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Abstract

The most efficient technique for protecting the using
Frobenius algorithms for scalar multiplication on Koblitz
curves against the Side Channel Attacks seems to be the
multiplier randomization technique proposed by Joye and
Tymen. In this paper, an heuristic analysis on the secu-
rity of the Joye and Tymen’s technique is given. A new
method improving this technique is proposed. Analysis
shows that the proposed method reduce the cost of the
Joye and Tymen’s technique by about 50%.
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1 Introduction

The scalar multiplication methods based on the use of
the Frobenius map allow to speed up the scalar multi-
plication on certain categories of elliptic curves (Koblitz
curves) defined over a field with a small characteristic
[7, 12]. However, on devices with small resources they
are, as the usual double-and-add algorithms, vulnerable
to Side Channel Attacks (SCA) [1, 3, 8].

Many countermeasures have been proposed to prevent
the SCA attacks on the Frobenius based methods for
scalar multiplication. Hasan [4] has proposed three coun-
termeasures. The Key Masking with Localized Opera-
tions (KMLO) technique, The Random Rotation of Key
(RRK) technique and the Random Insertion of Redun-
dant Symbols (RIRS) technique. Another countermea-
sure was proposed by Smith [13], but the most efficient
one seems to be the randomization technique proposed by
Joye and Tymen [6] which consist of reducing the secret
scalar k modulo ρ (τm − 1), where ρ is a random element
of Z[τ ], instead of τm − 1.

This communication will focus on the increasing the
efficiency the Joye and Tymen’s countermeasure for pre-
venting the SCA attacks on the Frobenius based methods.
A further discussion on the security of this technique is
given, and another method, which is an improvement of

the Joye and Tymen’s technique, is introduced. The pro-
posed technique reduce the cost of the Joye and Tymen’s
countermeasure by about 50%.

The paper is organized as follows: Section 2 briefly re-
views the properties of the Frobenius map in the setting
of ECC and describes the Frobenius-based scalar multi-
plication. In Section 3, we introduce the Side Channel
Attacks and their countermeasures. In Section 4, we give
an heuristic estimation on the number of the elements
ρ ∈ Z(τ) such that N(ρ) ≤ N where N is a positive
integer. Our proposed method will be introduced in Sec-
tion 5, and we conclude in Section 6.

2 The τ-NAF Method

Koblitz curves [7] are defined over F2 by the following
equations:

y2 + xy = x3 + ax2 + 1, where a ∈ {−1, 1}.

In this section we introduce briefly the Frobenius map.
The reader can refer to [11] for details. Let E(Fq) an
elliptic curve defined over a finite field Fq.

We define the q-th power Frobenius map τ on E(Fq)
as follows:

τ : (x, y)← (xq , yq).

The Frobenius map satisfies the equation
τ2 − tτ + q = 0, where t is the trace of the curve E(Fq)
(#E(Fq) = q +1− t). For Koblitz curves the characteris-

tic equation of the Frobenius map is τ2−(−1)
1−a

τ+2 = 0

Since τm(x, y) = (xqm

, yqm

) = (x, y) for all (x, y) ∈
Fqm x Fqm , it is clear that the Frobenius map on E(Fq)
verifies:

τm(R) = R for all points R ∈ E(Fqm).

Let τ denote the Frobenius endomorphism of a Koblitz
curve. In this section, we will describe the Frobenius-
based τ -NAF method. The results about the τ -NAF rep-
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resentation in Z[τ ] are presented without proof; more de-
tails can be found in [7, 10, 12].

In [7], Koblitz showed that the use of the Frobe-
nius map τ can speed up the multiplication of a point
P of the curve by a scalar k on certain categories of
elliptic curves defined over fields with a characteristic
q = 2 (Koblitz curves), as k may be written in the form

k =
∑l−1

i=0 kiτ
i with ki ∈ {−1, 0, 1}, after what the

computation of kP may be performed by applying the
usual left-to-right point multiplication scheme. The rep-
resentation (kl−1, · · · , k0) such that k =

∑l−1
i=0 kiτ

i, with
ki ∈ {−1, 0, 1} for i = 0, · · · , l − 2, is called the τ -adic
representation of k. In the same manner as the NAF rep-
resentation of the secret scalar k gives improvement over
the binary representation in the case of the integers, we
can reduce the number of the non-zero digits in the repre-
sentation of scalar k by using the τ−NAF representation
of k (Algorithm 4 in [14]).

The length of the τ -NAF representation of the scalar
k is about twice the length of its binary representation.
To reduce the computation time of kP , Solinas [14] has
proposed an efficient algorithm (Algorithm 5 in his paper)
based on a previous work by Meier-Staffelbach [10].

Since τm(R) = R for all points R ∈ E(F2m), it follows
that, if α and β are elements of Z[τ ] with α ≡ β mod (τm−
1), then αR = βR for all R; this means that rather than
computing kP , we compute αP where α is the remainder
obtained from dividing k by τm − 1. From [10], we know
that Z[τ ] is an euclidean domain, thus the norm of the
remainder α is smaller than the norm of τm−1. Since the
norm of τm−1 is precisely the order of the curve E(F2m),
the τ -NAF expansion of the remainder α has a length
v m. For a better efficiency, the τ−NAF expansion of the
scalar (Algorithm 4 in [14]) will be used. The algorithm
below implements in detail the τ -NAF method.

Algorithm 1 : τ-NAF method
Input : an integer k, and a point P ∈ E(F2m).
Output : kP .
1. Computation of the τ-NAF representation: k =
∑m−1

i=0 kiτ
i, with ki ∈ {−1, 0, 1}, with kiki+1 = 0 for

i = 0, · · · , m− 2.
2. Q← P .
3. for i = m− 2 down to 0 do
3.1 Q← τ(Q).
3.2 if ki = 1 then Q← Q + P .
3.3 if ki = −1 then Q← Q− P .
4. Return Q.

3 The SCA Attacks and Their

Countermeasures

Side Channel Attacks exploit some data leaking informa-
tion such as power consumption and computing time to
detect a part or the whole of the bits of the secret key.
We can distinguish two types of SCA attacks:

• The Simple Power Analysis (SPA) attacks which ana-
lyzes the information leaking from a single execution
of the algorithm. The τ − adic method computes a
Frobenius map and an adding of points if ki 6= 0,
and only a Frobenius map if ki = 0. By observing
the power consumption, an SPA attacker can detect
whether the secret digits ki are zero or not. To pre-
vent SPA attacks, many countermeasures have been
proposed; the standard approach is to use fixed pat-
tern algorithms.

• The Differential Power Analysis (DPA) attacks which
collect informations from several executions of the
algorithm and interpret them with statistical tools.
To prevent DPA attacks, randomization of parame-
ters seems to be an efficient technique [2, 6]. The
usual approach is to randomize the base point P .
Coron proposes to transform the affine point P =
(x, y) into randomized Jacobian projective coordi-
nates P = (r2x, r3y, r) for a random non-zero integer
r. Joye and Tymen use a random curve belonging to
the isomorphism class of the elliptic curve. A point
P = (x, y) of an elliptic curve E is transformed into
P ′ = (r2x, r3y) which is a point of the corresponding
isomorphic curve E′ of E.

• The RPA attack proposed by Goubin [3] belongs to
a new generation of DPA attacks that use special
points to deduce the bits of the secret key. The funda-
mental remark of Goubin is that randomizing points
with a 0-coordinate ((x, 0) or (0, y)) yields points that
possess still a 0-coordinate. Supposing that the bits
kl−1, · · · , kj+1 of the secret scalar k are known by
the attacker, and that he wants to guess the value
of the next bit kj , he just needs to choose the point

P = (c−1mod#E)(0, y) with c = 2j +
∑l−1

i=j+1 2iki.
If, in the process of the computation of kP , the scalar
multiplication computes the point cP = (0, y), the
power consumption for the next step is significantly
distinct. Thus, the attacker can know whether cP
has been computed or not, and hence if kj was 1
or 0. Iterating this process, all bits of the secret
key can be determined. Akishita-Takagi [1] general-
ize Goubin’s idea to elliptic curves without points
with a 0-coordinate. Their attack focuses on the
auxiliary registers which might contain a zero value,
when the adding and doubling operations a re per-
formed by the scalar multiplication. The ZPA attack
is in particular efficient on several standard curves
with no 0-coordinate point. To prevent the RPA
and ZPA attacks, the authors in [5, 9] have pro-
posed the Randomized Linearly-transformed coordi-
nates (RLC) technique.

• To prevent the SCA attacks on the τ − adic method,
Joye and Tymen [6] have proposed to randomize the
secret scalar k. The scalar k is reduced modulo
ρ (τm − 1), where ρ is a random element of Z[τ ].
For the same purpose, Hasan [4] proposed previously
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three countermeasures. In the Key Masking with Lo-
calized Operations (KMLO) technique, the symbols
of the τ−adic representation can be replaced in more
than one way on a window of three and more sym-
bols, since we have 2 = τ − τ2 = −τ3 − τ which is
derived from the equation τ2 − τ + 2 = 0 (assuming
that t = 1). The Random Rotation of Key (RRK)
technique proposes to compute the scalar multiplica-
tion kP as k′P ′ where P ′ = τrP , and r is a random
integer such as r ≤ m − 1. Finally, the Random
Insertion of Redundant Symbols (RIRS) technique
proposes to insert in the τ − adic representation of
the secret scalar k a number of redundant symbols
such as they collectively neutralize their own effects.
Another countermeasure was proposed by Smith [13];
it consists in decomposing the τ−adic representation
of k into r groups of g coefficients, r being a random
element such as r ≤ m and g = dm

r
e. The point mul-

tiplication between each group and the base point P
is performed in a random order. The countermea-
sure of Joye and Tymen seems to be more efficient in
thwarting the SCA attacks, since it randomizes the
entire digits of the secret scalar k.

4 Heuristic Estimation

As mentioned previously, the Joye and Tymen’s technique
for preventing the τ -NAF method against the SCA at-
tacks proposes to randomize the secret scalar k by reduc-
ing it modulo ρ(τm − 1)) instead of τm − 1, where ρ is
a random element of Z[τ ]. The length of the obtained
τ -NAF representation is approximately m + log2(N(ρ)),
where N(ρ) denotes the norm of ρ in Z[τ ]. The efficiency
of this technique depends on the number of the random
elements ρ of Z[τ ], where N(ρ) ≤ N and N is positif inte-
ger N . The length of the integer N allows to control the
trade-off between the computation time and the required
security.

The following theorem gives an heuristic estimation on
the number of the randomized scalars obtained by the
Joye and Tymen’s technique.

Theorem 1 Let N be a positive integer, the number of
element ρ of Z(τ) with N(ρ) ≤ N is approximately αN ,

where 4√
7
≤ α ≤ 8

√
2√

21
.

To prove this theorem we have first to prove the following
lemma.

Lemma 1 #{a + bτ ∈ Z(τ) / N(a + bτ) = a2 + ab +

2b2 ≤ N} = 2
∑

b 2√
(7)

√
Nc

i=0 b
√

4N − 7i2c, where b.c de-
notes the function which returns the entire part.

Proof. Let b be a fixed integer, and let us estimate the
number of the integers a such that N(a+ bτ) = a2 + ab+
2b2 ≤ N for a given positive integer N .

The inequality a2+ab+2b2−N ≤ 0 admits a solutions
if the discriminan b2 − 4(2b2−N) = 4N − 7b2 is a positif
integer, which means that | b |≤ 2√

7

√
N .

For a fixed positive integer b ≤ 2√
7

√
N , the solutions

of the inequality a2 + ab + 2b2 − N ≤ 0 are the integers

a ∈ [−b−
√

4N−7b2

2 , −b+
√

4N−7b2

2 ], which means that, for
a fixed b, the number of the integer a such that N(a +
bτ) ≤ N is b

√
4N − 7b2c. Consequently, the number of

the elements a + bτ of Z(τ) such that N(a + bτ) ≤ N is

2
∑b 2

√

7

√
Nc

i=0 b
√

4N − 7i2c. 2

By using the above lemma we will prove the Theorem 1.
By applying the following inequality: for every positif in-
tegers x, y, with x ≥ y, we have

√
x− y ≥ √x−√y, then

we can write

b 2
√

7

√
Nc

∑

i=0

√

4N − 7i2 ≥
b 2
√

7

√
Nc

∑

i=0

√
4N −

b 2
√

7

√
Nc

∑

i=0

√
7i2. (1)

since

sum
b 2
√

7

√
Nc

i=0

√
4N = 2(b 2√

7

√
Nc+ 1)

√
N ≈ 4√

7
N

and

b 2
√

7

√
Nc

∑

i=0

√
7i2 =

√
7

b 2
√

7

√
Nc

∑

i=0

i

=
√

7(
b 2√

7

√
Nc(b 2√

7

√
Nc+ 1)

2
)

≈ 2√
7
N.

then

b 2
√

7

√
Nc

∑

i=0

√
4N −

b 2
√

7

√
Nc

∑

i=0

√
7i2 ≈ 2√

7
N

and thus from Equation (1) we can write

2

b 2
√

7

√
Nc

∑

i=0

√

4N − 7i2 ≥ 4√
7
N.

On the other hand, by using the inequality of Cauchy-
Schwartz we can write

b 2
√

7

√
Nc

∑

i=0

√

4N − 7i2 ≤ (

b 2
√

7

√
Nc

∑

i=0

1)
1
2
(

b 2
√

7

√
Nc

∑

i=0

(4N − 7i
2))

1
2
. (2)

since

b 2
√

7

√
Nc

∑

i=0

7i
2 = 7(

b 2√
7

√
Nc(b 2√

7

√
Nc + 1)(2b 2√

7

√
Nc + 1)

6
)

≈ 8

3
√

7
N

3
2

then we can write

(

b 2
√

7

√
Nc

∑

i=0

(4N − 7i2))
1
2 ≈ (

16

3
√

7
N

3
2 )

1
2
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On the other hand we have

(

b 2
√

7

√
Nc

∑

i=0

1)
1
2 ≈ (

2√
7

√
N)

1
2

Thus

(

b 2
√

7

√
Nc

∑

i=0

1)
1
2 (

b 2
√

7

√
Nc

∑

i=0

(4N − 7i2))
1
2 ≈ 4

√
2√

21
N.

and thus from Equation (2), we can write

2

b 2
√

7

√
Nc

∑

i=0

√

4N − 7i2 ≤ 8
√

2√
21

N.

Which complete the proof of the theorem.
Without loss of generalities, let us suppose that the

number of the elements ρ with N(ρ) ≤ N is approxi-

mately αN , for some fixed α, where 4√
7
≤ α ≤ 8

√
2√

21
.

The result stated by the following lemma will be used in
the next section to evaluate the security of our proposed
method.

Lemma 2 The number of the random elements (r, ρ)
where r, ρ are a random elements of Z[τ ] with N(ρ) ≤ N
and N(r) ≤ N(ρ), is approximately αN2/2.

Proof. By the theorem 1 we know that the number of the
elements ρ of the Z[τ ] with N(ρ) ≤ N is approximately
αN . Thus, for each ρ ∈ Z[τ ], there exist about αN(ρ)
elements r of Z[τ ] with N(r) ≤ N(ρ).

Consequently, the number of the random elements
(r, ρ) where r, ρ are a random elements of Z[τ ] with

N(ρ) ≤ N and N(r) ≤ N(ρ) is :
∑i=N

i=0 αi = αN(N+1)
2 ≈

αN2/2, which complete the proof the lemma. 2

5 The Proposed Technique

Let E(F2m) be an elliptic curve, and let τ the Frobenius
map on E(F2), i.e τ((x, y)) = (x2, y2).

It is clear that τ verifies τm = 1 in EndE . Thus

τm − 1 = (τ − 1)
m−1
∑

i=0

τ i = 0.

Then for all points R ∈ E(F2m)\E(F2) (i.e τ(R) 6= R)
we have

m−1
∑

i=0

τ i(R) =
τm − 1

τ − 1
(R) = 0. (3)

To reduce the cost of the Joye-Tymen’s technique,
we propose to exploit the Equation (3), and replace
the secret scalar k by the random element k′ = k +
r τm−1

τ−1 mod (ρ(τm − 1)), where r, ρ are a random ele-
ments of Z[τ ], with N(r) ≤ N(ρ) and N(ρ) ≤ N for some

positif integer N . From the Equation (3), it is clear that
kP = k′P for every base point P (points with high or-
ders).

Now we will evaluate the security of the proposed
method, which means estimate the number of the random
scalars k′. From the Lemma 2, we know that the number
of the random elements (r, ρ), where r, ρ are a random
elements of Z[τ ] with N(ρ) ≤ N and N(r) ≤ N(ρ), is ap-
proximately αN2/2. Thus the number of the randomized

scalars k′ = k+r τm−1
τ−1 mod (ρ(τm−1)) is αN2

2 −c, where
c is the number of the collisions.

Definition 1 We said that we have a collision if there
exist two couple of elements (r1, ρ1) and (r2, ρ2) such that

k + r1
τm − 1

τ − 1
mod (ρ1(τ

m − 1))

= k + r2
τm − 1

τ − 1
mod (ρ2(τ

m − 1)).

Lemma 3 The number of collisions is at most αN2

4

Proof. Let us suppose that the random elements (r1, ρ1)
and (r2, ρ2) give rise to a collision, which mean that the
following equation yields

k + r1
τm − 1

τ − 1
mod (ρ1(τ

m − 1))

= k + r2
τm − 1

τ − 1
mod (ρ2(τ

m − 1)). (4)

The Equation (4) implies that there exist λ1, λ2 ∈ Z[τ ]
such as

k + r1
τm − 1

τ − 1
− λ1(ρ1(τ

m − 1))

= k + r2
τm − 1

τ − 1
− λ2(ρ2(τ

m − 1)) (5)

(5) implies that there exist λ1, λ2 ∈ Z[τ ] such as

r1 − r2

τ − 1
= λ1ρ1 − λ2ρ2 (6)

The Equation (6) implies that τ−1/r1−r2 and that the
gcd(ρ1, ρ2) is a multiple of r1−r2

τ−1 . Thus, to give an upper
bound for the number of collisions we can only evaluate
the number of (r1, r2) such as r1− r2 is divisible by τ −1.

It is easy to see that an element a+bτ of Z[τ ] is divisible
by τ − 1 if and only if a + b is an even integer. Thus,
for a random elements r1, r2 of Z[τ ] the probability that
r1−r2 is divisible by τ−1 is 1

2 . Consequently the number
of collisions is at most

#{(r, ρ) / N(ρ) ≤ N and N(r) ≤ N(ρ)}
2

≈ α
N2

4
,

which complete the proof of the lemma. 2

From Lemmas 2 and 3, we can conclude that the num-
ber of the randomized scalars obtained by our proposed

method is approximately at least αN2

4 .
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Now suppose that for some required level of security,
we may impose that N(ρ) ≈ N for the technique of Joye
and Tymen. The length of the obtained τ -adic representa-
tion by the Joye and Tymen’s technique is approximately
m+ log2(N(ρ)), which penalizes the computation time by
about log2(N(ρ)) additional steps. To get the same level
of security with our proposed technique, we will impose
that norm of the random element ρ is only about 2

√
N .

Indeed, from the Lemma 2 and 3 the number of the ob-
tained randomized scalars by our proposed technique is

approximately α( (2
√

N)
2

4 ) = αN , which is the the same
one as that obtained by the Joye and Tymen’s technique
for N(ρ) ≈ N (Theorem 1).

On the other hand, the length of the obtained τ -NAF
representation by our proposed method will be only m +

log2(2
√

N) ≈ m + log2(N(ρ))
2 + 1, hence it penalizes the

computation time by about log2(N(ρ))
2 +1 additional steps,

which is about the half of number of the additional steps
caused by the Joye and Tymen technique. Thus, we can
conclude that our proposed technique reduce the cost of
the Joye and Tymen’s one by about 50%.

6 Conclusion

In this paper, we have proposed an heuristic analysis on
the security of the Joye and Tymen’s countermeasure that
aim to prevent the SCA attacks on the τ -NAF method
for scalar multiplication on elliptic curve. We have also
proposed an new method that improve this technique.
Indeed our proposed method reduce the cost of Joye and
Tymen’s technique by about 50%.
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