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Abstract

Inherent to the wireless sensor networks are the two ma-
jor problems of the broadcasting vulnerability, the lim-
ited computational capability and power budget. Even
though security is a must in most applications, current
sophisticated security protocols are not amenable to the
primitiveness of the sensors. In this paper, we introduce
a novel security protocol for wireless network of sensors
that is very secure, yet simple and efficient. At the core
of our security protocol is a simple and fast stream cipher
cryptosystem that utilizes permutation vectors as encryp-
tion keys, forcing an intruder to a brute-force time com-
plexity of Ω(2n). In addition, our mechanism alleviates
the effect of sensor capture, via its synchronized re-keying
feature. In addition to the encryption efficiency, our sys-
tem utilizes the group deployment of newly joining sensors
for sensors power budgeting considerations. Experimen-
tal results show very promising future of our system in
the wireless networks domain, excelling over other peers
of modern cryptosystems (AES, DES, TripleDES), espe-
cially in the power budget arena.

Keywords: Deployment knowledge, encryption permuta-
tion vectors, power balancing, sensors security primitives,
stream ciphers

1 Introduction

In addition to its inherent broadcasting nature, wireless
sensor networks are characterized by their ad-hoc nature,
with primitive and unguarded units, which make it very
difficult to secure. Sensors routing remained for some-
time as the central issue since the network topology is
very dynamic. Yet, lately the importance of security in
such networks has been realized [26]. On the contrary of
fixed infrastructures, sensors communications cannot rely
on the online availability of a centralized security pro-
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tocols, such as the 802.11 WLAN standard. Therefore,
the IEEE 802.15.4 Low-rate Wireless Personal Area Net-
work Standard [14] came to specify the physical layer and
medium access control layer of a low data rate, ultra low
power, and low cost sensor network. Target applications
include natural disaster control, health care, battlefield
service, oil site operation, rescue missions, etc. In these
security-sensitive deployments, secure and fast transmis-
sion of sensitive digital information over the sensor net-
work is essential.

Sensors networks may be highly versatile, involving
short-lived communications between devices that may
never have communicated before, with the overhead of ini-
tial required authentication. Well-designed security ser-
vices can contribute to the reliability and robustness of
the sensor network’s communication infrastructure and
to the integrity of its transmitted data. Recent security
research for ad hoc networks seemed to focus on distribut-
ing the role of the central certifying authority over some
or all devices in the network [17, 29], the main approach
being based on threshold cryptography [24] and allowing
specific coalitions of devices to act together as a source
of trust such as a certificate authority (e.g., to generate
public-key certificates). Public-key operations are quite
expensive though, which remains a problem for portable
devices with limited computation resources and power
supplies [13]. In recent years, symmetric-key based key
management protocols have gained popularity due to the
small encryption computation overhead [27]. However,
the key establishment for pure symmetric-key in large
sensor networks is a complicated process; either via on-
line key distribution center (KDC) or pre-loading a large
number of symmetric keys prior to the deployment of sen-
sors. In addition to incurring communication overhead by
the former and consumption of the scarce sensor memory
by the later, both methods reduce the scalability of self-
organizing sensor networks.

Another important class of encryption techniques con-
sists of the stream cipher algorithms that encrypt indi-
vidual characters (usually binary digits) of a plaintext
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message one at a time, using an encryption transforma-
tion that varies with time [28]. In contrast, block ciphers
tend to simultaneously encrypt groups of characters of
a plaintext message using a fixed encryption transforma-
tion. Stream ciphers are generally faster than block ci-
phers (public or symmetric key cryptosystems) [19], and
have less complex hardware circuitry, thus they are used
to enhance the speed of encryption while maintaining a
high level of security. Hence, our security design approach
follows the steps of stream ciphering. At its core, there
are few XORs and additions operations, so it can achieve
better performance with smaller code size and lesser com-
plexity than standard encryption algorithms. Specifically,
its streaming key management process involves, among
other parameters, the use of the last generated key to
generate the next key in the key stream, avoiding key du-
plication and protecting against replay and cryptanalysis
attacks.

In this paper, we will investigate the deployment of our
proposed security model, Synchronous Dynamic Encryp-
tion System (SDES) [25], for sensor networks. Section 2
describes the constraints and limitations that generally
characterize sensors networks. The dilemma of the se-
cret key establishment in sensors networks is described in
Section 3. The first approach of solving the secret key
distribution problem is depicted in Section 4. Section
5 explains the necessity of utilizing symmetric key cryp-
tography for better power consumption efficiency. The
advantages of stream ciphers and their easy deployment
in sensor networks are stated in Section 6. Our SDES is
presented in Section 7, with full details on permutation
vector generation, encryption/decryption functions and
secret key management. A comparison between our secu-
rity model and other peer models is presented in Section
8. Section 9 is our conclusion.

2 Sensor Networks Constraints

The major two inherent constraints of typical network
of sensors are namely i) its ad-hoc nature, ii) the low
budget of the sensing devices that reflects on its storage,
computational, transmission reach, and power capabili-
ties. Next, We will discuss the three limitations imposed
by such inherent properties and their influence on the in-
stalled security primitives.

Limited memory space. In large-scale sensor net-
works, thousands of nodes, it is nearly impossible for every
sensor to store a shared key with every other communi-
cating sensor in the network, as it requires large memory
that is not available in the sensor. Therefore, current key
establishment schemes are not quite feasible. In addi-
tion, installed security primitives have to be simple and
optimized in order to fit in the sensor tiny memory. The
memory size limitation also affects the storage of previous
knowledge of all possible nodes that will join the network.

Limited power. Any deployed security mechanism
has to minimize computation and transmission overheads

in order to utilize the sensor’s battery efficiently. Compli-
cated encryption techniques (e.g. public key algorithms)
and high-challenging authentication mechanisms are usu-
ally avoided in any sensor security scheme, due to power
limitations.

Limited budget. Sensors are an order of magni-
tude lesser in price than personal computers (few dollars).
Unattended sensors are highly vulnerable to be captured
by intruders. A captured sensor might reveal essential
info about the deployed security mechanism. Hence, we
have to consider such attacks while designing sensor secu-
rity mechanism in order to limit their effect in the overall
integrity and performance of the network.

3 Secret Key Distribution

Essential to sensor networks that use symmetric key ap-
proach is the integrity and efficiency of distributing and
sharing the secret key among the network nodes. The
deployment of a central authority as a third party in
the secret key establishment is impractical for large scale
sensor networks because of the unknown network topol-
ogy prior to deployment, communication range limita-
tions, and network dynamics [9]. Most of the security
schemes rely on key pre-distribution [9]; keys would have
to be pre-installed in sensor nodes to accommodate se-
cure connectivity between nodes. Consequently, any key
establishment scheme should be somehow in the mid-
dle between two extremes: single mission key scheme,
or the mesh scheme [9]. In the former, all sensor nodes
share the same key, saving memory space and computa-
tional/communication electric power. However, the cap-
ture of any sensor will jeopardize the entire network se-
curity. In the mesh scheme, every sensor shares a unique
secret key with all sensors in the network. A great advan-
tage of the mesh scheme with regard to sensor capture
is that all communications that do not involve the cap-
tured sensor are not compromised. However, this solution
requires storing a large number of keys at each sensor.
Moreover, it forces key redistribution upon any topology
change, hence degrading network scalability.

Due to the high possibility and severity of node captur-
ing, a sensor network has to be able to detect any such at-
tack and notify all neighboring node to revoke their shared
keys with the captured sensor. Moreover, at the network
level, all keys that are identical/related to the revoked
keys or generated through the captured node should be
revoked too. Therefore, key revocation schemes should be
optimal in terms of space, communication, and computa-
tion overheads.

4 Public Key Based Security

Public key cryptosystems are suitable for networks of de-
centralized architecture. In sensor networks, due to the
huge overhead of involving a central authority, adjacent
sensors mutually authenticate without the need to deploy
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a third party. Thus, the use of Public-Key Cryptography
(PKC) is most amenable for use in decentralized sensor
networks and would eliminate the centralized authority
problem [8]. Because of its asymmetry property, sensors
do not need to carry the pre-distributed keys. It should
be clear that an intrusion on one sensor will not affect the
security of others.

One of the security threats that could beat any PKC is
the man in the middle attack. The most famous solution
against this type of attacks is the key certificate. When
a node, say A, attempts to authenticate itself to another
node B, A sends its public key with a certificate that
authenticates the key itself. This certificate is encrypted
by the private key of some authority. Then, B verifies
the key’s validity by decrypting the certificate using the
authority’s public key.

The most common criticism on using PKC in sensor
networks is its computational complexity and communi-
cation overhead [8]. Recently, a number of studies have
been conducted to evaluate the practicality of using PKC
in sensor networks [11, 12, 18]. Their results show that
PKC is indeed feasible to be used in sensor networks. For
example, Gura et al. [12] show that Elliptic Curve Cryp-
tography (ECC) signature verification takes 1.62s with
160-bit keys on ATmega128 8MHz processor, a processor
used for Crossbow motes platform [7].

Even with PKC getting faster and faster, performance
difference between PKC and symmetric key cryptography
is not going to change much unless some breakthrough in
PKC occurs [8]. Compared to the symmetric key cryptog-
raphy, the cost of PKC is still much more inefficient. For
instance, a 64-bit RC5 encryption on ATmega128 8MHz
takes 5.6 milliseconds, and a 160-bit SHA1 hash func-
tion evaluation takes only 7.2 milliseconds [10]. These
are more than 200 times faster than PKC algorithms, and
the gap is unlikely to significantly decrease. Furthermore,
public key cryptography is not only computationally ex-
pensive, but also incurs communication overhead. For
instance, to send a public key from one node to another
using RSA, at least 1024bits needs to be sent if the private
key is 1024 bits long [22]. Therefore, even after PKC is
implemented in sensor nodes, we still need to treat PKC
as expensive operations, and we need to use it more se-
lectively and efficiently in order to maximize the lifetime
of sensor networks.

Du et. al. developed a tree-based key-authentication
scheme in order to minimize the PKC authentication
overhead [8]. They modified the model of Merkle trees
that was proposed by Merkle in 1980 [20]. The Merkle
tree is basically a complete binary tree that has all
sensors’ public keys as its leaves. Then, every parent
node in the Merkle tree is the result of a hash function
of its left and right children. Therefore, there is a
unique path between a sensor’s public key and the root
(pk, hl−1, hl−2, · · · , h1), where pk is the sensor’s public
key, hi is the hash value of path node of level i, and l is
the tree height. Every sensor that wants to authenticate
itself has to save the corresponding tree path in its

memory. On the other hand, every sensor that wants
to certify other sensors’ keys needs to save the root of
the Merkle tree only. After sensors deployment, a sensor
should send its public key with the list of correspond-
ing siblings of the path (pk, hl−1, hl−2, · · · , h2), namely
(sibling(pk), sibling(hl−1), sibling(hl−2), · · · , sibling(h2)),
in order to authenticate its public key. The recip-
ient sensor calculates h‘

l−1 = hash(pk, sibling(pk)),

h‘
l−2 = hash(h‘

l−1, sibling(hl−1)), · · ·, h‘
1 =

hash(h‘
2, sibling(h2)), and then verifies that h‘

1 is
identical to the stored Merkle tree root h1. The Merkle
tree technique relies on the fact that the number
of calculated hash functions at the recipient node is
O(log(number of sensors)), which is still more efficient
than a single public key encryption.

Du et. al. exploited the sensors deployment knowl-
edge to reduce the height of the Merkle tree. In fact, they
suggested the use of multiple trees, where shorter trees
gather adjacent sensors’ public keys, and larger trees are
a collection of shorter sub-trees. The large trees serve
to authenticate sensors that are not adjacent; the farther
the communicating sensors, the larger tree they belong to.
The main disadvantage of the modified Merkle scheme is
the network scalability. In fact, adding a single node will
affect the hash value at the root, and therefore, the en-
tire network needs to be notified, wasting communication
bandwidth and transmission power.

5 Symmetric Key Based Security

Even though the public key based authentication solves
the problematic key-distribution process and secures sen-
sor scalability, Eschenauer and Gligor argued against it [9]
due to its tremendous computational overhead. Instead,
they proposed a basic-scheme for random symmetric key
pre-distribution [9]. They suggest that a pool of S keys is
generated by a central authority, where only m keys are to
be chosen (randomly) by each sensor. When the sensors
are deployed, each node consults with its neighbors for a
possible shared key among the m key stored in its mem-
ory. Eschenauer and Gligor assert that two sensors could
share a key with probability p. If we consider a graph of
all nodes where each edge represents a shared key between
two adjacent sensors, the value of p is chosen so that the
graph is connected; there exists a path between any two
nodes in the network. Therefore, if two adjacent sensors
do not share a key, a secret key is generated and trans-
mitted through the connecting secure path. However, it is
still unobvious how to choose the optimal values of S, m,
and p. When m is small, adjacent sensors are not likely to
share secret keys, and therefore, additional key regenera-
tions are needed which reduces the sensor lifetime due to
the additional transmission and computational overhead.
On the other hand, a larger m exposes the network to fast
compromise when a node is captured, in addition to the
large space needed to store the keys.

In order to increase the resilience against node’s cap-
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ture, Chan et. al. [6] upgraded the above basic-scheme to
a q-composite scheme where q common keys are needed in
order to establish a secure link. When a sensor discovers
that it shares q keys with its neighbor (K1, K2, · · · , Kq), a
secret key is generated as a hash function of those shared
keys; K = hash(K1, K2, · · · , Kq). So, the q-composite
scheme is simply a basic-scheme with a larger pool of keys
S‘ = {hash(K1, K2, · · · , Kq), (K1, K2, · · · , Kq)S

q}. How-
ever, the q-composite scheme encounters the computa-
tional overhead of the hash function after sensors deploy-
ment, which consumes more energy.

6 Towards Dynamic Security: Ef-

ficiency of Stream Ciphers

Karlof et. al. designed a chain-block-cipher (CBC) secu-
rity mechanism called TinySec [15], and argued why CBC
is the most appropriate encryption scheme for sensor net-
works. Symmetric key encryption schemes generally fall
into two categories: stream ciphers and modes of opera-
tion using block ciphers. The fastest stream ciphers are
faster than the fastest block ciphers [27], which might
make them more appealing in a resource-constrained en-
vironment. One kind of stream ciphers is the initializa-
tion vector (IV) based stream cipher, where both the
secret key K and IV are used as a seed for pseudoran-
dom encryption keystream generation, GK(IV ). The
keystream is then XORed against the plain message P :
C = (IV ; GK(IV )

⊕

P ). However, IV-based stream ci-
phers have a devastating failure mode: if the same IV is
ever used to encrypt two different packets, then it is often
possible to recover both plaintexts. So, another alterna-
tive is to use a mode of operation based on a block cipher
[4].

A block cipher is a keyed pseudorandom permutation
over small bit strings, typically 8 or 16 bytes. Examples
of block ciphers include DES, AES, RC5, and Skipjack.
Since we usually want to encrypt and authenticate mes-
sages longer than 8 or 16 bytes, block ciphers require a
mode of operation to encrypt longer messages. For a k
byte block cipher, a mode of operation typically divides
a message into segments of k bytes blocks and uses the
block cipher in a special way to encrypt the message block
by block. Using a block cipher for encryption has an ad-
ditional advantage. Since the most known message au-
thentication code (MAC) algorithms use a block cipher
[1], thus it should be available in the sensors software,
conserving memory space. A mode of operation has to
be used in block ciphers; the counter (CTR) mode would
be one choice [1]. However, the CTR mode is a stream
cipher mode of operation, and shares all the problems
as the IV-based stream cipher. Another possible choice
is cipher block chaining (CBC) mode [1]. CBC mode is
provably secure when IVs do not repeat [1]. On the other
hand, CBC leaks only a small amount of information in
the presence of repeated IVs, a significant improvement
over a IV-based stream cipher [15]. It is known to suffer

some leakage when used with counter generated IVs, yet
it is best used with random generation of IVs [15].

The use of the CBC mode with blocks of size 8-byte
results in ciphertexts which are multiples of 8 bytes. Such
choice of block size forces message expansion, which in-
creases power consumption. Karlof et. al. [23] proposed
the use of ciphertext stealing technique to ensure that the
ciphertext is the same length as the underlying plaintext.
Encrypting data payloads of less than 8 bytes will pro-
duce a ciphertext of 8 bytes because ciphertext stealing
requires at least one block of ciphertext. However, ci-
phertext stealing requires additional computation, which
degrades the sensors power lifetime.

Another major issue in network security is cipher in-
tegrity. History has proven that using encryption without
message authentication is insecure [3, 5, 16]. For exam-
ple, flipping bits in unauthenticated encrypted messages
can cause predictable changes in the plaintext [5]. Yet,
without message authentication mechanism to guarantee
integrity, receivers will not be able to detect such changes.
Unauthenticated messages are also vulnerable to cut-and-
paste attacks [3]. In a cut-and-paste attack, an adversary
breaks apart an unauthenticated encrypted message and
constructs another message’s cipher, which may decrypt
to something meaningful, escaping detection. For exam-
ple, if all the authorized nodes share a single key, an ad-
versary can extract the encrypted data payload from a
message to one node and send it to different node. Since
the encrypted payload is unaltered, the second node will
successfully decrypt and accept the message.

TinySec uses a cipher block chaining construction,
CBC-MAC [2], for computing and verifying MACs. CBC-
MAC is efficient and fast, and the fact that it relies on
a block cipher as well minimizes the number of imple-
mented cryptographic primitives in the limited size sensor
memory. CBC-MAC is provably secure [2], however the
standard CBC-MAC construction is not secure for vari-
ably sized messages. Bellare, Kilian, and Rogaway sug-
gest three alternatives for generating MACs for variable
sized messages [2].

7 Synchronous Dynamic Encryp-
tion System

Due to the restrictions imposed on sensors networks, our
major objective in designing a new security model is to
minimize cost-effect of the following:

1) Network intrusion, when a sensor is captured.

2) Communication overhead, in case of revoking a
shared secret key, especially the keys stored at the
captured sensor.

3) Computation overhead, in securing the network, in
order to save sensor’s lifetime.

4) Utilized key space.
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Figure 1: (a) Encryption (b) Decryption

Throughout the rest of this paper, we will focus on the
design of our security model following the first, second,
and third objective. The key establishment method is
adopted from other peer mechanisms.

Our Synchronous Dynamic Encryption System (SDES)
is a stream cipher crypto system based on permutation
vector generation. SDES that avoids the usage of an IV,
due to its security loopholes, previously mentioned. Upon
key agreement, the two communicating sensors use the
shared key K in any future invocation of security primi-
tives, e.g., communication confidentiality, sensor authen-
tication, and message integrity. We will adopt the basic-
scheme of random key pre-distribution proposed by Es-
chenauer and Gligor [9], since key agreement methods are
out of the scope of this paper. Yet, we will also utilize
the PKC in the case the sensor fails to authenticate itself
to the network. For instance, when a new sensor joins
the network, it is preferable to perform a certification of
its public key rather than jeopardizing the entire network
security using the symmetric key approach. We will elab-
orate further on the authentication process, later in the
paper.

The design strategy of our security mechanism is based
on the following three concepts. Firstly, the SDES has a
total separation of its two major processes, namely re-
keying and data encryption. In order to achieve such sep-
aration, we are using two different keys for the aforemen-
tioned processes. Hence, with the very remote possibility
of breaking the encryption key, an intruder will not be
able to have any shot at the more important secret key,
unless brute-forcing it. Secondly, for time efficiency, both
processes are very simple and flat for speedy processing.
Thirdly, the ingredient involved in the manufacturing of
the secret key must produce a fail safe key against most,
if not all, known security attacks.

SDES is a stream cipher that generates a stream of
permutation vectors. Each permutation vector of size n
is combination of byte cells, each with value that ranges
between 0 and n − 1, without repetition. For instance,
(0, 1, 2), (1, 0, 2), and (2, 1, 0) are permutation vectors
of size 3. These permutation vectors are used to encrypt
plain messages, one at a time. In order to simplify the
key management procedure, SDES uses the secret key K

in the key management process in order to permute the
current encryption key, permutation vector, to produce
the next permutation vector or encryption.

The generation of encrypting permutation vectors keys
can be performed recursively. Given a permutation vector
PV , the generation of the next permutation vector PV ‘ =
Permutation(PV, K) is performed as follows:

for j ←− 1 to n do

swap (PV [j], PV [K[j] modulo [n]).

Given the initial permutation vector is (0, 1, · · · , n−1),
each node can generate a list of permutation vector that
can be used in future encryption. This is possible only if
the secret key K is static. However, for security purposes,
we prefer that the secret key will be modified as the en-
cryption key is regenerated. We propose also that K is
generated based on the communication history. Assuming
that communication data between two specific sensors is
independent of any other communications that occur on
the network, sensor’s capture will have as minimal affect
on the network security as possible. In fact, the only com-
promised communications are those involving the violated
node. Therefore, SDES achieves the same security level of
the PKC in terms of alleviating the node’s capture effect.

7.1 Encryption/Decryption and Re-
keying Functions

The encryption function is simplified in order to mini-
mize the computational overhead, saving sensor’s battery
power. Thus, a simple XOR is performed between the
data record di and a generated permutation vectors PVi,
resulting in a cipher ci, to be transmitted, Figure 1a. The
decryption function, at the receiving sensor, is performed
in the same manner of the encryption function, at the
source sensor. The cipher record ci is XORed with the
same permutation vector PVi (generated at the recipient
side) producing the original data record di, Figure 1b. As
part of the full source-destination secret key synchroniza-
tion (hence the name SDES), both communication parties
generate the same new permutation vector (PVi+1), based
on the same previously generated secrete K, to be used
in the next encryption/decryption operations.
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Figure 2: Authentication of joining group of sensors: -Phase A: PCK authentication of every edge sensor in G2
with one edge sensor from G1, and SDES authentication between all adjacent sensors in G2. -Phase B: SDES key
establishment between already PCK authenticated sensors from G2 and their corresponding authenticating sensors
from G1. -Phase C: SDES key establishment between edge sensors G2 and any other adjacent sensor from G1.

The next step is the source-destination synchronized
re-keying process. As we discussed earlier, SDES alters
the secret key for solid network security. Our SDES is
novel; it distinguishes itself from other peer techniques
by involving both the encryption key PVi and the data di

in the secret key re-keying function as follows: Ki+1 ←−
(Ki + PVi + di) modulo n, where Ki and Ki+1 are the
respective current and the next secret key values.

There are three major advantages of our re-keying ap-
proach. Firstly, since PVi is very diverse, the gener-
ated secret key will be robust, avoiding poor-key attacks.
Moreover, the overall network security is increased due
the natural diversity of transmitted data between differ-
ent communication links. In order to verify the equi-
distribution of the generated secret key bytes, we car-
ried out 107 encryption operations [25], with both ran-
dom and constant data records. Results showed an equi-
distribution of the byte value repetition with an average of
39062.5, and a standard deviation of 0.5%, which confirm
that our re-kying mechanism produces non-biased keys.

The second advantage of SDES re-keying over other
peer mechanisms is that all past communicated informa-
tion is safe, prior to compromising any secret key instance.
Assuming that an attacker succeeds in capturing a sensor
at the ith communication phase, he/she will compromise
any data that is stored in the sensor’s memory. Therefore,
all secret information Ki, PVi and di are compromised, in
addition to any cipher (c1, c2, · · · , ci) that the attacker
may record while eavesdropping on the communication
channel. Since the sensor may share the same set of initial

m keys that was described in the basic-scheme of random
key distribution, the attacker needs to perform backward
tracking to get the initial key K1, which is so critical since
it is the only key that could be temporarily shared by a
group of sensors. Because the secret information at the
(i− 1)th phase (Ki−1, PVi−1anddi−1) is overwritten, the
attacker has to solve these equations in order to restore
them back:

• Ki−1 = (Ki − PVi−1 − di−1) modulo n.

• PVi−1 = ReversePermutation(PVi, Ki−1)

• di−1 = (Ki − Ki−1 − PVi−1) modulo n, or di−1 =
ci−1 ⊕Ki−1

where ReversePermutation() is the reverse function of
Permutation(). However, any attempt to solve the previ-
ous equations via variable substitution process will lead to
circular referencing; i.e., Ki−1, PVi−1, and di−1 in func-
tion of Ki−1, PVi−1, and di−1, respectively. Moreover,
we have proved mathematically (out of the scope of this
paper) that at least 2n−1 different values for Ki−1 will
permute PVi−1 to PVi. Therefore, the backward tracking
to get up to K1 is as hard as brute-forcing a key space of
Ω(2n−1) size complexity. For considerably large values of
n, the proposed model guarantees minimal security dam-
age upon sensor capturing; jeopardizing the correspond-
ing communication links of the captured node. However,
the proposed model still relies on the fact that sensors are
not likely to be captured at the beginning of the network
deployment. In case of such an early capture, our model



International Journal of Network Security, Vol.3, No.2, PP.160–171, Sept. 2006 (http://ijns.nchu.edu.tw/) 166

Table 1: The correspondent violation rates versus fixed round sizes in order to reach 99.99% gross protocol efficiency

Round Size Violation Rate of the Expected Useful Protocol
(R) Hostile Environment(p) Efficiency(UPE)
5 0.055912− 2.000110−05 60%− 80%
10 0.028358− 1.0000510−05 67.5%− 90%
20 0.014281− 5.0002410−06 71.25%− 95%
50 0.005737− 2.000110−06 73.5%− 98%
100 0.002873− 1.0000510−06 74.25%− 99%

inherits the same vulnerabilities of the basic-scheme of
random key pre-distribution.

The third advantage of our re-keying method is the
reduction of key revocation effect. When a malicious node
is detected, other peer mechanisms need to broadcast the
entire set of keys corresponding to the malicious node.
They also encounter an additional overhead of key re-
establishment for all revoked keys. In our system, only
the malicious node id is to be broadcasted to the entire
network in order to start the process of its isolation.

7.2 Sensors Authentication

After establishing a secret key based on the basic-scheme,
any two communicating sensors have to start a mutual
authentication procedure as follows. The source sensor
sends a connection request to the destination with two
challenges c1 and c2. The challenges quantities c1 and c2

are the encryption of the same randomly generated nonce
N with two consecutive permutation vectors, which are
generated based on the shared key K. The authentica-
tion process starts by obtaining the decrypted values of
c1 and c2 and comparing them for equality. If they are
equal, the recipient node encrypts the same nonce with
the next permutation vector, in sequence, and sends the
resulting cipher c3 back to the source sensor. The mutual
authentication ends successfully when the source sensor
decrypts c3 and verifies the equality with the originally
transmitted N .

New sensors deployment might be due to either the
need to expand an existing network (say group G1) to
cover adjacent regions, or recover from a bad distribution
of sensors in a previous deployment. Other peer mech-
anisms consider only individual node deployment, since
a newly joining node might share several keys with the
network. However, it is no the case in our system, since
all keys are dynamic. Therefore, we implemented the de-
ployment of new sensors in groups instead of individuals
as shown in Figure 2.

We will follow the same basic-scheme key agreement
and the above SDES authentication mechanisms in or-
der to establish secure connection between sensors of the
newly joining group G2. In order to join G1 and G2,
their touching edge sensors authenticate via the PKC,
only once in their lifetime, saving much needed sensor
energy. Then, based on the basic-scheme in Section V,

the process of neighborhood adjustment with secret key
establishment will be accomplished among adjacent sen-
sors of G1 and G2.

7.3 Additional Efficiency Through Flexi-
ble Integrity Checking Process

The SDES introduces a much more flexible and power-
ful message integrity mechanism replacing the checksum-
like mechanisms. Since secret key generation depends
on data, integrity violations are detected via key mis-
synchronization. Our system divides each session into
sections of size R + 1 records, with R data records and a
duplicate of the last record. The receiver validates the in-
tegrity of the entire section by simply verifying the equal-
ity of the last two received data records, ignoring the du-
plicate record. If an integrity violation is detected, the
sender needs to encrypt and retransmit the previous R+1
data records, which may degrade the performance of our
mechanism in hostile environments. An advantage of our
mechanism is the flexibility of adjusting R based on the
environment hostility.

Hence, the communication throughput is R/(R + 1),
whereas the efficiency of other mechanisms that utilize
CRC is about 80% (e.g., in 128-block ciphers, using
32-bit CRC field). Moreover, the CRC detects only
cipher alteration, whereas our mechanism has the huge
advantage of detecting many more violations, such as
cipher shuffling, injection, and deletion and session
hijacking.

Network Efficiency Of CBC-MAC Integrity
Mechanism

Next, we will analyze the effective throughput of se-
curely transmitting N bits using rigid mechanisms, like
CBC-MAC. Let PS be the packet size in bits, and CMS
the corresponding CBC-MAC filed size. Therefore, the
total number of packets is N/PS, and the number of non-
violated packets ranges between 0 and N/PS.

Let us recall that (1−p) is the probability that a packet
is not violated. Therefore, n!

i!(n−1)! (1 − p)iPn−i)(where

n = N/PS) is the probability of i non-violated packets,
since they can be in any order. Then, the expected num-
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Table 2: Comparison of deployed security mechanisms with SDES (n is network size, m is the maximum keys that
can be stored in a sensor’s memory)

Technique Key storage Scalability Affected nodes due Sensor revocation
per sensor to a sensor intrusion overhead

PCK 2 node-to-node only sensors communicating Broadcast intruded
(a key and authentication with the intruded node node id

a certificate)
Merkle Tree 1 + Log n complex tree only sensors communicating Broadcast intruded

modification with the intruded node node id
Basic-scheme m Simple with all sensors that Broadcast intruded

of probability share the same node id and
Random p set of m keys stored its set of

Key at the intruded node m secret keys
SDES m PCK-like for only sensors communicating Broadcast intruded

touching edge sensors, with the intruded node node id
and basic-scheme-like

for others.

ber of non-violated packets is:

E =

n
∑

i=0

n!

i!(n− 1)!
(1− p)iPn−i.

This expectation is identical to that of the Bernouli
distribution, which has the mean of n×(1−p). Therefore,
the expected useful throughput of transmitting N bits is:

[PS − CMS]× E = [PS − CMS]× n× (1− p)

= [PS − CMS]×N/PS × (1− p)

=
PS − CMS

PS
(1− p)N

which means that the useful protocol efficiency using CRC
is:

PS − CMS

PS
(1− p). (1)

Network Efficiency of SDES Integrity Mechanism

Let Q be the probability to transmit R records with no
integrity violation, i.e., Q = (1−p)R. Then, the probabil-
ity to transmit R records with at least one integrity viola-
tion (of one record) is P = 1−Q = 1−(1−p)R. Let X be
the random variable that represents the total number of
transmitted records in order to get R records transmitted
successfully. Therefore, Pr(X = R) = (1 − P ), P r(X =
2R) = (1 − P )P, Pr(X = 3R) = (1 − P )P 2, · · · , P r(X =
nR) = (1 − P )Pn.

Then, the expected value of X is E(X) =
∑∞

n=1 nRPr(nR), therefore, E(X) =
∑∞

n=1 nR(1 −
P )Pn−1, then, E(X) = R(1−P )

∑∞
n=1 nPn−1, therefore,

E(X) = R(1−P )
d[
∑

∞

n=1
P n]

dP
, so, E(X) = R(1−P )

d[ P

1−P

dP
,

then, E(X) = R(1 − P ) 1
(1−P )2 , thus, E(X) = R

1−P
=

R
(1−p)R .

Since E(X) is the average number of transmitted
records in order to get R records transmitted successfully,
the gross protocol efficiency GPE is:

gross protocol efficiency =
R

E(X)
= (1 − p)R. (2)

However, the useful protocol efficiency is less than the
gross protocol efficiency, since the significant payload con-
sists of R− 1 records only. Therefore, the useful protocol
efficiency UPE is:

useful protocol efficiency =

R− 1

R
gross protocol efficiency. (3)

So, given the integrity violation probability p and a de-

sired GPE, the recommended value of R is: R = ln(GPE)
ln(1−p) .

Despite the fact that a 99.99% GPE is achievable with
reasonable violation probabilities, network users are con-
cerned more about the net network efficiency (UPE). As
shown in Table 1, It is quiet high to achieve high UPE
with small values of R, even with small p. Therefore, the
network should tune the round size to lower values as it
detects higher rates of violations.

Upon detecting records violations, in addition to ap-
proximating p, a calculated adjustment to R is in order,
for achieving the highest useful protocol throughput.

We have: UPE = R−1
R

(1−p)R based on Equations (2)

and (3), therefore, ln(UPE) = ln[R−1
R

] + R ln(1 − p). In
order to solve the previous equation, we need to use the
next Taylor expansion: [x+1

x
] = 2[ 1

2x+1 + o[ 1
2x+1 ]], where

o[ 1
2x+1 ] is an insignificant term compared to 1

2x+1 . There-
fore, after Taylor expansion substitution, the previous
equation is transformed to: ln(UPE) = ln −2

2R−1 +R ln(1−



International Journal of Network Security, Vol.3, No.2, PP.160–171, Sept. 2006 (http://ijns.nchu.edu.tw/) 168

Table 3: Encryption/Decryption power consumption of 256× 104 bytes using 8MHZ CPU

Encryption Method Encryption Power Decryption Power
Consumption (power unit) Consumption (power unit)

SDES 2.1 2.206
AES 3.5876 3.6188
AES (CBC Mode) 4.0188 4.256
AES (CBC-MAC) 4.0175 4.137
DES 10.5688 11.2
DES (CBC Mode) 11.1812 13.1688
Triple DES 33.0372 30.8628
Triple DES (CBC Mode) 39.256 31.5876

p). For clarity purposes, we will substitute ln(UPE) with
a, and ln(1 − p) with b, ending up with a = −2

2R−1 + Rb,
which is equivalent to the quadratic equation:

2bR2 − (2a + b)R + a− 2 = 0 (4)

which has the discriminant ∆ = 4a2 − 4ab + 16b + b2.
In order to solve Equation (4), we need to determine

the roots values of a or b that make ∆ positive. Conse-
quently, we need to solve ∆ = 0 with respect to a. Then,
the corresponding discriminant is ∆a = −256b, which is
always positive, since 1 − p is less than one, and then b
renders negative. So, the quadratic equation ∆ = 0, with
respect to a, has two roots:

a1,2 =
b± 4

√
−b

2
. (5)

Hence, when a ≤ a2, ∆ is positive, which set a2 to be
the maximum achievable value for a. Note that a ≥ a1

also renders ∆ positive, but this case is discarded, since
a1 is positive; a is equal to ln(NNE) which is always
negative. Hence, Equation (4) has two roots:

R1,2 =
2a + b±

√
4a2 − 4ab + 16b + b2

4b
. (6)

So, given a violation probability p, the corresponding

maximum achievable UPE is ea2 = e
ln(1−p)−4

√
− ln(1−p)

2 ,
based on Equation (5). Consequently, based on Equa-
tion (6), we considered the value of R1 in order to achieve
such efficiency (R2 is identical to R1 when a = a2, which
makes ∆ = 0):

R1|a=a2
= RMaximum UPE =

1

2
−

√

− ln(1 − p)

ln(1− p)
. (7)

7.4 Comparison with Peer Techniques

Table 2 summarizes the major advantages and disad-
vantages of the previously discussed security mechanisms
compared with our proposed model SDES.

In terms of power consumption, our SDES mechanism
is the lowest among all due to the simplicity of stream

ciphers, as shown in the next section. Moreover, the flex-
ibility of SDES saves more energy, when the need for in-
tegrity protection rises, than other listed techniques. In
terms of memory storage, SDES follows the same mech-
anism of the basic-scheme of random keys, utilizing only
the available space of the sensor’s memory.

Scalability is also a very important factor in sensor
networks since there will be always a need to replace
expired/damaged sensors, increase the network diame-
ter, populate sparsely distributed regions in the network.
PCK techniques excel in the simplicity of their scalability,
which led us to incorporate their approach temporarily in
our system. Since our mechanism adopt a group sensor
deployment, only edge nodes need to be PCK authenti-
cated to the network. However, for other nodes, we use
the simpler basic-scheme establishment. Hence, our hy-
brid scalability is more effective than that of the PCK
in terms of computation and communication overheads,
which saves energy. Another advantage of SDES’s scal-
ability over that of the basic-scheme is the balancing of
power consumption over the network. In the latter, a
key path has to be established through the network if a
new joining sensor does not share keys with its neigh-
bors. This could lead to imbalanced power consumption
at nodes that are part of multi-paths. On the contrary,
the SDES scalability guarantees the path key establish-
ment only within the newly joining group, decreasing the
possibility of multiple shared paths per node, hence alle-
viating the above problem.

The impact of capturing (intruding) a node varies from
one security mechanism to another. Since our SDES
mechanism applies re-keying to all sensors stored keys
upon the first communication, any sensor capture will
jeopardize its corresponding communication links only.
Hence, our SDES mechanism achieves the same best se-
curity of the PCK.

In case of detecting an intruded sensor, an efficient
method is needed to isolate it from the network. Our
mechanism saves communication bandwidth and energy
since only the malicious node’s id is broadcasted. Other
mechanisms, such as the basic-scheme, need to broadcast
the list of all keys that are stored at the malicious node.
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Table 4: Energy consumption comparison between SDES and AES with CBC-MAC in a hostile environment.

Probability AES with CBC-MAC SDES
Violation (PS=160 bits, CMS=32bits)

UPE Energy Consumption UPE R Energy Consumption
(power unit) (power unit)

10−05 80 % 10.04 99.37 % 317 2.11
10−04 80 % 10.04 98.01 % 100 2.14
0.001 80 % 10.05 93.82 % 32 2.24
0.005 80 % 10.09 86.58 % 15 2.43
0.01 79 % 10.14 81.42 % 10 2.58
0.05 76 % 10.57 61.96 % 5 3.39
0.1 72 % 11.15 49.57 % 4 4.24
0.2 64 % 12.55 34.77 % 3 6.04
0.3 56 % 14.34 25.34 % 2 8.29
0.4 48 % 16.73 18.55 % 2 11.32
0.5 40 % 20.08 13.38 % 2 15.70
0.6 32 % 25.09 9.32 % 2 22.52
0.7 24 % 33.49 6.10 % 1 34.41
0.8 16 % 50.19 3.54 % 1 59.39
0.9 8 % 100.38 1.52 % 1 138.11
0.99 8 % 1003.75 1.37 % 1 1535.26

Notes: This energy consumption is relative to transmitting useful 256× 104 bytes successfully.

Consequently, the revoked keys need to be re-established
which adds another burden on the bandwidth and the
sensor’s power consumption.

8 Experiments and Analysis

In order to evaluate our system, we carried out several ex-
periments with respect to encryption/ decryption power
consumption. The experiments also involved the AES,
DES, and Triple DES with both regular and CBC mode.
Pottie and Kaiser [21] listed that the energy consumed in
transmitting a 1K-bit packet over 100m is approximately
the same as performing 3 million instructions on a typical
scenario. Thus, with an 8MHz CPU, the energy spent on
running CPU for 1 millisecond is equivalent to sending
2.67 bits. In the following analysis, we will consider the
power unit as the power spent to run the sensor’s CPU
for 1 millisecond. The depicted results were obtained as
the average of 50 runs, on the same benchmark.

Table 3 clearly shows the power saving advantage
of SDES compared to other symmetric key techniques.
Moreover, when the CBC mode is deployed to protect
against replay attacks, the peer symmetric key techniques
waste more energy due to the extra XOR operation of the
CBC mode. For instance, when AES-CBC is deployed for
data encryption, it will still consume energy equivalent to
200% of that used by our mechanism. In addition, AES-
CBC-MAC spends approximately another 200% more en-
ergy than SDES in order to protect against data integrity
violations. Hence, the simplicity and the flexibility of our
mechanism led to 75% saving of sensor’s energy compared

to AES-based techniques (e.g., TinySec), an achievement
that makes our security system the most amenable for
wireless sensor networks.

Table 4 compares the maximum SDES UPE with that
of the AES with CBC-MAC as a function of the violation
probability (p), based on Equations 1 and 7, and Table 3.
Results show that SDES achieves better UPE than AES-
CBC-MAC, when p is less than 1%. Moreover, in terms of
energy consumption, SDES has uses less power in highly
hostile environment; saving between 12 % and 80 % for
p = 0.60 down to 0, respectively. Notice that Equations
(1) and (7) do not include the encryption overhead. Based
on Pottie and Kaiser formula and Table 3, the ratio of
encryption overhead over transmission overhead is 13.03×
10−8(i.e., 2.67bits/(256×104×8bits)), which is negligible.

9 Conclusion

In this paper, we introduced a novel security mechanism
that is most amenable for deployment in the wireless sen-
sor networks. The strength of our encryption technique,
with a brute-force time complexity of Ω(2n), is stemmed
from a simple permutation style.

From existing key distribution systems, we adopted the
random key pre-distribution technique for its efficiency in
terms of secret keys space usage. Moreover, we adopted
the PKC method for authenticating newly joining sensors.
However, we proposed two simple joining schemes that
reduce the power consumption of PKC utilization.

Novel to our technique, the initial keys stored in the
sensor’s memory are re-keyed with every performed en-



International Journal of Network Security, Vol.3, No.2, PP.160–171, Sept. 2006 (http://ijns.nchu.edu.tw/) 170

cryption/decryption, which limits the effect of sensor’s
intrusion to only its communication links. Moreover, key
revocation overhead is reduced to simply broadcasting the
intruded node id instead of its captured set of keys.

We also introduced a new integrity mechanism that
adapts to the hostility of the network environment. In-
stead of encountering a rigid overhead for data integrity,
as done in peer mechanisms (e.g., CRC, CBC-MAC), we
developed a flexible mechanism that saves bandwidth and
reduces sensor energy consumption. Such achievement is
stemmed from a novel re-keying mechanism that involves
data in addition to the encryption key.

Simulation results show that our mechanism has a clear
set of advantages over existing peer mechanisms. SDES
possesses better power budget and balancing, more im-
munity against sensor intrusion, in addition to man-in-
the-middle and replay attacks.
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