
International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 191

Detecting and Evading Wormholes in Mobile
Ad-hoc Wireless Networks

Asad Amir Pirzada and Chris McDonald

(Corresponding author: Asad Amir Pirzada)

School of Computer Science & Software Engineering, The University of Western Australia

135 Stirling Highway, Crawley, W.A. 6009, Australia. (Email: {pirzada,chris}@csse.uwa.edu.au)

(Received Sept. 16, 2005; revised and accepted Nov. 6, 2005)

Abstract

Mobile ad-hoc wireless networks are established in impro-
vised environments through the mutual cooperation of its
participating nodes. These nodes often operate in a phys-
ically insecure environment and, as a result, are vulnera-
ble to capture and compromise. In addition, the nature
of the wireless communication medium restricts enforce-
ment of rigourous node memberships and so a number
of malicious nodes may also participate in the network.
These nodes, in order to snoop or sabotage, can undertake
a variety of attacks against the network. Among these,
wormhole attacks have unusual significance primarily due
to their modus operandi and peculiar attack pattern. In
such attacks, two or more malicious colluding nodes create
a higher level virtual tunnel in the network, which is em-
ployed to transport packets between the tunnel endpoints.
These tunnels emulate shorter links in the network and
so act as bait to unsuspecting network nodes which, by
default, seek shorter routes. The benefit gained by the
malicious nodes is that they are able to conduct a variety
of attacks against the tunnelled traffic. In this paper, we
present a novel trust-based scheme for identifying and iso-
lating nodes that create a wormhole in the network, with-
out engaging any cryptographic means. With the help of
extensive simulations, we demonstrate that our scheme
functions effectively in the presence of malicious collud-
ing nodes and does not impose any unnecessary conditions
upon the network establishment and operation phase.

Keywords: Ad-hoc, attacks, network, routing protocol, se-
curity, trust

1 Introduction

An ad-hoc network is built, operated, and maintained by
its constituent wireless nodes. These nodes generally have
a limited transmission range and so each node seeks the
assistance of its neighbouring nodes in forwarding pack-
ets. In order, to establish routes between nodes, which

are farther than a single hop, specially configured routing
protocol are engaged. The unique feature of these proto-
cols is their ability to trace routes in spite of a dynamic
topology. These protocols can be categorised into two
main types: Reactive and Proactive [19]. The nodes in
an ad-hoc network generally have limited battery power
and so active routing protocols endeavour to save upon
this, by discovering routes only when they are essentially
required. In contrast, proactive routing protocols contin-
uously establish and maintain routes, so as to avoid the
latency that occurs during new route discoveries. Both
types of routing protocols require persistent cooperative
behaviour, with intermediate nodes primarily contribut-
ing to the route development. Similarly each node, which
acts like a mobile router, has absolute control over the
data that passes through it. In essence, the membership
of any ad-hoc network indisputably calls for sustained
benevolent behaviour by all participating nodes.

In real life, such an altruistic attitude is more than of-
ten extremely difficult to realise and so we often find ma-
licious nodes also present in the same network. Some of
these are alien nodes, which enter the network during its
establishment or operation phase, while others may origi-
nate indigenously by compromising an existing benevolent
node [2]. These malicious nodes can carry out both Pas-
sive and Active attacks against the network [5]. In pas-
sive attacks a malicious node only eavesdrop upon packet
contents, while in active attacks it may imitate, drop or
modify legitimate packets [3]. The severity of such attacks
increases multifold especially when these are performed in
collusion. A typical example of such a cooperative attack
is a wormhole [7] in which a malicious node tunnels the
packets from one end of the network to another. The
tunnel essentially emulates a shorter route through the
network and so naive nodes prefer to use it rather than
alternate longer routes. The advantage gained by the col-
luding nodes is obvious as they are now, for all intents
and purposes, in charge of a high usage route through the
network. The consequences of such a wormhole on the

International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 192

network can be catastrophic, and in worst case scenarios,
may lead to a vertex cut in the network [14].

To counter known attacks, a number of secure routing
protocols have been developed that essentially make use
of cryptographic techniques to protect the network traffic.
However, a comparison [15] indicates that for effective ex-
ecution of these protocols a number of mandatory require-
ments must be met before and after the network estab-
lishment phase. These requirements include configuration
of the nodes prior to joining the network and/or creation
of a centralised or distributed trusted third party. Ad-hoc
networks, which are inherently impulsive, lack the instinc-
tive attribute of planning and therefore oppose extraneous
requirements. To facilitate deployment of secure routing
protocols, ad-hoc networks have been grouped into two
types: Managed and Pure [16]. Managed ad-hoc networks
are those which are established in a scenario where some
information regarding the composition and condition of
the network is available beforehand. This permits config-
uration of the nodes with encryption keys and certificates,
along with the creation of a key repository [17] for the
implementation of various security services [20]. In con-
trast, pure ad-hoc networks have no a-priori knowledge of
their future setup and so are not based upon any assump-
tions. They tend to adopt the human pattern of reaction
in unrehearsed situations and hence believe in improvi-
sation. These networks are thus operated by nodes that
put trust [10] in each other’s capabilities to get their indi-
vidual chores accomplished. This trust is affected by past
experiences with other nodes over a period of time and is
reinforced through reference.

In this paper, we apply a similar trust based scheme
to the Dynamic Source Routing (DSR) protocol to de-
tect and evade wormhole attacks in a pure ad-hoc net-
work. Each node in the network autonomously executes
the trust model and maintains its own evaluation regard-
ing other nodes in the network. Each node, based upon
its own experience, rewards collaborating nodes for their
benign behaviour and penalises malicious nodes for their
malignant conduct. Source nodes use this trust infor-
mation to circumvent malicious nodes by computing the
most trustworthy path to a particular destination. The
routes computed in this manner are neither protected in
terms of security and possibly not minimal in terms of
hops. However, these routes traverse nodes that have
been found to be more trustworthy compared to others
and are hence more dependable in an unfamiliar situa-
tion.

In Section 2 of this paper we present some relevant
previous work. In Section 3 we describe our proposed
scheme in detail. Simulation results are presented in Sec-
tion 4. An analysis of the proposed scheme is presented
in Section 5 with concluding remarks in Section 6.

2 Previous Work

2.1 Packet Leashes

Packet Leash [7] is a mechanism to detect and defend
against wormhole attacks. The mechanism proposes two
types of leashes for this purpose: Geographic and Tem-
poral. In Geographic Leashes, each node knows its pre-
cise position and all nodes have a loosely synchronised
clock. Each node, before sending a packet, appends its
current position and transmission time to it. The receiv-
ing node, on receipt of the packet, computes the distance
to the sender and the time it took the packet to tra-
verse the path. The receiver can use this distance and
time information to deduce whether the received packet
passed through a wormhole or not. In Temporal Leashes,
all nodes are required to maintain a tightly synchronised
clock. All sending nodes append the time of transmission
to each sent packet. The receiver compares the time to its
locally maintained time and assuming that the transmis-
sion propagation speed is equal to the speed of light, com-
putes the distance to the sender. The receiver is thus able
to detect, whether the packet has travelled on additional
number of hops before reaching the receiver. Both types
of leashes require that all nodes can obtain an authenti-
cated symmetric key of every other node in the network.
These keys enable a receiver to authenticate the location
and time information in a received packet.

2.2 SECTOR

The Secure Tracking of Node Encounters in Multi-hop
Wireless Networks (SECTOR) [1] is a set of mechanisms,
which can be used to prevent wormhole attacks without
requiring any clock synchronisation or location informa-
tion. SECTOR uses a distance-bounding protocol called
MAD (Mutual Authentication with Distance-bounding)
to determine the distance between any two communicat-
ing parties. MAD assumes that each node is equipped
with a special hardware transceiver module that can re-
ceive a single bit, perform a two bit XOR operation on it
and transmit a single bit without involving the main CPU.
This module is used to perform a series of bit exchanges
among the two nodes, so as to compute the precise inter-
val between sending and receiving the bit patterns. This
interval helps to compute the distance between the com-
municating parties. To ensure the integrity of the bit pat-
terns, MAD makes use of one-way hash chains and hash
trees. To prove the authenticity of the messages, MAD
uses message authentication codes (MAC), which are se-
cured using pairwise secret keys. The security of the MAD
protocol depends upon the number of bits exchanged be-
tween the sender and the receiver. The accurate execution
of the MAD protocol provides the receiver with the exact
distance to a sender. The receiving node can thus confirm
whether the packets being received are actually traversing
a legitimate path or are being tunnelled through colluding
nodes.

International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 193

2.3 Directional Antennas

Wormhole attacks can also be countered using directional
antennae as suggested by Hu et al. [8]. All nodes in
the network share their directional information with other
nodes in the network in order to prevent wormhole at-
tacks. In doing so, each node maintains accurate informa-
tion about the bearing of its immediate neighbours. Any
direct messages from a non-neighbour are immediately
discarded. The scheme presents two types of neighbour
discovery protocols that can be used to prevent worm-
holes. The first protocol, called the Verified Neighbour
Discovery Protocol, protects from adversaries that have
a single endpoint in the neighbourhood. During the ex-
ecution of the protocol, the announcing node exchanges
six messages with its neighbouring node, before the an-
nouncer or its neighbour accepts each other as neighbours.
The protocol also requires the services of a third node
called the verifier, which is in a different direction than
that of the neighbour and the announcer, so as to pro-
tect the discovery protocol itself from wormhole attacks.
The messages shared between the announcer, neighbour
and the verifier include HELLO packets, nonce and identity
tags. The neighbour shares two secret keys one each with
the announcer as well as the verifier. All critical inter-
node messages are encrypted before transmission using
these keys. Another reinforced variant of the first proto-
col, Strict Neighbour Discovery Protocol, protects against
wormhole attacks even when the adversary has two end-
points in the neighbourhood. However, there may be sit-
uations when no verifying node is available in the vicinity
leading to the failure of both protocols.

2.4 MDS-VOW

The Multi-Dimensional Scaling Visualisation Of Worm-
hole (MDS - VOW) [21] is a mechanism to detect worm-
holes in sensor networks. The mechanism does not re-
quire any special hardware such as positioning devices,
synchronised clocks or directional antennas. MDS-VOW
uses multi-dimensional scaling to reconstruct the network
and detects the attack by visualising the anomaly intro-
duced by the wormhole. Each node in the network es-
timates the distance to its immediate neighbours based
upon the received signal strength. These distances are
then sent to the centralised controller, which uses the Di-
jkstra algorithm [4] to calculate the distance between all
nodes. The controller uses MDS to find the virtual posi-
tion of each sensor and uses a smoothing function to cater
for measurement errors. If the smoothed surface is flat,
it indicates the absence of a wormhole. However, if the
surface between two nodes is bend towards each other,
it suggests the likely existence of a wormhole. The con-
troller computes the wormhole indicator for each node and
distributes them to the sensors. The sensors use these in-
dicators to evade subsequent communication through the
wormholes. In order to ensure the integrity of packets
containing distance information and wormhole indicators,

MDS-VOW uses Message Authentication Codes that are
formed using a group key shared between the sensors and
the controller.

The aforementioned schemes implement various mech-
anisms to detect and protect against wormholes in an ad-
hoc network. The use of cryptography, clock synchronisa-
tion and special devices indeed helps in protecting against
wormholes but is considered an extraneous requirement,
which contradicts the spontaneous nature of ad-hoc net-
work. All schemes have certain pre and post establish-
ment conditions, which restrict their application only to
managed ad-hoc wireless networks.

3 Trust-based Wormhole Detec-
tion and Evasion in DSR

3.1 Dynamic Source Routing (DSR) Pro-
tocol

The DSR protocol [9] is a reactive routing protocol. As
the name suggests it uses IP source routing. All data
packets that are sent using the DSR protocol contain
the complete list of nodes that the packet has to tra-
verse. During route discovery, the source node broad-
casts a ROUTE REQUEST packet with a unique identifica-
tion number. The ROUTE REQUEST packet contains the
address of the target node to which a route is desired.
All nodes that have no information regarding the target
node or have not seen the same ROUTE REQUEST packet
append their IP addresses to the ROUTE REQUEST packet
and re-broadcast it. In order to control the spread of
the ROUTE REQUEST packets, the broadcast is done in a
non-propagating manner with the IP TTL field being in-
cremented in each route discovery. The ROUTE REQUEST

packets keep on spreading until they reach the target node
or any other node that has a route to the target node. The
recipient node creates a ROUTE REPLY packet, which con-
tains the complete list of nodes that the ROUTE REQUEST

packet had traversed. Based upon implementation, the
target node may respond to one or more incoming ROUTE

REQUEST packets. Similarly, the source node may accept
one or more ROUTE REPLY packets for a single target node.
The selection of the ROUTE REPLY can be made both on
minimal hop count or latency.

For optimisation reasons, nodes maintain a PATH

CACHE or a LINK CACHE scheme [6]. All nodes either for-
warding or overhearing data and control packets, add all
useful information to their respective route cache. This
information is used to limit the spread of control pack-
ets for subsequent route discoveries. The DSR protocol
also provides the facility for ‘route shortening’ to avoid
unnecessary intermediate nodes. For example, if a node
overhears a data packet that is supposed to traverse a
number of nodes before passing through it, this node cre-
ates a shorter route known as Gratuitous ROUTE REPLY

and sends it to the original sender.

International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 194

3.2 Wormhole Creation

In any ad-hoc network, a wormhole can be created
through the following three ways:

• Tunnelling of packets above the network layer

• Long range tunnel using high power transmitters

• Tunnel creation via external wired infrastructure

In the first type of wormhole, all packets which are re-
ceived by a malicious node are duly modified, encapsu-
lated in a higher layer protocol and dispatched to the
colluding node using the services of the network nodes.
These encapsulated packets traverse the network in the
regular manner until they reach the collaborating node.
The recipient malicious node, extracts the original packet,
makes the requisite modifications and sends them to the
intended destination. In the second and third type of
wormholes, the packets are modified and encapsulated in
a similar manner. However, instead of being dispatched
through the network nodes, they are sent using a point-
to-point specialised link between the colluding nodes. In
this paper, we only discuss solutions to the first type of
wormhole which in our opinion has greater applicability
to pure ad-hoc networks.

In an ad-hoc network executing the DSR protocol, each
packet contains the complete list of nodes that it has to
traverse in order to reach the destination. This feature,
although excludes intermediate nodes form making any
routing decisions, can still be exploited to create a worm-
hole. Such wormholes can be created in a number of
topological scenarios. However, all such settings are pri-
marily derived from scenarios where the colluding nodes
(M1,M2) are not the immediate neighbours of the source
(S) and destination (D) nodes, as shown in Figure 1.

Wormhole creation in such a scenario is generally ac-
complished using the following steps:

Sustained Routes between Colluding Nodes. M1
and M2 periodically establish and maintain routes
to each other in the network at all times. This route
serves as a higher layer tunnel for all other nodes
whose traffic is routed through M1 and M2.

Fallacious Response to Source Node Route Re-

quests. Whenever a ROUTE REQUEST packet from
S is received by M1, it immediately sends a ROUTE

REPLY packet so as to portray minimal delay. M1
also makes the ROUTE REPLY packet (S-1-M1-M2-D)
as short as possible, indicating D as an immediate
neighbour of M2. Such ROUTE REPLY packets, have a
high probability of being selected by S as they have
minimal hop-count and latency.

Route Development till the Destination Node.
M1 informs M2 to initiate a route discovery to D
through a pre agreed upon higher layer protocol and
also performs the same. In the mean time, all data

packets from S to D are buffered for a certain inter-
val at M1. While waiting for a route to D, if M1
receives a ROUTE REPLY packet from D to S, it ver-
ifies whether it can reach D through M2. If yes, it
creates a new working source route option from M2
to D (S-M1-M2-5-D) for the buffered packets, encap-
sulates and sends them to M2, else it waits for the
ROUTE REPLY packet to be received in response to
the ROUTE REQUEST packet that was initiated by itself
and M2 . Upon receipt of these ROUTE REPLY pack-
ets, M1 traces an optimal route to D through M2.
However, if during this waiting period, the buffer
interval expires or an overflow occurs, M1 sends a
ROUTE ERROR packet to S for the last received data
packet.

Deception through Gratuitous Route Replies. As
an alternate mechanism, if M1 overhears any ongoing
communication between S and D (S-1-2-3-4-5-D). It
may initiate a new route discovery to D and also
request the same through M2. Upon receipt of a
route from M1 to D via M2, it can create a new
Gratuitous ROUTE REPLY packet (S-1-M1-M2-D) and
send it to S. Based upon the same criterion for route
selection, S may classify the newly received route as
optimal and discard the one that was already in use.

Translation of IP Addresses. IP Address translation
is done both at M1 and M2 to successfully route all
data through the created tunnel.

3.3 Trust Model

We detect and evade wormholes in the network using an
effort-return based trust model. The trust model uses the
inherent features of the Dynamic Source Routing (DSR)
protocol to derive and compute respective trust levels in
other nodes. For correct execution of the model, the fol-
lowing conditions must be met by all participating nodes:

• All nodes support promiscuous mode operation.

• Node transceivers are omnidirectional and that they
can receive and transmit in all directions.

• The transmission and reception ranges of the
transceivers are comparable.

Each node executing the trust model, measures the accu-
racy and sincerity of the immediate neighbouring nodes
by monitoring their participation in the packet forward-
ing mechanism. The sending node verifies the different
fields in the forwarded IP packet for requisite modifica-
tions through a sequence of integrity checks. If the in-
tegrity checks succeed, it confirms that the node has acted
in a benevolent manner and so its direct trust counter is
incremented. Similarly, if the integrity checks fail or the
forwarding node does not transmit the packet at all, its
corresponding direct trust measure is decremented. We

International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 195

M2
M1
1
S

D
 4

2
M1
1
S

3

5
M2

D

S 1

M
1

2 4 5

M2

D 3

5
M2
M1
S

D

Figure 1: Wormhole creation in DSR

represent the direct trust in a node y by node x as Txy

and is given by the following equation:

Txy = PP . PA

where PP ∈ [0, 1], represents the situational trust cate-
gory Packet Precision, which essentially indicates the ex-
istence or absence of a wormhole through node y. PA

represents the situational trust category Packet Acknowl-
edgements that preserves a count of the number of pack-
ets that have been forwarded by a node. The category
PP and PA are employed in combination to protect the
DSR protocol against wormhole attacks and for identify-
ing selfish node behaviour respectively. Any benevolent
node not able to forward a data packet, due to radio inter-
ference, hardware faults, software bugs or environmental
conditions, is classified as selfish. However, in case no
other alternate trusted nodes are available, these selfish
nodes will be engaged into the routing process. However,
any node incorrectly forwarding a data packet, by not en-
suring its integrity, will be classified as malicious and not
included in any subsequent data connections.

3.4 Wormhole Detection

During wormhole detection, each node in the network
measures the accuracy and sincerity of its immediate
neighbouring nodes. The relevant C++ code, for DSR
based networks, is shown in Figure 2. The detection pro-
cess works in the following manner:

• Each node, before transmission of a data packet,
buffers the DSR Source Route header. After trans-
mitting the packet, the node places its wireless inter-
face into the promiscuous mode for the Trust Update
Interval (TUI). The TUI fundamentally represents
the time a sending node must wait after transmit-
ting a packet until the time it overhears the retrans-
mission by its neighbour. This interval is critically
related to the mobility and traffic of the network and
needs to be set accordingly. If this interval is made
too small it may result in ignoring of the retransmis-
sions, similarly a large value may induce errors due
to nodes moving out of range.

• If during the TUI, the node is able to overhear its im-
mediate node retransmit the same packet, the send-

ing node increases the situational trust category PA

for that neighbour. It then verifies whether the re-
transmitted packet’s DSR Source Route header is the
same as the one that was buffered earlier. If the Sal-
vage field1 of the DSR Source Route option is zero,
then these list of addresses should be exactly the
same. If this integrity check passes, the situational
trust category PP is not set, indicating an absence
of a wormhole. However, if the retransmitting node,
modifies the DSR Source Route header, the detecting
node sets PP to true.

• In case no retransmission is heard and a timeout oc-
curs when the TUI has exceeded, the situational trust
category PA for that neighbour is reduced and the
DSR Source Route buffer is cleared.

• With the passage of time, the number of inter-node
interactions also increase, increasing each node’s
knowledge of the behaviour of other nodes. Any
forwarding node, which had earlier detected worm-
hole creation by any of its immediate neighbour,
drops all packets that were destined to go through
that neighbour and generates a corresponding ROUTE

ERROR packet. This packet informs the source and
all intermediate nodes regarding the unavailability of
the route through the wormhole. Consequently, the
wormhole is circumvented in subsequent data con-
nections.

3.5 Wormhole Evasion

The relevant C++ code for wormhole evasion is shown in
Figure 3. In DSR, before initiating a new route discovery,
the cache is first scanned for a working route to the desti-
nation. In the event of unavailability of a route from the
cache, the ROUTE REQUEST packet is propagated. When
the search is made for a route in the cache, the Dijkstra
algorithm [4] is executed, which returns the shortest path
in terms of number of hops. In the LINK CACHE scheme
the default cost of each link is one, which signifies uniform

1In case the Salvage field is nonzero in the DSR Source Route op-

tion, it implies a non working route through the forwarding node and

hence calls for a new route discovery by the source node. Such an

activity may be ignored or taken into consideration by the preceding

node, depending upon the frequency of such Salvage operations.

International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 196

bool PP = FALSE; //Node wormhole status
int PA = NEUTRAL; //Initial Node selfishness level
int TUI=5; //Trust Update Interval (5 seconds)

DSRAgent::handleForwarding(SRPacket &p) //DSR forwarding mechanism
{
 if (p.route = TRUE) //Find a route for the packet
 {
 PP = getstatus(nexthop); //Check the next hop status
 if (!PP) //If next hop not a wormhole
 {
 buffer_packet(p) //Buffer packet SR header
 schedule forwarding(p); //Schedule packet dispatch
 Trust_Scheduler(TRUE); //Trust_Scheduler started
 }
 else
 xmitFailed(p.pkt, DROP_PACKET); //Drop packet and Send ROUTE ERROR
 }
}

DSRAgent::buffer_packet(Packet *p) //Packet buffering before forwarding
{
 hdr_sr *buff_srh=hdr_sr::access(p); //Buffer packet SR Header
}

DSRAgent::tap(const Packet *packet) //DSR promiscuous mode tap
{
 PA++; //Packet forwarded
 PP = verify_packet_integrity(p) //Detect Wormhole
 Trust_Scheduler(FALSE); //Trust_Scheduler disabled
}

DSRAgent::verify_packet_integrity(packet *p) //Verify PP
{
 hdr_sr *srh = hdr_sr::access(p);
 return (srh != buff_srh); //Return TRUE if wormhole detected
}

Trust_Scheduler::handle(bool status) //Called every TUI seconds
{
 buff_srh=NULL; //Clear SR buffer
 PA--; //Packet not forwarded
 Trust_Scheduler(FALSE); //Trust_Scheduler disabled
}

Figure 2: Code for wormhole detection

spread of the inter-node trust levels. We replace this cost
with the actual trust level of a node to which this par-
ticular link is directed. Now, each time a new route is
required, a modified variant of the search algorithm is ex-
ecuted, which finds routes with the maximum trust level.
However, before cost assignment to any link, each node
first checks the wormhole status of the link end node. If
it has been classified as a wormhole, the cost of that link
is set to infinity. This method ensures that wormholes
nodes are avoided in all future data connections.

4 Simulation

4.1 Set-up

To evaluate the effectiveness of the proposed scheme, we
simulated the scheme in NS-2 [13]. The simulation pa-
rameters are listed in Table 1. We implement the random
waypoint movement model for the simulation, in which
a node starts at a random position, waits for the pause
time, and then moves to another random position with a
velocity chosen between 0 m/s and the maximum simula-
tion speed. All benign nodes execute the trust model for
the duration of the simulation. The TUI value is set to
5 seconds, which has been found optimal in prior experi-
ments [18], for networks where the nodes have a maximum
speed of up to 20 m/s with a transmission range of 250
metres. The performance metrics are obtained through

ensemble averaging [23] over 100 simulations, each with a
different mobility and connection pattern.

4.2 Metrics

To evaluate the performance of the proposed scheme, we
have used the following metrics:

4.2.1 Throughput

It is the ratio between the number of packets received by
the application layer of destination nodes to the number
of packets sent by the application layer of source nodes.

4.2.2 Packet Overhead

This is the ratio between the total number of control pack-
ets generated to the total number of data packets received
during the simulation time.

4.2.3 Average Latency

Gives the mean time (in seconds) taken by the packets to
reach their respective destinations.

4.2.4 Path Optimality

It is the ratio between the number of hops in the optimal
path to the number of hops in the path taken by the

International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 197

t(n) The trust value assigned to node n by the source node s
p Set of predecessors for each node on the most trustworthy path from the
 source
S Set of nodes whose most trustworthy path from the source has been found
Q Set of nodes whose most trustworthy path from the source has yet to be
 determined

void DSRAgent::handlePktWithoutSR(SRPacket& p, bool retry)
{
 if (route_cache->findRoute(p.dest, p.route)) //Find route for destination
 sendOutPacketWithRoute(p, true); //Send out packet with route
 else
 getRouteForPacket(p, retry); //Initiate new route discovery
}

LinkCache::findRoute(ID dest, Path& route)
{
 dijkstra(); //Execute modified Dijkstra
}

dijkstra ()
{
 Link *v;
 for (all v links from s)
 {
 PP = getstatus(v->ln_dst); //Check link end node status
 if (!PP) //If node not a wormhole
 v->ln_cost = 1/PA; //Set link cost to PA

-1
 else
 v->ln_cost = INFINITY; //Else set cost to infinity
 }
 initialize(s)
 S = Q = {}
 add s to Q
 while Q is not empty
 {
 u = extract-most-trustworthy(Q);
 add u to S;
 for each node v which is an immediate neighbor of u
 {
 relax-neighbors(u, v, v->ln_cost);
 }
 }

}

initialize(Node s)
for all v nodes in the link-cache
{
 t(v) = 0; //Set initial trust to distrust
 p[v] = NULL;
 t(s) = INFINITY; //Source node own trust level
}

extract-most-trustworthy(Q)
{
 find the most trustworthy node in Q
 remove it from Q
 return the node
}

relax-neighbors(Node u, Node v, double cost)
{
 if t(v) <= t(u) + cost //Lower trust nodes are bypassed
 {
 t(v) = t(u) + cost;
 p(v) = u; //Set predecessor of v to be u
 }

}

Figure 3: Code for wormhole evasion

International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 198

Table 1: Simulation parameters
Examined Protocol DSR
Simulation time 900 seconds
Simulation area 1000 x 1000 m
Number of nodes 50
Transmission range 250 m
Movement model Random way point
Propagation Model Two-ray Ground Reflection
Maximum speed 20 m/s
Pause time 10 seconds
Traffic type CBR (UDP)
Maximum Connections 30
Payload size 512 bytes
Packet rate 4 pkt/sec
Malicious nodes 2
Number of wormholes 1

packets.

4.2.5 Detection Probability

It is the ratio between the number of nodes whose be-
haviour (malicious or benevolent) is identified correctly
to the actual number of such nodes present in the net-
work.

4.3 Results and Discussion

The results shown in Figure 4, indicate that the through-
put of the Trusted DSR protocol is lower than that of
the Standard DSR in the presence of a single wormhole
in the network. This is due to the fact that the benevo-
lent nodes detecting the wormhole are dropping legitimate
data packets before they enter the tunnel. While, the
standard DSR protocol, permits the packets to traverse
the tunnel and so depicts a higher throughput. However,
it can be observed that at zero mobility, the wormhole
position remains constant in the network and so a higher
throughput is achieved using the trust based DSR pro-
tocol. This is due to the fact that the trust level of any
node not capable of sustaining the required traffic flow
is automatically downgraded when it dumps the packets
and some other node having a higher trust level is selected
for the routing process. This feature helps to reduce traf-
fic congestion onto trustworthy nodes by transferring the
traffic load onto other available nodes in the neighbour-
hood ensuring a best-effort delivery for the generated traf-
fic.

In case of detection of a wormhole by an intermedi-
ate node, all data packets leading towards the tunnel are
dropped and a corresponding ROUTE ERROR packet is gen-
erated. The generation of these packets augments with
the speed of the network as the colluding nodes are con-
stantly varying their positions in the network. This pri-
marily leads to an increase in the packet overhead when
the trust based DSR protocol is used. The average latency
of the network also increases with speed, as the trusted

paths are not always the shortest in terms of number of
hops. The latency is also influenced by additional delays
associated with new route discoveries in response to re-
ceived ROUTE ERROR packets. The path optimality of the
trust based DSR protocol also degrades, reflecting the
selection of trustworthy routes in favour of the shortest
routes.

The probability of detection of wormholes significantly
increases with speed. The results shown in Figure 5, in-
dicate that the mobility of the network supplements the
trust derivation mechanism. At higher speeds the num-
ber of interactions with the nodes creating the wormhole
increase considerably. This helps to spread trust informa-
tion in the network at a appreciably higher rate. Up to
60% of the nodes executing the trust based DSR proto-
col were able to correctly identify at least one end of the
wormhole. However, with increased mobility, the prob-
ability of detection of at least one colluding node by all
network nodes becomes almost 100%. Similarly, the de-
tection probability for benevolent behaviour also follows a
similar trend under increasing speeds. A number of nodes,
whose behaviour pattern could not be analysed, were pri-
marily those who were not part of any data connection
during the simulation.

The standard DSR protocol, does not take into account
the trust levels of the nodes and so we see that a num-
ber of packets were tunnelled through the wormhole. In
contrast, each node using the trust based routing scheme
takes into account the behaviour of the next node be-
fore forwarding a packet and so the total number of tun-
nelled packets drops appreciably. It can also be observed
that at varying speeds, there are still some packets which
are routed through the wormhole. The justification for
such an occurrence is that the wormhole detection mech-
anism is based upon a minimal threshold (presently set to
consecutive modification of two DSR source route head-
ers) before it stops the data communication through the
wormhole. This permits a small number of data packets
to permeate the wormhole.

5 Analysis

The quantitative analysis of the trust model was carried
out under variable speed networks. The results indicate
that the throughput and path optimality of the trust
based DSR protocol is lower than that of the standard
DSR protocol in the presence of a wormhole in the net-
work. Similarly, the packet overhead and latency of the
trust based scheme is higher than that of the standard
DSR protocol. This degradation in performance can be
attributed to the fact that the standard DSR protocol
does not has any knowledge regarding the presence of the
wormhole in the network and so nodes continue to route
data connections through the wormhole. However, the
trust based DSR protocol, computes real-time trust in
neighbouring nodes and so can make instantaneous de-
cisions related to the routing process. Any source node,

International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 199

0 5 10 15 20
92

93

94

95

96

97

Maximum Node Speed

T
hr

ou
gh

pu
t %

ag
e

0 5 10 15 20
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Maximum Node Speed

P
ac

ke
t O

ve
rh

ea
d

0 5 10 15 20
0.01

0.02

0.03

0.04

0.05

0.06

Maximum Node Speed

A
ve

ra
ge

 L
at

en
cy

0 5 10 15 20
0.72

0.725

0.73

0.735

0.74

0.745

Maximum Node Speed

P
at

h
O

pt
im

al
ity

Trusted DSR
Standard DSR

Trusted DSR
Standard DSR

Trusted DSR
Standard DSR

Trusted DSR
Standard DSR

Figure 4: Simulation results of trust-based wormhole detection and evasion

having prior knowledge regarding the wormhole, creates
a route that would evade the wormhole. Even though
some operational routes exist in the LINK CACHE, they
are discarded because they contain malicious nodes. The
increase in the packet latency and deviation from the op-
timal paths can be attributed to the fact that the routes
obtained from the LINK CACHE are not optimal in terms
of hops but instead consist of nodes that have been found
to be more trustworthy than the others. This indirectly
leads to a decrease in the path optimality, as the pack-
ets now traverse longer routes, which in turn increases
the latency of the network. Similarly, any intermediate
node, which finds a wormhole, drops all packets being
routed towards it and generates a corresponding ROUTE

ERROR packet. This in turn reduces the throughput of
the network, while increasing the packet overhead. The
nodes that execute the trust model, can successfully de-
tect the wormhole behaviour and this detection probabil-
ity increases with the mobility of the network. The de-
tection of such wormholes facilitates nodes to bypass the
wormhole and to direct data through alternate routes.

Any intermediate node that drops data packets in or-
der to stop them from being tunnelled, may be graded as
selfish by its preceding node. This is due to the fact that
the preceding node was unable to overhear its packets
being forwarded during the trust update interval. How-
ever, when the next node sends the related ROUTE ERROR

packet, the preceding node rectifies the corresponding

trust levels. Similarly, a malicious node may send fal-
lacious ROUTE ERROR packets to degrade working routes.
Such packets are not considered as malevolent by the
trust model, but regarded as normal events related to link
breakage. Any node receiving these packets, first scans
the LINK CACHE for any alternate routes and if unsuc-
cessful initiates a new discovery for the destination node.

In its present state, the trust model detects nodes that
portray selfish behaviour and may not include them in
the routing process. Such scenarios may help a selfish
node to conserve its battery power. However, as the trust
level of such nodes is known to other nodes in the net-
work, a punishing scheme may be implemented in which
such nodes are not provided the requisite network ser-
vices. Such a mechanism may help to invigorate cooper-
ation rather than selfishness in the participating nodes.

The trust model maintains the level of trust for nodes
based upon a node’s IP address. This technique is, how-
ever, susceptible to a number of impersonation attacks
where a node may frequently change its IP address after
launching an attack in order to attain a higher trust level.
In both wired and wireless networks, node identification
is accomplished using various cryptographic mechanisms,
which we have deliberately tried to avoid primarily due
to their associated requirements.

The method for promiscuous mode trust assignment
also has certain drawbacks, which have been highlighted
by Marti et al. [12]. The foremost is the ambiguous col-

International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 200

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Maximum Node Speed

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

Wormhole

Trusted DSR
Standard DSR

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Maximum Node Speed

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

Benevolent Behaviour

Trusted DSR
Standard DSR

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Maximum Node Speed

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

Unanalyzed Behaviour

Trusted DSR
Standard DSR

0 5 10 15 20
10

1

10
2

10
3

10
4

Maximum Node Speed

N
um

be
r

of
 P

ac
ke

ts

Tunneled through Wormhole

Trusted DSR
Standard DSR

Figure 5: Wormhole detection probabilities and packets tunnelled

lision problem in which a node A cannot hear the broad-
cast from neighbouring node B to node C, due to a local
collision at A. In the receiver collision problem node A
overhears node B broadcasting a packet to C but cannot
hear the collision which occurs at node C. Similarly, if
nodes have varying transmission power ranges, the mech-
anism of passive trust assignment might not work prop-
erly. Such collisions may be carefully planned so as to
deceive the trust derivation mechanism. Similarly, com-
munication jamming [22] at the physical layer can create
a similar set of problems.

Multiple colluding nodes may also be able to help each
other in order to gain higher trust levels, provided they
are successively located along the path of the wormhole
and data connections. These nodes are capable of por-
traying shorter routes to nodes using a particular data
connection without being detected. These address trans-
lations, as being done in series, are not perceivable by the
benevolent nodes employing the proposed scheme. The
isolation of such malicious nodes, which depict complex
behaviour like attacks against multiple layers of the pro-
tocol suite, launching attacks in series or by operating
at the verge of benevolent and malevolent behaviour, is
quite intricate. We recommend using Intrusion Detection
systems such as those proposed by Zhang et al. [24] and
Kachirski et al. [11] for isolating such nodes in ad-hoc
networks.

6 Conclusions

Ad-hoc wireless networks are generally established on the
fly in an impromptu manner. Due to the physical vulner-
ability of both the environment and the nodes, a number
of attacks may be undertaken against these networks. A
wormhole is one such prominent attack, that is formed
by malicious colluding nodes. The detection and evasion
of such wormholes in an ad-hoc network is still consid-
ered a challenging task. In order to protect from worm-
holes, current security-based solutions propose the estab-
lishment of ad-hoc networks in a controlled manner, of-
ten requiring specialised node hardware to facilitate de-
ployment of cryptographic mechanisms. Such solutions,
although successful in achieving self organisation during
the operation, essentially violate the self organised na-
ture of an ad-hoc network. In this paper, we have devi-
ated from the customary approach of using cryptography
and instead employ a trust-based scheme to detect and
evade wormholes. In our scheme, we derive trust lev-
els in neighbouring nodes based upon their sincerity in
execution of the routing protocol. This derived trust is
then used to influence the routing decisions, which in turn
guide a node to avoid communication through the worm-
holes. Through extensive testing, we have established
that the trust model can effectively locate dependable
routes through the network in the presence of a worm-

International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 201

hole in the network. The routes established in this man-
ner may not be the shortest in terms of number of hops,
but they definitely contain nodes which have been found
more trustworthy than the others. We accentuate that
our trust-based scheme will be most suitable for pure ad-
hoc networks, which can be rapidly established without
entailing any constraining assumptions.

Acknowledgements

This work was supported by the University of Western
Australia International Postgraduate Research Scholar-
ship and the University Postgraduate Award. We would
also like to thank Diana Senn from the ETH Information
Security Group (Swiss Federal Institute of Technology,
Zurich) for contributing NS-2 code in support of the sim-
ulations.

References

[1] S. Capkun, L. Buttyan, and J. Hubaux, “SECTOR:
Secure tracking of node encounters in multi-hop wire-
less networks,” in Proceedings of the ACM Workshop
on Security of Ad Hoc and Sensor Networks, pp. 21-
32, 2003.

[2] S. Carter and A. Yasinsac, “Secure position aided ad
hoc routing protocol,” in Proceedings of the IASTED
Conference on Communications and Computer Net-
works (CCN), pp. 329-334, 2002.

[3] B. Dahill, B. N. Levine, E. Royer, and C. Shields, “A
secure routing protocol for ad hoc networks,” in Pro-
ceedings of the International Conference on Network
Protocols (ICNP), pp. 78-87, 2002.

[4] E. W. Dijkstra, “A note on two problems in connec-
tion with graphs,” Numerische Mathematik, vol. 1,
pp. 269-271, 1959.

[5] Y. C. Hu, A. Perrig, and D. B. Johnson, “Ariadne:
A secure on-demand routing protocol for ad hoc net-
works,” in Proceedings of the Eighth Annual Inter-
national Conference on Mobile Computing and Net-
working (MobiCom), pp. 12-23, 2002.

[6] Y. C. Hu and D. B. Johnson, “Caching strategies
in on-demand routing protocols for wireless ad hoc
networks,” in Proceedings of the 6th Annual Inter-
national Conference on Mobile Computing and Net-
working (MobiCom), pp. 231-242, 2000.

[7] Y. C. Hu, A. Perrig, and D. B. Johnson, “Packet
leashes: A defense against wormhole attacks in wire-
less networks,” in Proceedings of the Twenty-Second
Annual Joint Conference of the IEEE Computer and
Communications Societies, vol. 3, pp. 1976-1986,
2003.

[8] L. Hu and D. Evans, “Using directional antennas
to prevent wormhole attacks,” in Proceedings of the
Network and Distributed System Security Symposium
(NDSS), pp. 131-141, 2004.

[9] D. B. Johnson, D. A. Maltz, and Y. Hu, “The dy-
namic source routing protocol for mobile ad hoc net-
works (DSR),” IETF MANET, Internet Draft (work
in progress), 2003.

[10] A. Josang, “The right type of trust for distributed
systems,” in Proceedings of the ACM New Security
Paradigms Workshop, pp. 119–131, 1996.

[11] O. Kachirski and R. Guha, “Intrusion detection using
mobile agents in wireless ad hoc networks,” in Pro-
ceedings of the IEEE Workshop on Knowledge Media
Networking (KMN), pp. 153-158, 2002.

[12] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating
routing misbehavior in mobile ad hoc networks,” in
Proceedings of the Sixth Annual International Con-
ference on Mobile Computing and Networking (Mo-
biCom), pp. 255-265, 2000.

[13] NS, The Network Simulator,
http://www.isi.edu/nsnam/ns/, 1989.

[14] A. Perrig, Y. C. Hu, and D. B. Johnson, Wormhole
Protection in Wireless Ad Hoc Networks, Technical
Report TR01-384, Department of Computer Science,
Rice University, 2001.

[15] A. A. Pirzada and C. McDonald, “Secure rout-
ing protocols for mobile ad-hoc wireless networks,”
in Advanced Wired and Wireless Networks, T. A.
Wysocki, A. Dadej, and B. J. Wysocki, editors, pp.
57–80, Springer, 2004.

[16] A. A. Pirzada and C. McDonald, “Establishing trust
in pure ad-hoc networks,” in Proceedings of the 27th
Australasian Computer Science Conference (ACSC),
vol. 26, pp. 47-54, 2004.

[17] A. A. Pirzada and C. McDonald, “Kerberos assisted
authentication in mobile ad-hoc networks, in Pro-
ceedings of the 27th Australasian Computer Science
Conference (ACSC), vol. 26, pp. 41-46, 2004.

[18] A. A. Pirzada, C. McDonald, and A. Datta, “Per-
formance comparison of trust-based reactive routing
protocols,” (to appear in) IEEE Transactions on Mo-
bile Computing, 2006.

[19] E. M. Royer and C. K. Toh, “A review of current
routing protocols for ad hoc mobile wireless net-
works,” IEEE Personal Communications Magazine,
vol. 6, no. 2, pp. 46–55, 1999.

[20] W. Stallings, Network Security Essentials, Prentice
Hall, 2000.

[21] W. Wang and B. Bhargava, “Visualization of worm-
holes in sensor networks,” in Proceedings of the ACM
Workshop on Wireless Security (WiSe), pp. 51–60,
2004.

[22] C. Ware, T. Wysocki, and J. Chicharo, “Hidden ter-
minal jamming problems in IEEE 802.11 mobile ad
hoc networks,” in Proceedings of the IEEE Interna-
tional Conference on Communications (ICC), vol. 1,
pp. 261-265, 2001.

[23] W. H. Yuen and R. D. Yates, “Inter-relationships of
performance metrics and system parameters in mo-
bile ad hoc networks,” in Proceedings of the IEEE
MILCOM, vol. 1, pp. 519–524, 2002.

International Journal of Network Security, Vol.3, No.2, PP.191–202, Sept. 2006 (http://ijns.nchu.edu.tw/) 202

[24] Y. Zhang and W. Lee, “Intrusion detection in wire-
less ad hoc networks,” in Proceedings of the Sixth An-
nual International Conference on Mobile Computing
and Networking (MobiCom), pp. 275-283, 2000.

Asad Amir Pirzada is presently do-
ing his PhD on trust and security is-
sues in ad-hoc wireless networks at
The University of Western Australia.
His current research interests include
wireless communications, networking,
cryptography, real-time programming
and data acquisition systems. He

holds a BE Avionics from NED University Pakistan, a
MSc Computer Science from Preston University USA and
a MS Information Security from the National University
of Sciences and Technology Pakistan.

Chris McDonald holds a BSc(Hons)
and PhD in Computer Science from
The University of Western Australia,
and currently holds the appointments
of senior lecturer in the School of Com-
puter Science & Software Engineering
at UWA and adjunct professor in the
Department of Computer Science at

Dartmouth College, New Hampshire. Chris has recently
taught in the areas of computer networking, operating
systems, computer & network security, computer archi-
tecture, distributed systems programming and, together
with these areas, his research interests include network
simulation, ad-hoc & mobile networking, programming
language implementation, open-source software.

