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Abstract

Anonymity is a very important security feature in ad-
dition to authentication and key agreement features in
communication protocols. In this paper, we propose two
authentication and key agreement (AKA) protocols: the
AKA protocol with user anonymity (UAP) and the AKA
protocol with user and server anonymity (USAP). The
proposed protocols have the following advantages: first of
all, they preserve anonymity, which is a security feature
that was ignored in most of the previously proposed AKA
protocols; secondly, they exploit the difference in capabil-
ities between resource constrained clients and highly re-
sourceful servers and thus are suitable for wireless applica-
tions; thirdly, they resist known attacks; and finally, they
perform better in terms of the number of messages and
bits exchanged and computing time as compared to the
previously proposed AKA protocols. For example, USAP
preserves user and server anonymity, exchanges 3 mes-
sages with 1920 bits in total, and requires only 280 msec
of processing time on the user side when implemented on
Mitsubishis M16C microprocessor. Similarly, the UAP
is scalable, preserves user anonymity, requires 440 msec,
and exchanges 2560 bits.

Keywords: Anonymity, authentication, Elliptic Curve
Cryptography (ECC), key agreement

1 Introduction

Authenticated Key Agreement (AKA) protocols provide
communicating parties with a random shared-key that
can subsequently be used to communicate confidentially.
These protocols provide an efficient means of establish-
ing keys and therefore solve the problems associated with
key management. Nonetheless, the AKA protocols are

designed with an objective that the communicating par-
ties execute a scheme, and when it is terminated, each
of the parties should have certain assurance that they
know the other’s true identity and share a new and ran-
dom session-key derived from contributions of all the par-
ties. This objective has to be accomplished irrespective
of wired or wireless media. Client-server wireless commu-
nications, where a low end user and a server authenticate
each other, often demand for few message exchanges and
less computational loads.

Until now, numerous public key cryptography based
AKA protocols ranging from the traditional RSA to El-
liptic Curve Cryptography (ECC) have been proposed.
Recently, ECC has gained a lot of attention as ECC im-
plemented devices have higher strength per key bit, lower
power consumption, and smaller bandwidths as compared
to RSA based cryptosystems. Hence, it is more promis-
ing to implement ECC in constrained platforms such as
wireless devices, handheld computers, and smart cards.

Apart from security services like authentication and
key agreement, the requirement for having anonymity is
gaining a lot of attention because transmitting a user’s
identity in plain during the authentication process invades
the user’s privacy and allows unauthorized access of his
personal information that may result in violation of his
privacy and raise legal issues [5]. A literature survey on
AKA protocols (included in Section 2 of this paper) re-
vealed that most of the previously proposed protocols ig-
nored anonymity. A wireless authentication protocol that
supports anonymity was proposed in [2, 3]. For the rest
of our discussion, we refer to this protocol as A-WAP.
Despite the authors’ claim, A-WAP on one hand fails to
provide anonymity and on the other hand it succumbs to
several attacks as shown in [17, 26].

Preserving anonymity is a very broad and relative
term. In user-server applications such as accessing or re-
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questing services from a server, user anonymity is highly
appreciated as compared to server anonymity. In either
case, the anonymity is defined with respect to the pub-
lic. Note that in the above applications the server has to
identify and verify the user for accounting and billing pur-
poses. As such in our design, while addressing anonymity
we envision two kinds of applications. The first appli-
cation is a more generic one such as in ad-hoc networks
that requires only user anonymity, and the server or the
service provider is a public entity that provides public
services. Secondly, applications where a user and a spe-
cific server communicate with each other while remaining
anonymous to the public. A user accessing his/her bank
account or a remote office server is an example for second
application. The proposed protocols, AKA protocol with
user anonymity (UAP) and AKA protocol with user and
server anonymity (USAP), respectively address the above
two applications.

The following are the advantages of our protocols: first
of all, they preserve anonymity, which is a security fea-
ture that was ignored in most of the previously proposed
AKA protocols; secondly, they exploit the difference in ca-
pabilities between resource constrained clients and highly
resourceful servers and thus are suitable for wireless ap-
plications; thirdly, they resist known attacks; and finally,
they perform better in terms of the number of messages
and bits exchanged and computing time. Since a user
can be a low power device, as in wireless applications,
we measure the performance of our protocols from user’s
perspective. The proposed USAP is computationally ef-
ficient with fewer message exchanges but is not scalable
as the user can communicate only with a specific server.
Hence, the scalability as we envision is the ability of a user
to communicate with a number of specific servers while
preserving both user and server anonymity. On the other
hand, the proposed UAP is scalable (a user can commu-
nicate with any arbitrary server rather than a specific
server) but only at the cost of server anonymity and in-
creased computational and communicational overhead as
compared to USAP. For example, USAP preserves user
and server anonymity, exchanges 3 messages with 1920
bits, and requires only 280 msec of processing time on
the user side when implemented on Mitsubishis M16C
microprocessor. The UAP, preserves user anonymity, re-
quires 440 msec, and exchanges 2560 bits. These timings
are based on the authors’ analysis of MSR-Hybrid, a fast
authenticated and key establishment protocol, for sensor
networks that does not support anonymity, requires 455
msec, and exchanges 4448 bits in 4 messages [13].

The rest of this paper is organized as follows. We
discuss various authentication schemes and review previ-
ously proposed AKA protocols based on public-key cryp-
tography in Section 2. Next, we introduce the design
criteria for our proposed protocols in Section 3. Then,
in Sections 4 and 5, we present the proposed UAP and
USAP, respectively. In Sections 6 and 7, we analyze the
security and compare the performance of our proposed
protocols, respectively. Finally, we conclude in Section 8.

2 Related Work

There exists plethora of authentication schemes in the lit-
erature that are designed to address a variety of applica-
tions. The following is one of the many ways of classifying
those schemes based on the kinds of security services they
support and the underlying cryptographic functions used
in their design:

1) Hash-based password authentication protocols [11,
16, 21, 24]

2) Public-key based authentication and key agreement
(AKA) protocols (as discussed below)

3) Symmetric-key authentication protocols [22]

4) Authentication schemes based on key-chains [19, 27]

A complete description of the above mentioned authen-
tication schemes are beyond the scope of this paper. As
such, this paper only refers to well-known and widely-used
AKA protocols based on public-key cryptography.

Diffie and Hellman first proposed the Diffie-Hellman
(DH) key exchange based on the discrete logarithm prob-
lem in 1976 [10]. Since the original DH protocol is vul-
nerable to a man-in-the-middle attack, modifications were
proposed to resist such attack [28]. Later, Bellovin and
Merrit presented a password based key exchange protocol
for two-party communications known as Encrypted Key
Exchange (EKE) [7]. Further, an efficient and elegant
scheme for EKE that was considered for standardization
by the IEEE P1363 Standard working group is AuthA,
which was later enhanced by Bresson et al. in [8] to re-
sist the denial-of-service attack. In [30], Zhang showed
that Strong Password only Authenticated Key Exchange
(SPEKE), a password authenticated key exchange pro-
tocol defined in [15] was susceptible to password guess-
ing attack. Wong and Chan [29] proposed a mutually
authenticated key exchange protocol for low power com-
puting devices, which was later proven insecure against
unknown key-share attacks by Shim [23]. Zhu et al. pre-
sented a password based authenticated key exchange pro-
tocol based on RSA for imbalanced wireless networks in
[31]. Further, protocols proposed by Beller et al. [6] and
Aziz and Diffie [4] address mutual authentication and key
agreement issues for low end devices. Unfortunately, none
of the above protocols provides anonymity. A widely-used
standard for IPSec protocol suite is the Internet Key Ex-
change (IKE) [12]. IKE has several drawbacks, and fur-
ther, it transmits a user’s identity in clear. Just Fast
Keying (JFK) protocols proposed in [1] address the short-
comings of IKE. However, they too ignored anonymity
of the communicating parties. In recent years, several
ECC-based key agreement protocols, such as the ECMQV
protocol with ECC X509 certificates [25], implicit certifi-
cates and the Elliptic Curve Diffie-Hellman Ephemeral
(ECDHE) protocol [9], A-WAP, and two fast authenti-
cated key exchange protocols [13], were proposed. Out of
these, only A-WAP claims that it addresses anonymity.
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However, a direct application of this protocol is question-
able as it not only fails to provide anonymity but also
succumbs to the attacks listed in [12, 26].

3 Protocol Design Goals

This section presents a list of security requirements that
are considered while designing AKA protocols. Also in-
cluded in this section are initial assumptions and nomen-
clature used throughout this paper.

3.1 Protocol Requirements

The following security services are considered in the de-
sign of our protocols.

1) Mutual authentication assures the communicating
parties that the message has originated from the in-
tended party and that it has not been tampered with.

2) Key agreement ensures that the communicating par-
ties agree upon a random shared session-key that is
independent of the previous communications. Fur-
ther, the agreed session-key is derived from the con-
tribution of all the parties and thus no single party
is able to exercise control on the selection of the key.

3) Anonymity in communication ensures that no one
else other than the intended parties be able to figure
out who is communicating with whom.

4) Confidentiality protects the transmitted messages
from eavesdropping.

5) Non-repudiation ensures that no parties can deny
their actions after the completion of their commu-
nication.

In addition to supporting the above security services,
the designed protocols should not only resist various at-
tacks but also should satisfy the performance require-
ments. Some of the attacks on AKA protocols are re-
play, man-in-the-middle, denial-of-service, impersonation,
known-key, and unknown-key share attacks. Further-
more, the designed protocols should provide forward se-
crecy. A full description of these terms can be obtained
from [17, 26, 28]. The authors in [28] suggest the following
performance requirements:

1) Minimum number of messages exchanged,

2) Low communication overhead (total number of bits
transmitted),

3) Low computation overhead (total number of arith-
metic operation involved), and

4) Possibility of pre-computations that reduce the pro-
tocol execution timings.

3.2 Assumptions, Nomenclature, and
Functions Used

As with the other public key cryptosystems, we consider
that a trusted third party known as Certificating Au-
thority (CA) issues a certificate (r, s) and its expiration
date (t) to the communicating parties (users/servers) dur-
ing the initialization phase. The certificate (r, s) is com-
puted by using Elliptic Curve Digital Signature Algorithm
(ECDSA). More details on the ECDSA can be found in
[14, 18]. In addition to issuing certificates, we also assume
that CA can assign unique identities, store, and distribute
any other required information to the communicating par-
ties. In real world, the latter functions of the CA can be
performed by some independent body.

First, an elliptic curve over GF (p) (where p is a
prime number of length greater than 160 bits) with suit-
able coefficients is defined. Note that the elliptic curve
can also be defined over GF (2m). Then a base point
P = (P.x, P.y)(where P.x and P.y are the x and y co-
ordinates of the point P , respectively) of large order n,
belonging to this elliptic curve group is selected and made
public to all users/servers. The CA selects a random
number dCA as its private key and performs the point
multiplication dCA×P to obtain its public key QCA, i.e.,
QCA = dCA×P . We shall denote the randomly generated
private and public key pair as (d, Q) with appropriate sub-
scripts. Thus, CA’s randomly generated private and pub-
lic key pair is (dCA, QCA). We also employ a symmetric
encryption and decryption algorithm, such as Advanced
Encryption Standard (AES) and a hash function, such as
SHA-1 or MD-5 [22]. The encryption, decryption, and
hash function are denoted as E, D, and H , respectively.
Finally, our proposed protocols consist primarily of two
phases: an initialization phase, an offline process, which is
executed between a user (or a server) and the CA through
a secure channel; and a mutual authentication phase, an
online process that is executed in real time whenever the
parties (a user and the server) want to mutually authen-
ticate and agree upon a session-key. The users and server
execute the initialization phase at the end of their ex-
piration dates (t) to obtain another valid certificate and
expiration date. In addition to the subscript CA, we will
also use the subscripts U and S to indicate to a user and
the server, respectively.

4 AKA Protocol with User

Anonymity (UAP)

In this section, we propose an AKA protocol with user
anonymity (UAP) that preserves user anonymity during
the mutual authentication phase. Note that in UAP, we
do not consider server anonymity as the server and its
services are public. This protocol addresses situations
similar to ad-hoc networks, where a user and any server
need to authenticate each other before establishing se-
cure communication. We describe UAP in two phases:
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User CA

1. Chooses dU ∈ {2, n− 2} Chooses kU ∈ {2, n− 2}
2. QU = dU × P RU = kU × P

3. Sends QU → Receives QU

4. Chooses a unique IU and tU
5. rU = RU .x, eU = H(QU .x, IU , tU )
6. sU = k−1

U
(eU + dCArU )

7. Receives QCA, IU , (rU , sU ), tU ← Sends QCA, IU , (rU , sU ), tU
8. Stores dU , QU , QCA, IU , (rU , sU ), tU

Figure 1: Initialization phase in UAP

the initialization phase, where all users and the servers in
the network obtain their respective certificates and expi-
ration dates from a CA through a secure channel and the
mutual authentication phase that is executed in real time
for mutual authentication and key agreement between a
user and the server. The rest of this section contains the
details of UAP.

4.1 Initialization Phase in UAP

During the initialization phase, all the users and servers
in a network execute an initialization protocol similar
to the one that is shown in Figure 1 to obtain their
respective certificates and expiration dates from CA.
Note that this initialization protocol is executed via a
secure channel. In Steps 1 through 3 of Figure 1, a
user, U generates a random private and public key pair
(dU , QU ) and sends QU to CA to obtain a certificate
for his/her public key. Then CA first assigns an iden-
tity IU and an expiration date tU , calculates hash value
eU = H(QU .x, IU , tU ), generates a certificate (rU , sU ) and
then sends IU , (rU , sU ), tU along with its public key QCA

to U . Finally, U , stores dU , QU , QCA, IU , (rU , sU ), tU . A
server, S, executes a similar initialization protocol with
CA and obtains QCA, IS , (rS , sS), and tS .

4.2 Mutual Authentication Phase in
UAP

Before establishing a secure communication channel, a
user and the server execute the mutual authentication
phase, as shown in Figure 2, the details of which are
given below. To make the understanding of the proto-
col simple, we divide this mutual authentication phase
into three sub-phases: the temporary-key generation, the
certificate verification, and the session-key generation. In
temporary-key generation sub-phase, i.e., Steps 1 through
6, the communicating parties set up a temporary-key for
encrypting the messages that contain sensitive informa-
tion such as certificates, expiration dates, random num-
bers, identities, etc. Steps 7 through 19 define the certifi-
cate verification sub-phase, where both parties decrypt
the received messages and verify each other’s certificates.
A new and random session-key is generated in the final
stages of the mutual authentication phase, which is the

session-key generation phase (Steps 20 and 21). What
follows next is the mutual authentication phase between
a user, U and the server, S in detail.

Initially, S sends its public key QS and identity IS to
U . Note that we do not consider the anonymity of the
server as it is a public entity. The user anonymity is a
required security service in order to keep his/her actions
untraceable. Upon receiving the server’s public key QS , U

then calculates QR = gU×QS (gU , a random number) and
transmits QR to S. Transmitting QR is not of security
concern as will be explained in Section 6. U also calcu-
lates QK = gU×P to obtain the temporary-key QK .x and
gUS . Note gUS is the same as QK .x. First, S performs
d−1

S
× QR to obtain the temporary-key QK .x and gUS

and then it encrypts (rS , sS), tS , gUS and its generated
random number gS using QK .x and sends this encrypted
message to U as C0, which is the Step 8 of Figure 2.
Upon receiving C0, U decrypts C0, checks the validity of
gUS and tS , terminates the protocol upon a failure; oth-
erwise, encrypts (rU , sU ), tU , IU , QU .x and the received
random value gS using QK .x, sends C1 (encrypted mes-
sage, i.e., E(QK .x, (rU , sU ), IU , tU , QU .x, gS))) to S, and
then calculates eS = H(QS.x, IS , tS) before verifying the
received server’s certificates as shown in Steps 14 through
19 of Figure 2. Similarly, S verifies the received user’s
certificates. If the certificates are valid, both parties gen-
erate a unique session-key kM = H(gUS , gS

,

, eS , eU ) and
destroy gUS , and gS from their memory.

5 AKA Protocol with User And
Server Anontmity (USAP)

In this section, we propose an AKA protocol with user
and server anonymity (USAP) that allows a user and a
specific server to mutually authenticate each other be-
fore establishing a secret session, while remaining anony-
mous to the public. A real world example where USAP
can be applied is when a user wants to access services
from a specific server such as his/her bank account or a
remote office server. Anonymity is desirable in the in-
terests of both communicating parties. USAP is almost
similar to UAP, except for few modifications to support
server anonymity in addition to user anonymity. A user
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User Server

1. Generates a random number gU ∈ {2, n− 2}
2. Receives QS , IS ← Sends QS , IS

3. QR = gU ×QS = (gUdS)× P Generates a random number gS ∈ {2, n− 2}
4. Sends QR → Receives QR

5. QK = gU × P QK = d−1

S
×QR = (d−1

S
gUdS)× P = gU × P

6. gUS = QK .x: Temporary-key gUS = QK .x: Temporary-key
7. C0 = E(QK .x, (rS , sS), tS , gUS , gS)
8. Receives C0 ← Sends C0

9. D(QK .x, C0): Valid gUS , tS?
10. C1 = E(QK .x, (rU , sU ), IU , tU , QU .x, gS)
11. Sends C1 → Receives C1

12. Calculates eS = H(QS .x, IS , tS) D(QK .x, C1): Valid gS, tU?
13. eU = H(QU .x, IU , tU )
14. c = s−1

S
c = s−1

U

15. u1 = ceS u1 = ceU

16. u2 = crS u2 = crU

17. R = u1 × P + u2 ×QCA R = u1 × P + u2 ×QCA

18. v = R.x v = R.x

19. if v 6= rS , then abort if v 6= rU , then abort
20. kM = H(gUS , gS , eS, eU ): Unique session-key kM = H(gUS , gS , eS , eU ): Unique session-key
21. Destroys gUS , gS Destroys gUS , gS

Figure 2: Mutual authentication phase in UAP

in USAP stores some server specific information to sup-
port server anonymity. Hence, the scalability as we define
is the ability of the user to store servers’ specific informa-
tion to communicate securely with several servers while
preserving both user and server anonymity. The larger is
the number of servers that a user can communicate with,
the higher is the memory required to store the specific
information pertaining to each of the servers.

First, USAP has two different initialization phases: the
server initialization phase defined for the server and the
user initialization phase defined for a user. Second, all
users obtain the server’s public key QS and hashed value
eS from CA during the user initialization phase, which
will then be used in preserving server anonymity during
the mutual authentication phase. Note that in mutual
authenticating phase of both UAP and USAP, the com-
municating parties (a user and the server) first authen-
ticate each other and then agree upon a session-key to
secure the subsequent communication. Finally, USAP
relieves the user from verifying server’s certificates and
thereby lessens the computational load during the mu-
tual authentication phase. However, the user validates
the server’s public key, identity and expiration date by
calculating e′

S
= H(QS .x, IS , tS) and comparing it with

the eS received from CA during the initialization phase.

The rest of this section contains the details of USAP
and its two phases: the initialization phase and the mu-
tual authentication phase. Again, the initialization phase
is executed between a user (or a server) and the CA
through a secure channel to obtain their respective cer-
tificates and expiration dates and the mutual authentica-

tion phase is performed between a user and the server to
first authenticate each other and then establish a secure
communication channel by agreeing upon a new random
session-key.

5.1 Initialization Phase in USAP

In USAP, a user and the server execute two different ini-
tialization phases whose details are given below.

1) Server Initialization Phase: Figure 3 shows the server
initialization phase. First, the server, S, generates a
random public and private key pair (dS , QS), then
sends QS to the CA and calculates d−1

S
. Upon re-

ceiving QS, the CA assigns a unique identity IS

and an expiration date tS , calculates hashed value
eS = H(QS .x, IS , tS), and sends IS , tS and its public
key QCA to S. The CA then stores the server’s pub-
lic key QS and eS . Finally, S receives QCA, IS and
tS and stores d−1

S
, QCA, IS and tS .

2) User Initialization Phase: All users execute the user
initialization protocol with CA as shown in Figure 4
when they first subscribe. First, a user, U , generates
a random private and public key pair (dU , QU ) and
sends QU to CA to obtain a certificate and an expira-
tion date for its public key. Then CA first assigns an
identity IU , an expiration date tU , calculates hash
value eU = H(QU .x, IU , tU ), generates a certificate
pair (rU , sU ) and then sends IU , tU , (rU , sU ) along
with the server’s public key QS and hash value eS to
the user. Distributing the server’s public key to all
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Server CA

1. Chooses dS ∈ {2, n− 2}
2. QS = dS × P

3. Sends QS → Receives QS

4. Calculates d−1

S
Chooses a unique IS and tS

5. eS = H(QS .x, IS , tS)
6. Receives QCA, IS , tS ← Sends QCA, IS , tS
7. Stores d−1

S
, QCA, IS , tS Stores QS, eS

Figure 3: Server initialization phase in USAP

the users ensures that every user knows the server’s
public key prior to the authentication scheme.

5.2 Mutual Authentication Phase in
USAP

The mutual authentication phase shown in Figure 5 is
executed in real time, i.e., whenever a user, U , wants to
set up a secure communication with the server, S. Again,
the mutual authentication phase is divided into three sub-
phases, the details of which are included next. Steps 1
through 5 of Figure 5 indicate the temporary-key agree-
ment sub-phase, where U generates a random number gU ,
calculates QR = gU ×QS , and transmits QR to S. Note
that the user obtains the server’s public key QS during
the user initialization phase (Figure 4). U also calculates
QK = gU × P to obtain the temporary-key QK .x. Upon
receiving QR, S first performs d−1

S
× QR to obtain the

temporary-key QK .x and then encrypts the random num-
bers gS, gUS (gUS is the same as the key, required for data
freshness) and IS , tS with QK .x and finally sends this en-
crypted value C0 to U . Next is the certificate verification
sub-phase (Steps 6 through 19 in Figure 5). In this sub-
phase, U is not required to verify the server’s certificate as
the server’s public key was obtained from CA. However,
U decrypts C0, checks for the presence of gUS and validity
of the expiration date tS , computes e′

S
= H(QS .x, IS , tS)

and then compares e′
S

with the eS obtained from CA dur-
ing the user initialization phase. Comparing e′

S
with eS

is necessary because eS binds a server’s public key QS

with its identity IS and expiration date tS . The process
of verifying the hash value (Step 9 of Figure 5) instead of
verifying the server’s certificates relieves the user from the
computationally intensive point multiplications. If valid,
U obtains C1 by encrypting its certificate (rU , sU ), iden-
tity IU , x-coordinate of its public key QU .x, the expira-
tion date tU , and the server’s random number gS with the
temporary-key QK .x and sends C1 to S. Upon receiving
C1, S decrypts it, checks for the presence of gS and user’s
expiration date tU . If the check fails, S aborts the pro-
tocol; otherwise, it calculates hash value on the received
QU .x, IU , and tU , i.e., eU = H(QU .x, IU , tU ) and verifies
U ’s certificate (rU , sU ) using ECDSA as shown in Steps
13 through 19 of Figure 5. If valid, both parties generate
the unique session-key kM = H(gUS , gS

,

, eS, eU ) in the
session-key generation sub-phase (Steps 20 and 21) and

destroy gUS , and gS from their memory.

6 Security Analysis

In this section, we provide a provably secured analysis
for our protocols. The following is the roadmap. First,
we define ECDLP and then prove two theorems. Based
on these theorems, we show how our protocols satisfy the
design goals (security services and attack resistant) set
forth in Section 3 of this paper.

The security of ECC based public cryptosystems
largely depends upon solving a widely studied hard prob-
lem known as elliptic curve discrete logarithm problem
(ECDLP).

Definition 1. In an elliptic curve group, the ECDLP
is defined as finding d given Q and P , where Q = d ×
P . Here Q and P are the points on the elliptic curve, ×
represents point multiplication (i.e., addition of point P ,
d times), and d is any integer between 2 and n− 2, where
n is the order of the points P and Q.

It is believed that ECDLP is intractable. More details
on ECC, ECDLP, and point multiplication can be found
in [9, 14].

The public-key strategy of binding a user or server’s
public key with its unique identity and expiration date
eliminates the requirement for having a large online
database. For a successful secured communication be-
tween a user and the server, it is required for each of
the parties to register with CA by executing the initial-
ization phase to obtain their respective certificates, iden-
tities, and expiration dates. It is to be noted that the
initialization phase is executed through a secured chan-
nel. As such, we shall analyze the security features of our
proposed protocols UAP and USAP in the mutual au-
thentication phase which in real time will be executed via
an insecure channel. Unless otherwise explicitly stated,
the security analysis pertains to both protocols.

Theorem 1. The security of our protocols depends upon
the security of the temporary-key QK.x.

Proof. Recall the mutual authentication phase and its
three sub-phases: the temporary-key generation, the cer-
tificate verification, and the session-key generation in
UAP and USAP. The temporary-key QK.x generated in
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Server CA

1. Chooses dU ∈ {2, n− 2} Chooses kU ∈ {2, n− 2}
2. QU = dU × P RU = kU × P

3. Sends QU → Receives QU

4. Chooses a unique IU and tU
5. rU = RU .x; eU = H(QU .x, IU , tU )
6. sU = k−1

U
(H(QU .x, IU , tU ) + dCArU )

7. Receives QS , IU , (rU , sU ), tU , eS ← Sends QS , IU , (rU , sU ), tU , eS

8. Stores QU , QS , IU , (rU , sU ), tU , eS

Figure 4: User initialization phase in USAP

the temporary-key generation sub-phase (Step 6 and 5
of Figure 2 and 5, respectively) is used to encrypt the
exchanged messages C0 and C1. Note that C0 and C1

contain sensitive information including the random num-
bers and hashed values, which will be used in deriving the
unique session-key KM . If an adversary (by some means)
were able to determine QK.x, then he / she could easily
decrypt the messages C0 and C1 and calculate the cur-
rent session-key KM . Hence, the security of our protocols
depends upon the security of the temporary-key QK.x

Theorem 2. Finding out the temporary-key QK .x is as
hard as solving the ECDLP.

Proof. The following are the ways to calculate the
temporary-key QK .x.

1) QK = gU × P = (QK .x, QK .y) (on the user’s side)

2) QK = d−1

S
× QR = (d−1

S
gUdS) × P = gU × P =

(QK .x, QK .y) (on the server’s side)

The point QR = gU ×QS is a random point as it depends
upon the random number gU . For any adversary A to
calculate the temporary-key QK .x, it is required for him
to derive the server’s private key dS from public key QS .
Deriving dS knowing QS(dS × P ) and the base point P

is the problem of ECDLP. Similarly, deriving gU know-
ing QR and QS is again the problem of ECDLP. Hence,
calculating QK.x generated during the mutual authenti-
cation protocol is as hard as solving the ECDLP. Further,
in USAP, because of server anonymity, an adversary does
not have any additional information about QS .

Based on the assumption that an adversary cannot ob-
tain the current session-key KM without solving for QK.x,
we analyze the security of our proposed protocols in the
next two sub-sections: security services and attack resis-
tance analysis.

6.1 Security Services

In this sub-section, we prove how our protocols sup-
port the security services like mutual authentication, key
agreement, key confirmation, anonymity, confidentiality,
and non-repudiation.

1) Mutual Authentication:

Lemma 1. Our protocols provide mutual authenti-
cation of the communicating parties.

Proof. The communicating parties achieve mutual
authentication by executing a challenge-response se-
quence and it is described as follows. Here the chal-
lenge is sending ‘QR’ and random numbers and the
response is to verify the presence of expected ran-
dom numbers in the encrypted messages during the
run of the mutual authentication phase in UAP and
USAP. Given QR, it is infeasible for an adversary to
compute the correct response gUS without the knowl-
edge of the server’s private key. Note that solving for
a server’s private key is the problem of ECDLP. If U

is able to decrypt C0 and check the presence of gUS

(i.e., Step 9 and 8 of Figure 2 and 5, respectively)
then U is assured that the server, S, has the knowl-
edge of the private key corresponding to its public
key and is able to derive the correct temporary-key
QK .x, which is also the user’s random number gUS

for this session. Similarly, if S is able to decrypt C1

using QK .x and check for the presence of gS in Step
12 of Figures 2 and 5, then S can be sure that only
U can produce the correct response gS .

2) Key Agreement: Once the certificates are verified,
a unique session-key kM = H(gUS , gS

,

, eS , eU ) is
derived from the contributions of both parties in Step
20 of Figures 2 and 5. Thus, no single party has
complete control on the selection of the session-key,
which is the main goal of a key agreement protocol
[28].

3) Key Freshness:

Lemma 2. The included random numbers guarantee
key freshness.

Proof. Let g′
U
, g′

S
, and gU , gS , be the random

numbers generated in two different sessions. Since
g′

U
6= gU , therefore Q′

R
(g′

U
× QS) 6= QR(gU × QS)

and hence the calculated temporary-keys Q′

K.x
and

QK.x and g′
US

and gUS are different and so are the
obtained session-keys k′

M
(H(g′

US
, g′

S
,

, eS, eU )) and
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Server CA

1. Generates a random number gU ∈ {2, n− 2}
2. QR = gU ×QS = (gUdS)× P Generates a random number gS ∈ {2, n− 2}
3. Sends QR → Receives QR

4. QK = gU × P QK = d−1

S
×QR = (d−1

S
gUdS)× P = gU × P

5. gUS = QK .x: Temporary-key gUS = QK .x: Temporary-key
6. C0 = E(QK .x, gUS , gS

,

, IS , tS)
7. Receives C0 ← Sends C0

8. D(QK .x, C0): Valid gUS , tS?
9. Calculates e′

S
= H(QS.x, IS , tS), Is e′

S
= eS?

10. C1 = E(QK .x, (rU , sU ), IU , QU .x, tU , gS)
11. Sends C1 → Receives C1

12. D(QK .x, C1) : Valid gS, tU?
13. eU = H(QU .x, IU , tU )
14. c = s−1

U

15. u1 = ceU

16. u2 = crU

17. R = u1 × P + u2 ×QCA

18. v = R.x

19. if v 6= rU , then abort
20. kM = H(gUS , gS, eS , eU ): Unique session-key kM = H(gUS , gS, eS , eU ): Unique session-key
21. Destroys gUS , gS Destroys gUS , gS

Figure 5: Mutual authentication phase in USAP

kM (H(gUS , gS
,

, eS , eU )), where H is a collision free
hash function [22].

4) Key Confirmation: If U does not terminate the pro-
tocol in Step 9 and Step 8 of Figure 2 and 5, respec-
tively, then S knows that C0 is received correctly and
it can execute the rest of the protocol. Similarly, if S

does not terminate the protocol in Step 12 of Figures
2 and 5, then U knows that C1 is received correctly
and it can proceed to execute the rest of the proto-
col. Further, if U and S do not return a failure after
verifying each other’s certificates, then they confirm
to each other that the key is generated correctly [13].
Thus, our protocols provide key confirmation.

5) User Anonymity: We note that in both protocols,
U airs C1, which is an encrypted value of his/her
certificate, identity, hashed value and other param-
eters. Let us assume that the encryption is secure,
then it is impossible for an adversary to determine
any user specific data without the knowledge of the
temporary-key QK.x. Thus, our protocols achieve
user anonymity.

6) Server Anonymity: In USAP, based on ECDLP, it is
impossible for an adversary to determine a server’s
public key or other sensitive information such as
hashed value and identity from random point QR =
gU × QS and the aired encrypted value C0. Thus,
USAP achieves server anonymity.

7) Confidentiality: Assuming that it is hard for an ad-
versary to determine the temporary-key QK.x, the

encrypted messages C0 and C1 achieve confidential-
ity of the exchanged messages during the mutual au-
thentication phase. Furthermore, the agreed unique
session-key kM secures the rest of the further com-
munication.

8) Non-repudiation: A user or server’s public and pri-
vate key pairs together with certificates can be used
to achieve non-repudiation of the communication by
way of digital signature [18].

9) Forward Secrecy on the User Side: In both proto-
cols, the session-keys can be recovered from the previ-
ous runs of the mutual authentication by compromis-
ing the server’s private key. However, compromising
the user’s private key does not help in revealing the
session-keys. Therefore, our protocols provide for-
ward secrecy on the user side and thereby achieving
half forward secrecy [28]. This is justified because the
highly resourceful severs can support much stronger
security than the resource constrained user [13].

6.2 Attack Resistance Analysis

Now we will show that USAP and UAP resist known
attacks such as replay, known-key share, unknown-key
share, man-in-the-middle, denial-of-service, and imper-
sonation attacks.

1) Replay Attack: The random numbers gUS and gS

prevent replay attacks. Suppose an adversary A cap-
tures any or all of the aired messages such as QR, C0,
and C1 and masquerades these messages either with
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a previous message or any arbitrary values, the enti-
ties return a failure as the substituted message does
not contain the correct response for a given challenge.

2) Known-key Share Attack: Each run of the protocol
between the entities should produce a unique session-
key. From Lemma 2, it is clear that the temporary
agreed key QK.x and the session-key kM between the
user and server vary every time a mutual authenti-
cation phase is initiated.

3) Unknown-key Share Attack: Suppose an adversary
A tries to make U believe that the temporary-key is
shared with B, while B believes that the temporary-
key is shared with A. To launch the unknown-key
share attack, A should be able to identify the ex-
changed parameters. However, this is not possible
without the knowledge of the temporary-key QK.x.
Hence, he will not succeed.

4) Man-in-the-middle, Denial-of-service, and Imperson-
ation Attacks: Our protocols explicitly bind a user or
server’s identity with its public key, certificate pair
and hashed value. As such the above mentioned at-
tacks are not possible as shown below.

a. UAP: In UAP (Step 2 of Figure 2), a user re-
ceives the server’s public key along with its iden-
tity whose binding with the received certificate
is verified during the later stage of the protocol
(Steps 12 through 19 of Figure 2). Since the
user can identify with whom he/she is commu-
nicating with based on the transmitted identity
and whose binding with the public key is later
verified, it is impossible for an adversary A to in-
sert himself between the communicating parties.
This is not the case with A-WAP and hence it
succumbs to the above mentioned attacks [17].

b. USAP: Exchange of the public keys is elimi-
nated as CA distributes the server’s public key
to all the users. Note that distributing the
server’s public key does not impose any addi-
tional threat on the security, which in turn de-
pends on solving the ECDLP. Also note that
the user is assured that he/she is communicat-
ing with the intended party (server) by verifying
a valid gUS in Step 8 of Figure 5. Let us suppose
that an adversary, A, tries to establish himself
as was shown in [17], then, since A cannot solve
the ECDLP, therefore for some d′

S
−1 6= d−1

S
, A

ends up with a different temporary-key Q′

K.x
6=

QK .x(Q′

K
= d′

S
−1 × QR = (d′

S
−1gUdS) × P =

g′
U
×P ). Hence, the user returns a failure in Step

8 of Figure 5 because the response received g′
US

is not equal to the expected value gUS .

In USAP, the user instead of performing certifi-
cate verification as described in UAP (i.e., Steps
12 through 19 of Figure 2) verifies the calculated
hash value e′

S
with the hash value eS that was

received along with the server’s public key QS

during the user initialization phase.

Lemma 3. The process of verifying the hash
value (Step 9 of Figure 5) instead of verifying
the server’s certificates does not pose any addi-
tional threat on the security of USAP.

Proof. Recall that a user in USAP receives the
server’s public key and hash value during the
initialization phase for CA. After the mutual
authentication phase is initiated, if the user is
able to check the correct response for mutual au-
thentication, then he/ she knows that the server
possesses the private key corresponding to its
public key (Lemma 1). However, the user ver-
ifies the computed hash value e′

S
with the re-

ceived hash value eS . This is necessary to check
the binding between QS , IS , and tS . Let us
now suppose that either the received IS or tS
or both have changed, then the e′

S
and eS are

not equal. Hence, a user returns a failure, be-
cause eS = H(QS, IS , tS) 6= H(QS , I ′

S
, tS) 6=

H(QS, IS , t′
S
) 6= H(QS , I ′

S
, t′

S
), where I ′

S
, t′

S
are

different from IS , tS . Thus, verifying the hash
value instead of certificate does not pose any
additional threat to the security of USAP. Un-
like UAP, this check is only possible in USAP
because the server’s public key was received via
a secure channel during the initialization phase
from CA.

7 Performance Analysis

In this section, we study the performance of our proto-
cols in terms of computational burden (i.e., the number
of cryptographic and arithmetic operations performed),
the total number of bits and messages exchanged during
each run in the mutual authentication phase from a user’s
perspective and compare those results with recently pro-
posed AKA protocols such as A-WAP and MSR-Hybrid
[13]. The comparison from a user’s perspective is justi-
fied because the user is a low-end resource constrained
device with limited battery power as compared to the
highly resourceful servers. Note that a direct compari-
son between our protocols and A-WAP and MSR-Hybrid
cannot be made because of the added security features
that our protocols support. For example, MSR-Hybrid
neither provides user anonymity nor encrypts certificates
and A-WAP is susceptible to attacks and fails to preserve
anonymity. Also note that in the MSR-hybrid and A-
WAP protocols, the user and server verify each other’s
certificates issued by CA in the mutual authentication
phase and do not assume the availability of an on-line
CA that is similar to the one in PKI infrastructure for
verifying the certificates.

In our analysis, we assume a key length of 160-bit and
1024-bit for ECC and Rabin cryptosystem [1], respec-
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Table 1: Comparison of UAP and USAP with other recently proposed AKA protocols based on ECC

USAP UAP A-WAP MSR-Hybrid
Random number generation 1 1 1 1
Fixed point multiplication (FP) 2 4 3 3
Symmetric encryption (E) 1 1 1 1
Symmetric decryption (D) 1 1 1 1
Inverse (s−1) - 1 1 1
Multiplication (ce) - 2 2 3
Hash (H) 2 2 1 3
Small modular exponentiation - - - 1
Message exchanges 3 4 4 6
Total bits exchanged (number) 1920 2560 2560 4448
Total execution time (msec) 280 440 410 455

tively, and the key deriving function (KDF) and MAC op-
eration referred in [13] are the same as the hash function,
H , mentioned in this paper. Table 1 tabulates a compre-
hensive list of computational and communicational over-
heads along with execution times for all four AKA pro-
tocols that are being compared in the mutual authenti-
cation phase from a user’s perspective. The timings are
based on the implementation of the various operations
listed in Table 1 on a Mitsubishis M16C microprocessor,
details of which can be found in [13]. In ECC based AKA
protocols, the time consuming operation is point multipli-
cation. There are two kinds of point multiplications: the
fixed-point multiplication (FP) and random-point (RP)
multiplication. The only difference between the two is
that the prior knowledge of the point in an FP operation
allows for pre-computations, resulting in a lesser execu-
tion time than that is required for an RP. Examples of an
FP and RP are g×P and g×QR, respectively, where the
base point P is a known public parameter and the point
QR is randomly generated during the run of the protocol.
The total execution time for a protocol largely depends
upon the number of FP and RP operations. In [13], the
authors’ report average execution times for FP and RP
operations as 130 msec and 480 msec, respectively.

A user in each of the protocols listed in Table 1 is
required to perform only FP operations, while the time
consuming RP operations are shifted to the server side.
The reported execution time for MSR-Hybrid protocol
was 455 msec whose breakup is given as follows. The
three FP operations and a small modular exponentiation
require 390 msec and 45 msec of processing time, thereby
leaving room of about 20 msec for the rest of the oper-
ations. Considering similar conditions for executing the
rest of the protocols, the calculated execution times for
USAP, UAP and A-WAP are 280 msec (260 msec for two
FP operations + 20 msec for the rest of the operations),
440 msec (420 msec for four FP operations + 20 msec for
the rest of the operations), and 410 msec (390 msec for
three FP operations + 20 msec for the rest of the opera-
tions), respectively.

The number of bits exchanged in USAP is calcu-
lated as follows. The user transmits/receives 1920 bits
whose breakup is given as: QR (320 bits), C0 =
E(QK .x, gUS , gS

,

, IS , tS) (4 × 160 = 640 bits), C1 =
E(QK .x, (rU , sU ), IU , QU .x, tU , gS) (6 × 160 = 960 bits)
in Steps 3, 7 and 11 of Figure 5. We do not transmit the
key QK .x and thus it is not counted. Similar calculations
result in exchange of 2560 bits, 2560 bits and 4448 bits in
UAP, A-WAP and MSR-Hybrid, respectively.

In summary, the USAP is efficient in terms of compu-
tations and the total number of bits exchanged as com-
pared to UAP, A-WAP, and MSR-Hybrid in addition to
being secure and preserving anonymity of both the user
and server. The UAP is scalable but only at the cost of
server anonymity and increased computational and com-
municational overhead as compared to USAP.

8 Conclusions and Future Work

In this paper, we have proposed two ECC based authenti-
cation and key agreement protocols, the UAP and USAP.
Both are suitable for wireless applications. The proposed
protocols not only provide a variety of security features
but also are efficient in terms of message exchanges and
computations. Moreover, they can easily be implemented
in a majority of applications and thus are not limited to
ad-hoc networks. As a part of our future work, we will
concentrate on achieving both server anonymity and scal-
ability in our AKA protocols.
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