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Abstract

The main back-bone operation in elliptic curve cryptosys-
tems is scalar point multiplication. The most frequently
used method implementing the scalar point multiplication
which is performed in the top level of GF (Galois Field)
multiplication and GF division, has been the double-and-
add algorithm, which is being recently challenged by NAF
(Non-Adjacent Format) algorithm. In this paper, we pro-
pose a more efficient and novel approach of a scalar point
multiplication method than existing double-and-add by
applying redundant recoding which originates from radix-
4 Booth’s algorithm. We call the novel algorithm quad-
and-add. Along with the algorithm, we have created a
new EC (Elliptic Curve) point operation, named point
quadruple, and verified with calculations of a real-world
application to utilize it. Derived numerical expressions
were verified using both C programs and HDL (Hardware
Description Language). Proposed method of EC scalar
point multiplication can be utilized in many EC security
applications for handling efficient and fast calculations.

Keywords: Elliptic curve cryptosystem, Galois field,
scalar point multiplication

1 Introduction

As an indispensable component of information technolo-
gies, security applications, such as IC cards used for per-
sonal authentication and domestic network applications,
play an important role. In fact, such data security re-
ceives constant attention, since people tend to commu-
nicate with each other by various electronic devices over
networks. Security applications are based upon intensive
computations of cryptographic algorithms, which gener-
ally involve in arithmetic operations in large Galois fields
[1, 8].

Polynomial basis offers good solutions to most GF com-
putational problems. Also, polynomial basis is the easiest
to use among other representations. Therefore, we focus
on using the polynomial basis throughout this document
[7].

The most important and time-consuming operation in
calculating EC operations is the scalar point multiplica-
tion, which repeatedly performs point addition GF opera-
tion as in Equation (1). In Equation (1), k is an arbitrary
integer number on a finite field GF(2m) and P is an arbi-
trary point on an EC de-fined on the finite field GF(2m).

kP =

k∑

i=1

P (k times of point addition) (1)

Figure 1 shows the hierarchical structure of an ECC op-
eration. In general, in order to perform one scalar point
multiplication [4], we need to calculate point addition op-
erations (if two points are different) along with point dou-
ble operations (if two points are identical). The most im-
portant factor required in the speed-effective implemen-
tation of a scalar point multiplication is proper handling
of Equation (1). Double-and-add algorithm has been tra-
ditionally prevalent in this area, which is recently being
challenged by NAF algorithm [3]. In this paper, we pro-
pose a scalar point multiplication algorithm with a novel
approach applying radix-4 Booth’s recoding and derive
numerical expressions on the point quadruple operation
[6]. We evaluated and verified the algorithms using real
applications. Derived expressions were described with
both C program and HDL to be proven, measuring its
performance improvement. The outline of the paper is
as follows: We start by introducing the concept of EC
scalar point multiplication operation in Section 2. In Sec-
tion 3 we discuss our evaluation and validation about our
proposed algorithms, and will conclude in Section 4.

2 Elliptic Curve Scalar Point

Multiplication Operation Algo-

rithms

In this contribution, we will propose a new approach of
obtaining the scalar point multiplication product based
on an EC group. First, we’ll introduce the fundamental
mathematics of the ECC-based cryptosystem, especially
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Figure 1: Hierarchical structure of an elliptic curve oper-
ation

for polynomial basis arithmetics. In Section 2.2, we dis-
cuss the previous studies which have been researched to
improve the complex EC point multiplication operation
calculation. After that, we propose the algorithm and a
few complementary formulas in Section 2.3.

2.1 Mathematics of the ECC-based

Cryptosystem

Two main operations are required to multiply an EC
group element by a constant when encrypting a mes-
sage: point addition (hereafter add()) and point double
(double()) operations. We also include point negation
(neg()) as a miscellaneous operation and point quadru-
ple (quad()) operation, which is about to be suggested for
fast implementation algorithm of kP .

The elliptic curve E is defined as the set of all solutions
(x, y) to the equation y2 +xy = x3 +ax2 +b together with
the point at infinity O, where b is not 0. This extra point
O is needed to represent the group identity. Rules for the
above mathematical operation routines except for quad()
operation are presented below. Rules for the quad() op-
eration are given in Section 2.3.

Point addition (add( )):
Let P (x1, y1) and Q(x2, y2) be two different points on
the curve.
If either point is O, the result is the other point.
If P = Q, use double( ) routine.
If x1 = x2 and y1 6= y2, P + Q = O.
If P 6= Q, then P + Q = R(x3, y3), where

x3 = λ2 + λ + x1 + x2 + a,

y3 = λ(x1 + x3) + x3 + y1,

and λ = (
y1 + y2

x1 + x2

)
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Figure 2: Hierarchical structure of elliptic curve opera-
tions in suggested algorithm

Point double (double( )):
Let P (x1, y1) and Q(x1, y1) be a point on the curve.
If x1 = 0, the result of 2P is O.
If x1 6= 0, 2(x1, y1) = R(x3, y3), where

x3 = λ2 + λ + a,

y3 = x2

1
+ (λ + 1)x3,

and λ = (x1 +
y1

x1

).

Point negation (neg( )):
Let P (x1, y1) be a point on the curve
−P = R(x3, y3), or

(x3, y3) = −(x1, y1) = (x1, x1 + y1).

From the rules above, we can discern the number of
field operations required to carry out the routine. In the
add( ) routine, 8 additions, 1 multiplication, 1 division,
and 1 squaring of GF operations are required. We should
check that the divider of λ, or (x1 + x2) is not zero. The
double( ) routine requires 4 additions, 1 multiplication, 2
squarings, and 1 division. Also, we should check that the
divider of λ or x1 is not zero.The neg() routine requires
just one GF addition. This operation is needed only when
implementing the fast algorithm for the calculation of kP .
As explained later in Section 2.3, the values of (−P ) and
(−2P ) are needed in the algorithm we developed.

As basic mathematics for the ECC-based cryptosys-
tem, GF multiplication and GF division occupy indispens-
able positions, with the greatest importance of utilizing
the scalar point multiplication operation, which is to dis-
cussed from below.

2.2 Recent Studies

Double-and-add algorithm has been the leading algorithm
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in implementing the scalar point multiplication in ECC
[5]. Double-and-add is similar to the square-and -multiply
algorithm in the RSA cryptosystem [9], in which mod-
ular exponentiation is implemented with the algorithm.
Double-and-add algorithm is represented in Equation (2)

as below, when k =
∑m−1

i=0
bi2

i (bi ∈ 0, 1). From this
point on, we will use some notations.

Double-and-add algorithm for computing kP
kP:
k =

∑
m−1

i=0
bi2

i (bi ∈ 0, 1)
P := P (x1, y1)
Q := P .

for i from m − 1 downto 0 do

Q := double(Q)

if bi = 1 then

Q := add(P, Q)

end(Q = kP ) (2)

Note that we need as many number of add( ) oper-
ations as the number of Hamming weight in the binary
representation of k in addition to at least m − 1 times
of double( ). In order to improve the performance of the
algorithm above, several algorithms have been suggested.
One of the algorithms is NAF (Non- Adjacent Format),
as described below in Equation (3).

Binary NAF method for computing kP
kP:
NAF (k) =

∑i−1

i=0
ki2

i

Q := O

for i from t − 1 downto 0 do

Q := 2Q

if ki = 1 then Q := Q + P

if ki = −1 then Q := Q − P

end(Q := kP ) (3)

In the above method, the concept of redundancy of
the binary representation of k is used in calculating kP .
However, it has a weak point that k should be converted
into NAF format in advance. As an improved approach
of the concept of redundancy, we propose a tricky algo-
rithm named quad-and-add algorithm which utilizes point
quadruple operation, both of which will be discussed in
detail in the next section.

2.3 Quad-and-Add Algorithm

In order to obtain two times as fast calculations as double-
and-add algorithm, we applied radix-4 redundant recod-
ing to the binary presentation of EC point Q. Equa-
tion (4) shows the concept of using radix-4 redundancy
in pseudo code representation. Due to the characteristic
of radix-4 redundancy recoding, total number of steps re-
duces by half down to dm

2
e − 1. According to the result

Example

1010 P

1. P

2. 2P

3. (2P) 2+P

4. ((2P) 2+P) 2 = 10P

01010P=

1. 1P

2. (1P) 4-1P = 3P

3. (4P-1P) 4 2P = 10P

Pk ×

Pkkkkk
ttt

×=
---

)...0( 01321

Pkkkkk
bbb

×=
---

)...( 01321

Making

unsigned number

Booth s recoding : select

among 0P, +1P, +2P,

-1P, -2P

011001
P--PP 2+

-

Figure 3: Comparison example of two algorithms

of radix-4 recoding of point Q in each step, one out of
the adders 0P,±P,±2P is chosen so that we get the final
scalar point multiplication result in dm

2
e− 1 cycles, which

is 2 times as fast as the double-and-add algorithm.

Quad-and-add algorithm using radix-4 redun-
dancy
kP:
k =

∑dm

2
e−1

i=0
ri4

i (ri is the value of redundancy re-
coding)
P := P (x1, y1)
2P := double(P )
Q :=one of0P, +P, +2P,−P,−2P

for i from d
m

2
e − 1 downto 0 do

Q := quad(Q)

if (ri == +P ) then

Q := add(P, Q)

if (ri == +2P ) then

Q := add(2P, Q)

if (ri == −P ) then

tempP := neg(P )

Q := add(tempP, Q)

if (ri == −2P ) then

tempP := neg(2P )

Q := add(tempP, Q)

end(Q := kP ) (4)

Here, in order to get the quadruple point of a point P

on the given EC without using the double( ) operation two
consecutive times, we derived the point quadruple opera-
tion (hereafter quad()) combining the add( ) and double( )
operation, as in Equation (5). Then, the hierarchy shown
in Figure 1 becomes slightly modified as Figure 2.

Point quadruple operation (quad( ))
P (x1, y1) = Q(x1, y1) is identical on an EC
if x1 = 0, the result 4P is O (zero at infinity)
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Table 1: Number of the GF operations taken calculating the value of 4P out of different EC operations

Multiplication Division Square Addition
4 · add( ) 4 4 4 32

4P 2 · double( ) 2 2 4 8
quad( ) 1 2 4 10

if x1 6= 0, the result 4P (x1, y1) = R(x3, y3), where
x3 and y3 areas follows,

x3 = λ
′
2 + λ

′

+ a,

y3 = x2

1
+ (λ

′

+ 1)x3,

λ
′

= x2 + λ + 1 +
x2

1

x2

x2 = λ2 + λ + a,

λ = (x1 +
y1

x1

) (5)

From this formula, we can determine the number of
GF operations. The quad() routine will require 10 addi-
tions, 1 multiplication, 2 divisions, and 4 squarings of GF
operations. In Table 1, we described how 4P calculation
is achieved using different EC operations so as to explain
the advantage of our quad(). Figure 3 provides a brief
understanding of how two algorithms work between the
traditional double-and-add algorithm and our new algo-
rithm.

3 Evaluation and Validation

In order to verify the kP calculation procedure, we used
the fact that if we multiply a point by the order of given
EC, we get the point at infinity (O) [2]. The upper part of
Figure 4 represents the process of obtaining the point at
infinity using double-and-add algorithm at the 192nd step.
In the lower part of Figure 4 we can see that we get the
expected result at the 96th step using the quad-and-add
algorithm featuring quad() operation.

Evaluation was performed at the level of highest hi-
erarchy, or scalar point multiplication, implemented with
HDL-described 193-bit cryptoprocessor. Figure 5 shows
the block diagram of the EC processor. We evaluated
the performance focusing on the advantage with quad()
operation. By adopting the algorithm of quad-and-add,
the number of iterations decreases from m to dm

2
+ 1e

steps. Table 2 and Table 3 summarize the advantage of
the proposed algorithms, comparing with EC operations
and GF operations respectively. The number of opera-
tions in Table 2 is calculated based on the probability
that is dependent on the hamming weight of the prime
polynomial. The probability of the existence of 1 in the
binary representation of k during m steps in the double-
and-add algorithm is 0.5, and the probability of the exis-
tence of non-zero Booth’s recoding term is 6/8. Because

double-and-add
step#  0 : double-and-add

0_D9B67D19_2E0367C8_03F39E1A_7E82CA14_A651350A_AE617E8F

1_CE943356_07C304AC_29E7DEFB_D9CA01F5_96F92722_4CDECF6C

step#  1 : double

1_756FF0DC_810F7856_023C5F5C_B14481F3_A668572B_B1513DA3

1_071883B7_5B3044A9_217AD3AC_A9EF8CDC_89CDEBA2_3F931652

step#  2 : double

1_1549FE34_2A8980E6_C932AF6F_4C81D415_00B09840_85F3B447

1_C0DDD61E_0CD1960A_59F7FE63_A8660A53_4D9F431E_4BC9839F

.

.

step#190: double-and-add

1_2654EB57_653586DB_05FD2EBC_511BC95F_2D995691_E0E95F9F

0_9C3BCACD_837A6A81_97F97238_3D20828E_1797902E_5829F927

step#191: double

1_5AE7384C_9954F598_6475718C_069EE793_3F2AA29E_2465F8E7

1_3BC5521A_6D7AE739_4E5E2DF9_FA26FB66_2DB5D58D_13BC8CAA

step#192: double-and-add

0_00000000_00000000_00000000_00000000_00000000_00000000

0_00000000_00000000_00000000_00000000_00000000_00000000

quad-and-add
step#  0 : quad-and-add(p)

0_D9B67D19_2E0367C8_03F39E1A_7E82CA14_A651350A_AE617E8F

1_CE943356_07C304AC_29E7DEFB_D9CA01F5_96F92722_4CDECF6C

step#  1 : quad

1_1549FE34_2A8980E6_C932AF6F_4C81D415_00B09840_85F3B447

1_C0DDD61E_0CD1960A_59F7FE63_A8660A53_4D9F431E_4BC9839F

.

.

step# 94 : quad-and-add(p)

0_24771C2C_8E33F4A9_81965AC9_5FBC8DE2_4A0FC903_6208E77D

0_905C0FE8_0E90B8D0_259C0682_C561E98C_43935E74_9A872F1D

step# 95 : quad-and-add(p)

1_2654EB57_653586DB_05FD2EBC_511BC95F_2D995691_E0E95F9F

0_9C3BCACD_837A6A81_97F97238_3D20828E_1797902E_5829F927

step# 96 : quad-and-add(p)

0_00000000_00000000_00000000_00000000_00000000_00000000

0_00000000_00000000_00000000_00000000_00000000_00000000

Figure 4: Scalar point multiplication comparison using
double-and-add and quad-and-add
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Table 2: Comparison of the number of steps and EC operations between the algorithms

] of steps add( ) double( ) neg( ) quad( )

Double-and-add m 1

2
m m 0 0

Quad-and-add dm

2
e + 1 6

8
.1
2
.1
2
m = 3

16
m 1 2 dm

2
e + 1

Table 3: Comparison of the number of GF operations between the algorithms

Doubld-and-add Quad-and-add Reduction ratio
Multiplication 3

2
m 11

16
m + 2 ≈ 0.46

Division 3

2
m 19

16
m + 3 ≈ 0.79

Square 5

2
m 35

16
m + 6 ≈ 0.87

Addition 12m 13

2m
+ 14 ≈ 0.54

Parameter registers

GF(2193)

Divider

Add

mulA_in

Control

Block

serial in encrypted_point (xt, yt)

GF(2193)

Multiplier

k xP yPa b x2P y2P

Temporary registers

m0 …m1 xt yt

m ux

m13 m14

Shift/

decode

sqr_reg

m ux

CTL_ROM

div_in div_sel

m ul_inB

2

193

22

193

194

f

193

3

194

193

193

193

Figure 5: 193-bit EC cryptoprocessor prototype

the number of the steps has been reduced to dm

2
+1e, the

total number of add( ) operations appearing in the quad-
and-add becomes approximately 3

16
m. With these results

in the back-ground, we can now measure how many GF
operations takes in calculating kP as in Table 3.

Table 3 represents the performance improvement.
Measurement on our 193-bit cryptoprocessor showed re-
duction percentage of 46%, 79%, 87%, and 54% in multi-
plications, divisions, squares, and additions of GF opera-
tions relatively. We applied as test vectors sect193r2 EC
parameters which is suggested by SEG2 [4] when the EC
complexity depth is 193 bits. Mentioning in the light of
hardware overhead, the proposed algorithm requires sim-
ple 3-bit Booth’s recoding circuit and an m-bit register
for storing the values of P, 2P,−P , and −2P addition-

ally, and a 194-bit shifter.

4 Discussion and Conclusion

We have proposed an improved version of scalar point
multi-plication algorithm applying the concept of radix-4
redundancy. In order to use the concept of redundancy,
we derived a new EC operation named point quadruple.
We have tested the suggested methods in an Elgamal
EC cryptosystem environment. Designed prototype was
verified with both C program language and HDL. Simu-
lation result showed drastical performance improvement
over the algorithm using double-and-add method.

Fast scalar point multiplication algorithm can be used
in various applications such as EC encryption and de-
cryption, electronic signature authentication, secure key
exchange, etc. The importance of its versatility cannot be
too much emphasized. Also, by utilizing the point quadru-
ple operation suggested in this paper, we can expect faster
and efficient computation in most GF applications.
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