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Abstract

To enhance applications of smart cards, Miyazaki and
Takaragi proposed a (t, n) threshold digital signature
scheme based on the security of elliptic curve discrete log-
arithm (ECDLP). The advantages of their scheme are low
communication bandwidth and computational complex-
ity, which provides critical benefits for the use of smart
cards in distributed environments. Recently Wu et al.
pointed out that the Miyazaki-Takaragi threshold digital
signature scheme cannot withstand the insider forgery at-
tack. Then they further amended the scheme against the
attack with a simple improvement. However, this paper
will show that the attack proposed by Wu et al. is wrong,
since they confused the point addition of elliptic curve
with the vector addition on a finite field. Finally, we will
point out that a general coalition attack can be also ap-
plied to both of the Miyazaki-Takaragi scheme and the
Wu’s improvement.
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1 Introduction

With digitalized documents, hand-written signatures are
replaced by digital signatures to provide the functions of
integrity, authentication and non-reputation in the com-
pute systems [2, 7]. In group-orientated applications, a
group signature can be generated by one member, some
members, or all members according to the group’s signing
policy. A (t, n) threshold signature scheme allows any t
or more signers to cooperatively sign messages on behalf
of the group, but t − 1 or fewer signers cannot [1, 3].

Smart cards are produced for their easy carrying and
ease of use [4]. Because smart cards can only be equipped
with a processor with a slight computing power and a
very limited memory capability, the required computa-
tional complexity and the memory storage are concerned
the most in the use of smart cards. To enhance the ap-

plications of smart cards, Miyazaki and Takaragi [6] pro-
posed a (t, n) threshold digital signature scheme based on
the security of elliptic curve discrete logarithm (ECDLP).
The advantages of their scheme are low communication
bandwidth and computational complexity, which provides
critical benefits for the use of smart cards in distributed
environments.

Recently Wu et al. [9] pointed out that the Miyazaki-
Takaragi threshold digital signature scheme cannot with-
stand insider forgery attacks. They thought that a ma-
licious signer could cheat other signer into signing mes-
sages chosen by the malicious signer. Then they further
amended the scheme against the attack with a simple im-
provement. However, this paper will show that the attack
proposed by Wu et al. is wrong, since they confused the
point addition of elliptic curve with the vector addition
on a finite field. Finally, we will point out that a gen-
eral coalition attack can be also applied to both of the
Miyazaki-Takaragi scheme and the Wu’s improvement.
Though we can improvement their scheme against the
coalition attack, resulting scheme is perhaps not appli-
cable for smart cards.

2 Brief Review of the Miyazaki-

Takaragi Scheme

The scheme consists of three phases: the initialization
phase, the signing phase and the verification phase.

Initialization phase:

Let the n members in the group be {u1, u2, . . . , un}. Ini-
tially, the dealer of the phases determines the following
parameters:

p: a prime;

E(Zp): an elliptic curve manipulated over Zp;

G: the base point on E(Zp);
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q: the order of G on E(Zp), which is also a prime;

h(·): one-way hash function;

d: the group’s private key, which is chosen from Zq;

Y = d · G: the group’s public key, which is a point on
E(Zp);

f(x) = d + d1x + · · · + dt−1x
t−1, where di’s are random

integers in Zq.

The secret key for ui is computed as xi = f(i) which
is then securely delivered to ui (for i = 1 to n). The
corresponding public key for ui is Yi = xi · G.

Signing phase:
Without loss of generality, let S = {u1, u2, . . . , ut} be the
set of t signers who want to cooperatively generate a group
signature for the message m. Each signer ui performs the
following steps:

Step 1. Compute ei = ci · xi mod q, where ci =
Πuj∈s\{ui}j/(j − i) is the Lagrange coefficient.

Step 2. Choose a random integer ki ∈ Zq.

Step 3. Compute Ri = ki ·G, which is then broadcasted
to all other signers.

Step 4. Compute

(x, y) =
∑

uj∈S

Rj (1)

After receiving all Rj ’s from other co-signers, the
signer ui performs the following steps:

Step 5. Compute

r = x − h(m) mod q, (2)

vi = ei · r + ki mod q, (3)

then broadcast vi to all other co-signers.

Step 6. Validate vj with the equality Rj = vj ·G−r·cj ·Yj

for uj ∈ S \ {ui}. If the verification for some vj does
not hold, uj is requested to resubmit it again. When
all vj ’s are valid, the signer ui proceeds to the next
step.

Step 7. Compute

v =
∑

uj∈S

vj mod q (4)

The group signature for message m is (r, v).

Verification phase:
The verifier can verify the group signature with the fol-
lowing equality:

x = r + h(m) mod q (5)

where

(x, y) = v · G − r · Y. (6)

If it holds, the group signature is a valid group signature.

3 Wu et al.’s Cryptanalysis and

Improvement

Wu et al. demonstrated a forgery attack plotted by some
insider. Let ua ∈ S be the malicious signer who attempts
to forge a valid group signature for his arbitrarily chosen
message m′. He first chooses a random integer ka ∈ Zq

and computes R′
a = ka · G, then waits until receiving all

other signers’ Ri’s without broadcasting R′
a. When all

Ri’s sent from other signers are collected, ua first com-
putes

(x′, y′) = R′
a +

∑

uj∈S\{ua}

Rj . (7)

And assigns

R′ = (x′ − h(m′) + h(m), y′) (8)

where m is the original message to be signed by S. Then,
ua computes and broadcasts

Ra = R′ − (x′, y′) + R′
a (9)

to all co-signers instead of R′
a. Following the normal pro-

cedure, each participant signer obtains

(x, y) = (x′ − h(m′) + h(m), y′),

which would be shown in Theorem 1. Then, by Equation
(2), each participant signer computes

r′ = x − h(m) = x′ − h(m′) mod q. (10)

That is, the individual signature vi in Equation (3)
is generated with respect to the message m′ chosen by
ua. After collecting all vi’s in Step 6, ua disrupts the
process with some suitable excuse. Then ua computes v′

as Equation (4). In Theorem 2, Wu et al. confirmed that
the forged signature (r′, v′) is a valid group signature for
m′.

Theorem 1 With the broadcasted Ra of Equation (9),
each participant signer will obtain (x, y) = (x′ − h(m′) +
h(m), y′) by Equation (1).

Proof.

(x, y) =
∑

uj∈S

Rj (by Equation (1))

= Ra +
∑

uj∈S\{ua}

Rj

= R′ − (x′, y′) + R′
a + (x′, y′) − R′

a

= R′ (by Equations (9) and (7))

= (x′ − h(m′) + h(m), y′) (by Equation (8))

2

Theorem 2 The forged signature (r′, v′) for m′ will pass
the signature verification.
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Proof. From Equation (6), the verifier first computes

V ′ · G − r′ · Y

=
∑

ui∈S

vi · G − r′ · Y (by Equation (4))

=
∑

ui∈S

(ei · r
′ + ki mod q) · G − r′ · Y

(by Equation (3))

= r′ · d · G +
∑

ui∈S

ki · G − r′ · Y

(by Lagrange Formula)

=
∑

ui∈S

ki · G (∴ Y = d · G)

= R′
a +

∑

ui∈S\{ua}

Ri (∴ Ri = ki · G)

= (x′, y′) (by Equation (7))

Since r′ = x′−h(m′) mod q by Equation (10). That is,
as compared to Equation (5) and (6), the verifier will be
convinced that (r′, v′) is a valid group signature for m′.
2

By stated above, Wu et al. thought that the Miyazaki-
Takaragi scheme is insecure against the forgery attack.
To strengthen security, they suggested that h(m) should
be replaced by h(m||(x, y)).

4 Comment on Wu’s Cryptanaly-

sis

The Miyazaki-Takaragi scheme is over on elliptic curve
[5]. An elliptic curve E(Zp) defined by the parameters
a, b ∈ Zp (satisfy 4a3 + 27b2 6= 0 mod p) consists of the
set of solutions or points P = (x, y) for x, y ∈ Zp to the
equation:

y2 = x3 + ax + b mod p

together with extra point O called the point at infinity.
The equation y2 = x3 +ax+b mod p is called the defining
equation of E(Zp). For a given point P = (xp, yp), xp

is called the x-coordinate of P , and yp is called the y-
coordinate of P .

By defining an addition rule to add points on E(Zp),
the set of points on E(Zp) forms an abelian group. The
addition rule is specified as follows:

1) O + O = O.

2) (x, y)+O = O+(x, y) = (x, y) for all (x, y) ∈ E(Zp).

3) (x, y) + (x,−y) = O for all (x, y) ∈ E(Zp), that is,
−(x, y) = (x,−y).

4) (x1, y1)+ (x2, y2) = (x3, y3) for all (x1, y1), (x2, y2) ∈
E(Zp) and x1 6= x2, where x3 = λ2 − x1 − x2 mod p,
y3 = λ(x1 − x3)− y1 mod p, and λ = (y2 − y1)/(x2 −
x1) mod p.

5) (x1, y1) + (x1, y1) = (x3, y3) for all (x1, y1) ∈ E(Zp)
and y1 6= 0, where x3 = λ2 − 2x1 mod p, y3 = λ(x1 −
x3) − y1 mod p, and λ = (3x2

1
+ a)/(2y1) mod p.

Note that, not all vectors in Zp × Zp are the point on
E(Zp) and the vector addition is different from the point
addition of E(Zp). However, in the Wu’s cryptanalysis,
the two kinds of the additions are confused.

In Equation (7), (x′, y′) = R′
a +

∑
ui∈S\{ua}

Rj is a

point on E(Zp), since R′
a is a point on E(Zp).

In Equation (8), R′ = (x′ − h(m′) + h(m), y′) is not a
point on E(Zp), since at most only three points on E(Zp)
have the same y-coordinate. Then there are some problem
in the calculation of Equation (9) Ra = R′− (x′, y′)+R′

a,
the vector addition or the point addition of E(Zp)?

By guessing, the meaning of Wu et al. is the point
addition of E(Zp). However, by using the addition rule
of the point addition of E(Zp), the resulting Ra is not a
point on E(Zp). Following the Wu’s forgery attack, ua

broadcasts Ra to all co-signers instead of R′
a.

Following the normal procedure, each participant
signer obtains (x, y) which is not (x′ − h(m′) + h(m), y′),
since the Theorem 1 is wrong.

The prerequisite of the proof of the Theorem 1 is that
the point (x, y) forms an abelian group. Certainly, we
can define this addition rule to add vectors on Zp × Zp.
However, the vectors in Zp × Zp do not form an abelian
group with respect to the addition rule. The conditions
of the equations of

Ra +
∑

j∈S\{ua}

Rj

= (R′ − (x′, y′) + R′
a) + (x′, y′) − R′

a

= R′

are that commutative law, associative law and cancella-
tion law hold in the defined algebra system. Therefore,
the forged (r′, v′) is not a valid group signature for m′.

One anonymous referee thinks that this error is only
one typo. “In Equation (8), one can see that if y′ is
changed into y′′, Wu et al.’s attack is also effective”.

However, we do not agree with him for the following
reasons:

To satisfy Theorem 1, R′ = (x′−h(m′)+h(m), y′′) must
be a point on E(Zp). Then (x, y) = (x′−h(m′)+h(m), y′′)
satisfies the equation y2 = x3 + ax + b mod p. Hence
x′ − h(m′) + h(m) is a quadratic residue modulo p. This
probability is 1/2 for arbitrarily chosen message m′.

Moreover, to satisfy Theorem 2, the malicious signer
ua must compute va = ea · r

′ + ka mod q as Equation (3)
in Step 5.

Then, in Step 6, other signers should validate with the
equality Ra = va · G − r′ · ca · Ya.

Note that the malicious signer ua computes and broad-
casts

Ra = R′ − (x′, y′) + R′
a (9)

to all co-signers instead of R′
a.
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Hence, other signer would find this forgery since R′
a =

ka · G = va · G − r′ · ca · Ya 6= R′
a.

Therefore, the Wu et al.’s attack is not also effective
even if correcting the so-called typo.

5 A General Coalition Attack

Against Threshold Signature

Schemes

In the original Miyazaki-Takaragi scheme, the group’s pri-
vate key is d. Each signer ui has the secret share xi = f(i).
If t or more malicious signers pool their secret shares to-
gether, they can recover f(0) by applying Lagrange in-
terpolating polynomial. Then each of them can alone
compute valid signatures for new messages on behalf of
the group afterwards, without the cooperation of other
signers and without being detected by verifiers. Obvi-
ously, this violates the group’s signing policy. Otherwise,
if such coalition is permissive, other signers would follow
this kind of dishonesty. Thus, each signer can also alone
compute valid group signatures after one coalition. It is
terrible for the threshold signature scheme.

In the improvement of Wu et al., there also exists the
same kind of coalition attack.

This coalition attack is inherent in many threshold sig-
nature schemes [4] using threshold secret share scheme,
as long as the private key can be recovered from secret
shares.

The other paper of mine [8] provided an approach of
withstanding this kind of coalition attack. However, re-
sulting scheme is perhaps not applicable for smart cards
since it requires some more communications and compu-
tations.

6 Conclusions

In this paper, we have shown that the cryptanalysis pro-
posed Wu et al. against the Miyazaki-Takaragi threshold
digital signature scheme is not correct, since they con-
fused the point addition of elliptic curve with the vec-
tor addition on a finite field. Then, we have pointed
out that a general coalition attack can be also applied
to both of the Miyazaki-Takaragi scheme and the Wu’s
improvement. Though we have proposed an approach to
overcome the security flaw inherent in some threshold sig-
nature schemes using threshold secret share scheme, re-
sulting scheme is perhaps not applicable for smart cards.
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