {00000001
︸ ︷︷ ︸

TC

, richard\0
︸ ︷︷ ︸

B

}KCS

S → C : Message 2b. {00000001
︸ ︷︷ ︸

TS

, c.chris@msn.com\0
︸ ︷︷ ︸

K

, michael\0
︸ ︷︷ ︸

C

, richard\0
︸ ︷︷ ︸

B

}KBS

CB → S : Message 1′. {00000001
︸ ︷︷ ︸

TS

, c.chris@msn.com\0
︸ ︷︷ ︸

V

, michael\0richard\0
︸ ︷︷ ︸

K′

}KBS

S → CB : Message 2′a. {00000001
︸ ︷︷ ︸

TS

, c.chris@msn.com\0
︸ ︷︷ ︸

V

}KBS

S → CB : Message 2′b. {00000002
︸ ︷︷ ︸

T ′

S

, michael\0richard\0
︸ ︷︷ ︸

K′

, richard\0
︸ ︷︷ ︸

B

, c.chris@msn.com\0
︸ ︷︷ ︸

V

}KV S

CB → V : Message 3′a. {00000002
︸ ︷︷ ︸

T ′

S

, michael\0richard\0
︸ ︷︷ ︸

K′

, richard\0
︸ ︷︷ ︸

B

, c.chris@msn.com\0
︸ ︷︷ ︸

V

}KV S

CB → V : Message 3′b. {00000002
︸ ︷︷ ︸

T ′

C

, c.chris@msn.com\0
︸ ︷︷ ︸

V

}K′

V → CB : Message 4′. {00000002
︸ ︷︷ ︸

T ′

V

, richard\0
︸ ︷︷ ︸

B

}K′

Figure 2: Message details of type attack on Protocol 5

sible that B’s message (3) first reaches D. Upon receiving
message (3) from B, D will accept the message because
the sequence number in the message is greater than its lo-
cal copy of NS and then updates its NS . Unfortunately,
message (3) from A will be rejected later although it is
a valid message generated by S. Even worse, D has no
means to securely inform A of this error because D does
not share a secret with A. The same problem happens
even if S maintains a separate sequence number for each
user to send messages to that user (that is NXS 6= NSX).
Here NXY denotes the current sequence number of entity
X for sending messages to Y .

The above problem can be solved if NXS is used in
part 2 of message (2) (i.e. NXS = NSX). That is the
server will use user X ’s current sequence number in all
the messages sent to X and will update NXS only if it
receives a valid message (1) from X which indicates that
X has initiated a new run of the protocol. Hence NXS

is the counter of the runs of the protocol initiated by X .
Although it works in many situations, the mechanism in-
troduces serious flaws in this protocol. The replay attack
and the type attack become feasible. Suppose attacker C
has recorded a valid run of the protocol between A (the
initiator) and B (the responder) and has successfully re-



International Journal of Network Security, Vol.3, No.3, PP.290–295, Nov. 2006 295

covered the session key KAB. If B has not initiated a new
run of the protocol after KAB was compromised, C can
replay message (3) of the recorded run to deceive B into
accepting KAB. The type attack is described as Attack 5.

Attack 5: Type attack on Protocol 1 using sequence num-
bers

1. C → S : {NCS, B, V }KCS

2. S → C : {NCS, B}KCS
, {NBS, V, C}KBS

1′. CB → S : {NBS , V, C}KBS

2′. S → CB : {NBS , V }KBS
, {NV S , C, B}KV S

3′. CB → V : {NV S , C, B}KV S

Hence using a single NS for message (2) to every user
is a relatively better (secure) solution, although it does
not always work. Another security issue is related with
message retransmission. For example, when user B sends
message (1) with its latest sequence number to the server
S, S checks if the sequence number in message (1) equals
to its local copy of the sequence number of B and if the
check succeeds, S updates its local copy by increasing one
and replies with message (2). However it is possible that
message (2) is lost during the transmission. It is a com-
mon practice that B will retransmit message (1). Now S
has two strategies to process this retransmitted message,
either accepting the message whose sequence number is
only one less than the valid one or securely sending an er-
ror message to inform the sender. If the former strategy
is used, the replay attack becomes feasible. However the
threat of the replay attack can be reduced if the server
only accepts the retransmission in a short period imme-
diately after the sequence number is updated.

Zhaohui Cheng currently is a lec-
turer at School of Computing Sci-
ence, Middlesex University, UK. His
research interests include cryptogra-
phy and network security.

Richard Comley currently is a pro-
fessor at School of Computing Sci-
ence, Middlesex University, UK. His
research interests include computer
aided measurement, mobile communi-
cations and networks.


