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Abstract

The cryptosystem proposed by Koyama is not semanti-
cally secure. Also, it is not secure against partial known
plaintext attack, linearly related plaintext attack and low
exponent attack. In this paper we propose a cryptosys-
tem over singular cubic curve using the idea of Koyama
and Kouichi et al. Our proposed cryptosystem is approx-
imately two times faster than the cryptosystem given by
Kouichi et al. with the same security label and more ef-
ficient than the Koyama scheme at higher security label.
Further, the partially known plaintext attack and the lin-
early related plaintext attacks are analyzed and concluded
that those are not possible in the proposed scheme.

Keywords: Public key cryptosystem, RSA, semantic secu-
rity, singular cubic curve

1 Introduction

The efficiency and security are two important demands of
any cryptosystem. The details about different type of se-
curity notions we refer the reader to the paper by Bellare
et al. [1]. In 1984, Goldwasser and Micalli [10] intro-
duced a security notion, named semantic security. This
means that the ciphertext should not leave any useful in-
formation about the plaintext. Adopting the condition
of semantic security, ElGamal [9] proposed an encryption
scheme based on the Diffie-Hellman [7] problem. How-
ever, such semantic security was related to the Decisional
Deffie-Hellmann problem [7, 24] and couldn’t gain popu-
larity because of the computational load. On the other
hand, the standard RSA [22] was not semantically se-
cure. Later, in 1994, Bellare and Rogaway [2] presented
some variants of RSA, which were semantically secure
against chosen ciphertext attack in the random oracle
model [2]. The cryptosystems given by Pointcheval [21]
and S-Paillier [5] are also semantically secure. The scheme
given by Pointcheval is 6 times faster than the ElGamal
encryption scheme. In the Pointcheval scheme, small ex-

ponent e cannot be used for the security point of view
because of the related message attack. Later, Kouichi et
al. [14] generalized the scheme given by Pointcheval and
S-Paillier cryptosystem. It is known as G-RSA cryptosys-
tem at present. In this scheme, a small exponent e can
be used. This scheme was more efficient than the scheme
given by Pointcheval.

The singular cubic curve is an important object in
number theory because of its wide range of applications.
The quality of singular cubic curve is that it forms an
abelian group over finite field. This attracted cryptog-
raphers to propose the analogue of some existing public
key cryptosystems. The singular cubic curve was first
time used by Koyama [15] and Koyama et al. [13, 17]
for the construction of RSA type cryptosystem. How-
ever, the cryptosystem proposed by Koyama is two times
faster than that of the standard RSA [22] scheme. But
the scheme is not semantically secure and also not secure
against low exponent attack [16], related message attack
[6, 19] and partially known plaintext attack [3, 20]. It is
therefore natural to curb said above three security weak-
ness within Koyama schemes [13, 15, 17]. With this pur-
pose we use “one way function” of Kouichi et al. [14] to
redesign the Koyama scheme and construct a more secure
cryptosystem. This new design is not only semantically
secure but also prevents said three attacks.

The object of this paper is to propose a variant of RSA
scheme based on singular cubic curve applying the ”one
way function” used in Kouichi et al. [14] scheme. In
our opinion, apart from semantic security it rules out the
possibility of said three attacks. Our scheme is approxi-
mately 2 times faster than Kouichi et al. [14] scheme and
more secure than Koyama scheme [15].

2 Singulaer Cubic Curve

In this section, first we discuss some basic facts about
singular cubic curve over the finite field Fp and the ring
Zn where n is the product of two distinct odd primes
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greater then 3.
Consider the congruence equation:

y2 + axy = x3 + bx2 mod p. (1)

The set of all solutions (x, y) ∈ Fp ×Fp to (1) denoted
by Cp(a, b) is called singular cubic curve over Fp.

Let Fp be a finite field with p elements and Fp
? be

the multiplicative group of Fp. Clearly the order of Fp
?

denoted by ]Fp
? = p− 1.

A nonsingular part of singular cubic curve denoted by
Cp(a, b) is defined as the set of solutions (x, y) ∈ Fp ×
Fp to Equation (1) excluding a singular point (0, 0), but
including the point at infinity, denoted by ©.

It is well known that the same addition laws defined
by the chord and tangent method in the case of elliptic
curve still holds in the singular cubic curve [18, 23]. For
any point P ∈ Cp(a, b). For the sum P⊕©, by definition,
is equal to P , which is also equal to © ⊕ P . For P =
(x0, y0), we define 	P the additive inverse of P as the
point (x0,−y0− ax0). The sum of P ⊕ (	P ) is defined to
be ©. For P1 = (x1, y1) and P2 = (x2, y2) with P1 6= P2

the sum P1 ⊕ P2 = (x3, y3) is calculated as follows:

x3 = γ2 + aγ − b− x1 − x2

y3 = γ(x1 − x3)− y1, (2)

where

γ =

{
y2−y1

x2−x1

, if (x1, y1) 6= (x2, y2),
3x2

1
+2bx1−ay1

2y1+ax1

if(x1, y1) = (x2, y2).

The existence of such addition law makes Cp(a, b) a fi-
nite abelian group. In fact, the group structure of Cp(a, b)
is well known [12, 23]. For any k ∈ Fp the multiplication
operation ⊗ is defined as bellow:

k ⊗ (x, y) =
︷ ︸︸ ︷

(x, y)⊕ (x, y)⊕ (x, y) ⊕ .....⊕ (x, y) k times
over Cp(a, b).

An isomorphism between Cp(a, b) and Fp
? is defined

in [18] for the curve (y − αx)(y − βx) = x3 over Fp
?,

where α, β ∈ Fp
?, which is equivalent to Equation (1)

with a = −α−β mod p and b = −αβ mod p. When b = 0
we can put α = 0 and β = −a(6= 0).

An isomorphism mapping from Cp(a, 0) to Fp
? and in-

verse of that are given in the following theorems:

Theorem 1 [18] The mapping ω : Cp(a, 0) → Fp
? de-

fined by ω :©→ 1 and (x, y) → 1 + ax
y

= x3

y2 is a
group isomorphism. The group isomorphism mapping
ω−1 : Fp

? → Cp(a, 0) is defined by ω−1 : 1→© and

v → ( a2v
(v−1)2 , a3v

(v−1)3 ).

Hence, with this isomorphism, the order of Cp(a, 0) is
denoted by #Cp(a, 0) = p− 1.

Let n be the product of two large primes p and q (> 3).
Let Zn = (1, 2, 3, ...., n− 1) and Zn

? be a multiplicative
group of Zn. We consider similarly the congruence:

y2 + axy = x3 + bx2 over Zn where a, b ∈ Zn. (3)

A nonsingular part of a singular cubic curve over Zn

denoted by Cn(a, b), is defined, as the set of solutions
(x, y) ∈ Zn × Zn to Equation (3) excluding a singular
points which are either congruent to (0, 0) mod p or con-
gruent to (0, 0) mod q, but including a point at infinity©.
By Chinese Remainder Theorem, Cn(a, b) is isomorphic
as a group to Cp(a, b) × Cq(a, b). An addition operation
on Cn(a, b) is defined by chord and tangent method.

Although the addition is not always defined, the prob-
ability of such a case is negligible small for large p and
q. Since we are taking p and q very large, there fore the
addition operation on Cn(a, b) can be defined.

By using Theorem 1 and Chinese Remainder Theorem,
the following theorem holds:

Theorem 2 [12] For (x1, y1) and (xi, yi) satisfying
(xi, yi) =i⊗ (x1, y1) over En(a, 0), we have

1 +
axi

yi

= (1 +
ax1

y1
)i(modn), i.e.

xi

yi

= (
x1

y1
)i(modn) (4)

3 RSA Type Schemes Based on

Singular Cubic Curves

Three RSA type schemes based on singular cubic curve
over Zn are proposed as follows.

3.1 Scheme I [17]

This cryptosystem is based on the singular cubic curve of
the form:

Cn(0, b) := y2 ≡ x3 + bx2(modn), (5)

where n = pq is the product of two large primes. The
encryption key e is chosen such that (e, N) = 1 where
N = lcm(p − 1, p + 1, q − 1, q + 1).The decryption key
d is chosen such that ed ≡ 1 mod N . The public key is
the pair (n, e) and the private keys are d, p and q. To
encrypt a plaintext pair M = (mx, my), the sender first

computes b =
my

2
−mx

3

mx
2 (modn) and then the ciphertext

is computed as C = e ⊗M on the singular cubic curve
Cn(0, b). The complete ciphertext is (C, b). The Receiver,
who knows the decryption key d can get the plaintext
(mx, my) by computing d ⊗ (cx, cy) = (mx, my) over the
singular cubic curve Cn(0, b).

3.2 Scheme II [15]

This cryptosystem is based on the singular cubic curve of
the form:

Cn(a, 0) := y2 + axy ≡ x3(modn), (6)

where n = pq is the product of two large primes. The
encryption key e is chosen such that (e, N) = 1 where
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N = lcm(p − 1, q − 1).The decryption key d is cho-
sen such that ed ≡ 1 mod N . The public key is the
pair (n, e) and the private keys are d, p and q. To en-
crypt a plaintext pair M = (mx, my), the sender first

computes a =
mx

3
−my

2

mxmy
(modn)and then the ciphertext

is computed as C = e ⊗M on the singular cubic curve
Cn(a, 0).The complete ciphertext is (C, a). The Receiver,
who knows the decryption key d can get the plaintext
(mx, my) by computing d ⊗ (cx, cy) = (mx, my) over the
singular cubic curve Cn(a, 0).

3.3 Scheme III [13]

This cryptosystem is based on the singular cubic curve of
the form:

Cn(α, β) := (y − αx)(y − βx) ≡ x3(modn), (7)

where n = pq is the product of two large primes. The
encryption key e is chosen such that (e, N) = 1 where
N = lcm(p−1, q−1).The decryption key d is chosen such
that ed ≡ 1 mod N . The public key is the pair (n, e) and
the private keys are d, p and q. To encrypt a plaintext
pair M = (mx, my), the sender first chooses α randomly

and computes β =
mx

3
−my

2+αmxmy

mx(amx−my) (modn).Then the ci-

phertext is computed as C = e⊗M on the singular cubic
curve Cn(α, β).The complete ciphertext is (C, α, β). The
Receiver, who knows the decryption key d can get the
plaintext (mx, my) by computing d⊗ (cx, cy) = (mx, my)
over the singular cubic curve Cn(α, β).

Seng et al. [6] have given following two equivalence
relations for the schemes I, II and III mentioned above.

Reduction of Scheme II to Scheme I: The trans-
formation (x, y) → (x, y + a

2x) will transform the
curve Cn(a, 0) to the curve Cn(0, b) with b = 4a2. Using
this transformation one can reduce Scheme II to Scheme I.

Reduction of Scheme III to Scheme I: The transfor-
mation (x, y) → (x, y − α−β

2 x) will transform the curve

Cn(α, β) to the curve Cn(0, b) with b = (α−β
2 )2. Using

this transformation, one can reduce Scheme III to Scheme
I.

4 G-RSA Cryptosystem

Kouichi et al. generalized the S-Paillier [5] and D-RSA
[21] cryptosystem which enhanced the RSA cryptosys-
tem to be semantically secure using one way function f ,
where f is a function Zn → Zn. This is known as G-RSA
cryptosystem. In this cryptosystem, A message m is en-
crypted by (c0 = re(modn), c1 = f(r) + mc0(modn)),
where r is randomly chosen element of Zn

∗. The ci-
phertext is decrypted by computing r = c0

d(modn) first
and then plaintext is obtained by computing m = ((c1 −
f(r))c0

−1)(modn).

Let OW be a class of one way function f : Zn → Zn.
The one way-ness assumption of G-RSA cryptosystem
is that, for any probabilistic polynomial time algorithm
AOW

G−RSA, the probability

Pr r∈RZn
[(n, e)← RSAPublic, f ← OW, r ←R Z∗

n,
c0 = re mod n,
c1 = f(r) + mc0 mod n : AOW

G−RSA(c0, c1) = 1]

is negligible in log n.
A semantic security adversary ASS

G−RSA against the G-

RSA cryptosystem consists of the find stage ASS1

G−RSAand

the guess stage ASS2

G−RSA. The semantic security of G-
RSA cryptosystem is that, for any probabilistic polyno-
mial time algorithm ASS

G−RSA the probability

2 Pr [(n, e)← RSApublic, f ← OW,

(m0, m1, st)← ASS1

G−RSA(e, n), b← {0, 1},
r←R Z∗

n, c0 = re mod n, c1 = f(r) + mbc0 mod n ;

ASS2

G−RSA((c0, c1), m0, m1, st) = b]− 1

is negligible in logn.
Kouichi et al. defined two problems called C-

RSA+OW problem and D-RSA+OW problem, in order
to investigate the security of G-RSA cryptosystem based
on a one way function f : Zn → Zn. The computational
C−RSA+OW problem is to compute the value f(r) for
given RSA public key (e, n) and the random ciphertext
c0 = re(modn).

4.1 C-RSA+OW Assumption

For any probabilistic polynomial time algorithm
AC−RSA+OW , the probability

Pr r∈RZ∗

n
[ (n, e)← RSApublic, f ← OW, c = re mod n;

AC−RSA+OW (c) = f(r) ]

is negligible in log n.
The decisional version of C − RSA + OW problem is

to distinguish whether an element (x, y) ∈ Zn×Zn comes
from the distribution (remod n, f(r)) for r ∈ Zn

∗.

4.2 D-RSA+OW Assumption

For any probabilistic polynomial time algorithm
AD−RSA+OW , the probability of distinguishing the two
distribution

|Pr[ (x, y)← Zn × Zn : AD−RSA+OW (x, y) = 1]−
Pr[ r ← Z∗

n, x = re mod n,
f ← OW, y = f(r) : AD−RSA+OW (x, y) = 1]|

is negligible in log n.
Following two theorems proves the one way-ness and

semantic security of G-RSA cryptosystem.

Theorem 3 The encryption function of G-RSA cryp-
tosystem is one-way if and only if the C-RSA+OW as-
sumption holds.
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Theorem 4 The G-RSA cryptosystem is semantically
secure if and only if the D-RSA+OW assumption holds.

Kouchi et al. proposed a novel one way function, most
significant bits zeroes (MSBZ) function. Let r be a k-bit
random integer in Zn

∗. The binary representation of r is
r = r02

0 +r12
1+r22

2 + .+rl2
l +rl+12

l+1 + ...+rk−12
k−1.

The proposed one way function was fe,n
MSBZ(r) = (r −

MSBZ(l)(r))
em
¯
od n where l is large enough. Here, r −

MSBZl(r) denotes the l most significant bits of r equal
to zero, i.e. r−MSBZl(r) = r02

0 + r12
1 + r22

2 + .+ rl2
l.

This one way function was named after most significant
bits zeroes function (MSBZ).

The equivalence between RSA and G-RSA cryptosys-
tem was based on the following theorems.

Theorem 5 The C-RSA+MSBZ assumptions holds iff
RSA assumption holds.

Theorem 6 Let (n, e) ∈ RSApublic and c = re(modn)
be the input of the computational RSA+MSBZ problem.
An adversary, who breaks the D−RSA+MSBZ problem,
can computes the least significant bit of r. If the least
significant bits of r are zero, the next bit after the zeroes
can be computed by the adversary.

5 Proposed Cryptosystem

Now we propose a new semantically secure encryption
scheme over the singular cubic curve Cn(a, 0) with the
massage dependent variable a similar to that of Koyama
scheme [15]. The security of the proposed scheme is based
on the RSA problem, more precisely on the difficulty of
factoring n, which is product of two large primes p and
q. Let a plaintext (mx, my) be an integer pair, where
mx, my ∈ Zn

∗ and mx
3 6= my

2(modn). We first trans-
form the plaintext (mx, my) to Zn

∗, and then encrypt

the isomorphic image of (mx, my), i.e. mx
3

my
2 .

5.1 Key Generation

To generate keys, receiver R chooses two large primes
p,q and computes n = pq. Receiver determines an in-
teger e less than and relatively prime to φ(n). He then
computes dp and dq such that dp ≡ e−1mod (p − 1) and
dq ≡ e−1mod (q − 1). He makes the keys (e, n) publicly
available and keeps secret to the keys (dp, dq, p, q). More-
over a one way function f : Zn

∗ → Zn
∗ is used as a system

parameter.

5.2 Encryption

To encrypt the message pair (mx, my), sender S, first
chooses a random integer r ∈ Zn

∗ and sends the cipher-
text (c0, c1, c) to the receiver R with the receiver’s public
key (e, n). Where

1) c0 = remod n.

2) c1 = f(r) + (mx
3

my
2 )c0mod n.

3) a =
mx

3
−my

2

mxmy
mod n.

4) c = (a + r2)mod n.

The complete ciphertext is (c0, c1, c). It is clear that
the ciphertext does not belongs to any corresponding
point on the singular cubic curve Cn(a, 0). Also the ci-
phertext c does not leak any information about the plain-
text.

5.3 Decryption

The receiver R computes the original plaintext by using
his/her secrete keys after getting the ciphertext (c0, c1, c)
as below:

1) rp = c0
dpmod p and rq = c0

dqmod q. By the pair
(rp, rq) and via Chinese Remainder theorem, com-
pute the value of r.

2) a = (c− r2)mod n.

3) m = mx
3

my
2 mod n = (c1 − f(r))c−1

0 mod n. Now by

using the isomorphism mapping for singular cubic
curve defined above he/she then computes the orig-

inal plaintext (mx, my) by mx = a2m
(m−1)2 mod n and

my = a3m
(m−1)3 mod n.

Example: Following is a very simple example to under-
stand our proposed cryptosystem:

Let p = 5 and q = 11, n = 55, φ(n) = 40, then Z?
n =

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24,
26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 39, 41, 42, 43, 46,
47, 48, 49, 51, 52, 53, 54.

Key Generation: Let e = 3, dp ≡
1
3 (mod4) ≡ 3, dq ≡

1
3 (mod10) ≡ 7.

Let the Plaintext pair = (2, 3), i.e. mx = 2 and my = 3

Encryption: To encrypt the message pair (2, 3), the
sender chooses the parameter r = 7, he then proceeds as
follows:

1) c0 = 73mod 55 ≡ 13.

2) c1 = f(7) + (23

32 ) × 13mod 55 ≡ f(7) + 7 × 13 ≡
f(7) + 36.

3) a = 23
−32

6 mod 55 ≡ 9.

4) c = (9 + 72)mod 55 ≡ 3.

Sender sends the complete ciphertext (13, f(r)+ 36, 3)
to the receiver R.

Decryption: To get the plaintext after having the ci-
phertext, R proceeds as follows:

1) rp = 133mod 55 ≡ 2 and rq = 137mod 11 ≡ 7. By
the pair (rp, rq) and via Chinese Remainder theorem,
R computes the value of r = 7.
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2) a = (3− 72)mod 55 ≡ 3− 49 ≡ 9.

3) m = mx
3

my
2 mod n ≡ (f(7) + 36 − f(7))13−1mod n ≡

36
13mod 55 ≡ 7. He/she then computes the original

plaintext (mx, my) by mx = 92
×7

(7−1)2 mod 55 ≡ 2 and

my = 93
×7

(7−1)3 mod 55 ≡ 3.

6 Efficiency and Security

In the scheme given by Koyama, eth power of mx
3

my
2 un-

der modulo n is computed during the encryption pro-
cess. Where as, in our proposed scheme, the triples like
(re mod n, f(r) mod n, re mod n) are computed well in
advance. Because of this pre-computation, the encryp-
tion process requires only two multiplications and one
addition modulo n. This feature makes the encryption
process more efficient than the scheme given by Koyama,
although, our decryption process remains approximately
as efficient as the scheme given by Koyama.Following the
analysis given by Koyama [15], let, x and y the coordi-
nates of 2 log n-bit plaintext are transformed to a log n-bit
plaintext by isomorphic mapping. This massage of log n
bit length is than encrypted by using encryption process.
The obtained ciphertext is decrypted by using decryption
key over Zn

∗ which is the transformed massage. By using
the inverse transformation, we get the original 2 logn bit
length massage. If we exclude the transformation than the
number of modulo multiplication is approximately same
as for the G-RSA scheme in decryption process. Hence,
the decryption speed of the proposed scheme is 2 times
faster than that of G-RSA scheme for a K bit long mes-
sage if d K

log n
e is even.

An intuitive argument that cryptosystem proposed is
semantically secure against chosen plaintext attack in the
Decisional GRSA problem is as follows. In order to de-
termine any information about the plaintext m from the
ciphertext, attacker need to have some information about
f(r) mod n where r is randomly chosen element in Z∗

n.
The only way to ascertain any information about the value
of f(r)(modn) is to first compute r (it is not sufficient to
compute some partial information about r; it is neces-
sary to have complete information about r in order to
obtain any information about f(r)(modn), as r is ran-
domly chosen). It is not possible without knowing the
secret key d or solving the GRSA problem. Also, in the
Koyama scheme the message dependent variable a gives
some information about the plaintext but, in the proposed
scheme we keep it secret which is known by the authorized
receiver only. Without knowing the value a attacker nei-
ther use Theorem 1 nor the addition operation over the
exact singular cubic curve. Next, following Theorems 3
and 4 the proposed scheme is semantically secure against
the chosen ciphertext attack.

We have mentioned that the schemes proposed by
Koyama [15] and Koyama et al. [13, 17] are not secure
against partially known plaintext attack [3, 20] linearly

related message attack [6] and low exponent attack [3, 16].
Also, all three schemes [13, 15, 17] are equivalent to each
other [6] and the transformation (x, y) → (x, y + a

2x)
with b = a24, transforms the curve Cn(a, 0) to the curve
Cn(0, b) . Using this transformation one can reduce the
scheme [15] to the scheme [17]. Here, we consider the
scheme [17] over the curve Cn(0, b) to compare with our
scheme for the security analysis and show that the said
above attacks not admissible in our proposed scheme as
below.

Secure Against Partially Known Plaintext Attack.

In the Koyama scheme, knowing one ordinate mx or my

in a plaintext pair (mx, my) one can compute the whole
plaintext under with the help of corresponding ciphertext.
In brief, this attack is as below:

Let n, e be a public key for scheme [17] and C = (cx, cy)
be the encryption of the plaintext M = (mx, my), i.e.
e ⊗ (mx, my) = (cx, cy). Assume that mx is known
and my is unknown. Let my = y. Then we com-
pute e ⊗M over Z[y]/(y2 − mx

3 − bmx, n)by using the
addition law of singular cubic curve. For the Koyama
scheme, by induction technique, it can be shown that
for any k in Zn, k ⊗ (mx, y) ≡ (uk, vky) where uk and
vk are two positive integers. Finally, for k = e, we get
the relation (ue, vey) = (cx, cy), which can be solved
for y = cyve

−1(modn) if ve 6= 0(modn). However, if
ve = 0(modn) then the ciphertext C is a point of order
2 in Cn(0, b) which means that d ⊗ C = M , i.e. C = M ,
hence M is always computable.

In our scheme we hide the parameter a and the
ciphertext is not a permutation of the plaintext pair
(mx, my) on the same curve. Also, with the help of
ciphertext, none but the receiver can compute the
addition parameter a. And hence he cannot use the
addition operation. So, the attacker neither can use
the said above transformation nor Theorem 1. Thus we
conclude that the partially known plaintext attack is not
admissible in our scheme.

Secure Against Linearly Related Plaintext Attack.

We have mentioned that the Koyama schemes [13, 15,
17] become insecure if two linearly related plaintexts are
encrypted with the same public key [3, 6, 19]. In brief,
the attack is as below.

Let M = (mx, my) and M ′ = (m′

x, m′

y) be two plain-
texts linearly related by the known relations:

m′

x ≡ αmx + γ

m′

y ≡ βmx + δ,

where α, γ, β and δ are integers in Zn
∗. Assume that the

encryption of the plaintexts (mx, my) and (m′

x, m′

y) are
given by

(cx, cy) ≡ e× (mx, my)(modn)

(c′x, c′y) ≡ e× (m′

x, m′

y)(modn).

From the above ciphertext we can derive the curves
Cn(0, b) and Cn(0, b′) upon which the point must lie.
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Thus we have

m3
x + bm2

x −m2
y ≡ 0(modn)

(αmx + γ)3 + b′(αmx + γ)2 − (βmy + δ)2 ≡ 0(modn).

By above two equations we can write my as a polyno-
mial w in mx with

w(x) =
(αx + γ)3 + b′(αx + γ)2 − β2(x3 + bx2)

2βδ
.

By using the addition formula on singular cubic curve,
it is clear that w(mx) ≡ my(modn). Now let f(x) ≡
x3 + bx2 − w(x)2(modn), which is a polynomial of de-
gree 6. Thus f(mx) ≡ 0(modn) on Z[x]/(n, f(x)). Next
we compute e × (x, w(x)) ≡ (h(x), j(x))(modn) over
Z[x]/(n, f(x)). Then we have the following equations:

h(mx) ≡ cx(modn)

j(mx) ≡ cy(modn).

Finally, we compute gcd(h(x) − cx, f(x)) which is a
linear polynomial of the form k(x − mx). This gives us
the plaintext mx. After knowing the half of the plaintext
(mx, my) = M , we can compute the other half my by
w(mx) = my. Again by the linear relation between M
and M ′ we can compute the plaintext M ′.

Again to apply such type of attack, the knowledge of
parameter b (or a) is necessary. In the proposed scheme,
we hide the parameter a, so that no one can apply above
attack in our scheme. It is therefore, secure against lin-
early related plaintext attack.

Finally, as the GRSA scheme [14] is secure against low
exponent attack, we assert that the proposed scheme is
also secure against low exponent attack.
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