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Abstract

This paper presents PATRIOT, an optimized, policy-
driven security architecture for protecting the confiden-
tiality and integrity of audit log files on wireless devices.
PATRIOT is based on a set of well-known cryptographic
protocols and is designed to suit the limited nature of
wireless devices. It offers a policy-driven, customizable
security model and specifies a flexible, multi-level, and
fine-grained encryption methodology that provides the
suitable security strength without compromising perfor-
mance. PATRIOT is designed in a platform-neutral man-
ner and it can be deployed on a wide range of wireless
devices and operating systems.

Keywords: Audit logs, customizable security, policy-
driven security, security

1 Introduction

On computer systems, audit log files contain sensitive in-
formation whose privacy and integrity must be protected
against any malicious reading, modification, or deletion.
Audit logs contain valuable information such as event
dates and times, event IDs, event descriptions, transac-
tions, business records, and other confidential data. This
makes audit log files real ”honey pot” resources for at-
tackers trying to steal confidential information, modify
it, delete it, or even add false and bogus transactions and
actions to the audit logs for gaining business or personal
advantage.

The audit log security system described in this paper is
not a system that prevents an attack from occurring, but
rather a system that guarantees the confidentiality of the
log data generated prior to the attack, and that detects
any malicious modification, deletion, or insertion to this
data.

Many technologies and systems exist for protecting
the confidentiality and integrity of audit logs; however,

none of these systems take into consideration the issues
and particularities of protecting audit logs on small and
limited-resource wireless devices. These devices are usu-
ally characterized by their small size, which makes them
very easily lost, stolen, and compromised. This fact raises
real concerns about the privacy of the sensitive informa-
tion stored on the device and in particular that gener-
ated and stored in log files. Moreover, wireless devices
vary greatly in capabilities and resources. For this rea-
son, the protocols used in securing audit logs on these
devices have to be designed specifically for operation in
wireless environments and must address the needs and
requirements of a large variety of devices which are, in
majority, severely constrained in terms of processor speed,
memory resources, network bandwidth, battery, and stor-
age capacity. This diversity makes the implementation of
a single security standard to encompass the whole de-
vice range infeasible. A least-common denominator secu-
rity standard that targets devices with limited memory
and slow processors would be unfair for powerful devices
and would not meet their security requirements, and in
the same sense, a security standard that addresses high-
end devices would neither fit nor perform efficiently on
limited-resource devices. What is needed, therefore, is a
security protocol that can be customized and configured
to perform the security operations flexibly; taking into
consideration the memory capabilities and the processing
power of the device and the specific security requirements
of the application.

In addition, many companies today are providing their
employees with Personal Digital Assistants (PDAs) and
smart phones to access corporate data and networks and
to perform business- and mission-critical operations. In
this situation it is very important to have a security stan-
dard that guarantees to the company authorities that the
actions performed by their employees are legitimate and
legal, and that the action description entries in the audit
logs of the devices are not tampered-with by the employee
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or by others. Moreover, the same security service must
allow the employee to prove to the company authorities
that he or she has really carried out a certain business
transaction by tracking the transaction entry in the audit
log file and verifying the integrity of the audit log data.

This paper presents PATRIOT, a security protocol for
ensuring the privacy and integrity of audit logs on wire-
less devices. PATRIOT doesn’t prevent an attacker from
modifying or deleting the audit log entries, especially
when the attacker is the owner of the device; however,
it prevents the attacker from reading log entries created
before the time of the attack and it guarantees the detec-
tion of any malicious modification, deletion, or insertion
made on the log entries generated prior to the attack. PA-
TRIOT is based on well-known cryptographic protocols
for securing audit logs [1, 11]; it simplifies some of their
features and introduces the concept of content-based,
multi-level encryption that secures data based on con-
tent and sensitivity rather that encrypting ”everything”.
PATRIOT provides its confidentiality and integrity secu-
rity services based on a configurable security policy that
specifies several security-related attributes, classifies the
fields of the log file based on sensitivity and content, and
identifies the scope and strength of the encryption and
hashing operations. All this contributes to decreasing the
number of encryption and hashing operations and con-
trolling their level which results in great flexibility and an
overall performance improvement.

The rest of the paper is organized as follows. In Section
2, we describe PATRIOT’s threat model. In Section 3, we
give a brief review of related work dealing with securing
audit logs. Then we move on to discuss the design and
architecture of PATRIOT in Section 4. This will include
an overview of the different components of the architec-
ture. Section 5 describes the verification process of the
log file on the wireless device. In Section 6, we present
a formal and platform-independent mathematical analy-
sis of PATRIOT’s performance and show the cost savings
offered over traditional log security systems [11, 12]. Sec-
tion 7 provides an overview of a complete simulated im-
plementation of PATRIOT on the Windows CE platform
using the .NET Compact Framework [6]. The implemen-
tation section includes some platform-dependent perfor-
mance results on the HP iPAQ Pocket PC such as the
policy-parsing time and the encryption, decryption, and
hashing rates. Section 7 also presents a performance com-
parison with a traditional security system that secures the
log file by encrypting all its contents. Some conclusions
are provided in Section 8.

2 Threat Model

The threat model we assume in this work is described as
follows: we have a wireless device that is capable of per-
forming wireless network interactions with some trusted
server; initially, we assume that this device is trusted and
that its software components and logging mechanisms are

correctly configured and installed. At time t, this device
is totally compromised by an attacker who tries to read,
modify, or even delete the audit logs for gaining a personal
or business advantage. The attacker could be the owner
of the device (consider the scenario presented in Section
1 where a company offers its employees PDAs to perform
mission-critical operations), or any hacker controlling the
device locally, or remotely over the wireless network. The
role of PATRIOT is not to prevent this attack from occur-
ring, but rather to accurately identify it, to prevent any
violation to the privacy of the log data generated before
the time of the attack, and to detect any modification or
deletion on the log entries created before time t.

3 Previous Work on Securing Au-

dit Logs

The classical approach for protecting the integrity of au-
dit logs is to write the logging data to write-once opti-
cal drives known as Write Once Read Multiple (WORM)
drives, or to send it to a continuous-feed printer. This ap-
proach, in addition to being infeasible on a small wireless
device, assumes that the WORM drive or the continuous-
feed printer is not compromised by the attacker. Add to
this the fact that continuous-feed printers are not suit-
able for printing high-volume logging and that it is nearly
impossible to electronically analyze the output of these
printers.

Another approach to protect audit logs from malicious
tampering is to continuously send the logging data to
one remote host (remote logging) or several remote hosts
(log replication). This approach imposes a large load on
limited-resource wireless devices and produces enormous
network traffic and overhead that is not necessary in a
wireless environment with a limited network bandwidth.

Bellare and Yee [1] introduced the ”forward integrity”
property which guarantees the integrity of the log data
prior to the attack. Schneier and Kelsey [11] took a similar
approach and presented a secure audit log system that
relies on the presence of a trusted machine T . T ’s role
is to provide the cryptographic key A, upon which the
security of the whole system is based, and to verify the
integrity of the log data. The paper also introduced the
concept of log-level permissions which specifies the log
entries that can be accessed by partially trusted users.

PATRIOT builds on these two protocols [1, 11] to pro-
vide a secure audit log system that suits the limited ca-
pabilities and resources of a wireless device. It simplifies
some of their features (such as permission masks and ver-
ification by semi-trusted parties) and specifies a policy-
driven architecture that supports a configurable, content-
based, and fine-grained encryption and hashing scheme.

PATRIOT allows the verification of the audit log on
the wireless device itself. This verification can be carried
out by a validation auditor whose job is to install a ver-
ification software component on the device for validating
the integrity of the log files. We assume that an attack
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Figure 1: PATRIOT design and architecture

that tweaks the device’s operating system to change the
behavior of newly installed software components on the
device is expensive for the attacker to contemplate.

4 PATRIOT Design and Architec-

ture

This section provides an overview of the design and ar-
chitecture of PATRIOT on the wireless device and on the
trusted remote server. An abstract view of the major
components of the security model is shown in Figure 1.

4.1 The Log Generator

The Log Generator component is the process responsible
of generating log records on the wireless device. Each
generated log record consists of a set of well-defined fields
specifying precisely the action that occurred on the wire-
less device. It should be noted that PATRIOT doesn’t
depend in its operation on the number of fields or their
respective data size. That is, the log record can consist
of any number of fields each of which can have a variable
data length.

4.2 The Security Policy

The security policy in PATRIOT specifies the security be-
havior and operation of the logging system. Its source in-
formation is present in a secure repository on the trusted
server side and its high-level representation is configured
by the authority responsible of the wireless device and the
operations performed on it, such as a company authority
monitoring and validating the actions performed by its
employees’ PDAs and smart phones.

PATRIOT’s security policy consists of two main parts.
The first part specifies a set of security-related attributes
and configuration parameters, while the second part iden-
tifies the scope and strength of the encryption and hashing
operations to be applied on the fields of each log record.

The security-related attributes and configuration param-
eters specified in the first part are required by the Secu-
rity Engine component on the wireless device to control
the confidentiality, integrity, and key management opera-
tions. The Security Engine is the component responsible
for taking security decisions and carrying out security-
related operations to secure the output of the Log Gen-
erator. The following is a list of attributes supported by
PATRIOT’s security policy.

1) Encryption Algorithm: specifies the symmetric en-
cryption algorithm to be used for securing the pri-
vacy of the log records.

2) Hashing Algorithm: specifies the hashing algorithm
to be used in securing the integrity of the log file.

3) Trusted Server URL: specifies the Uniform Resource
Locator (URL) of the trusted remote server.

4) Key Management Algorithm: specifies the key man-
agement algorithm for sharing the initial secret key
between the wireless device and the trusted server.

5) Secure Log URL: specifies the location of the secure
log file on the wireless device.

6) Field Count: specifies the number of fields composing
the log record.

7) Field Separator: specifies the specific character(s)
separating the different fields of a log record (usu-
ally this is a tabulation (TAB) character).

It is worth emphasizing that PATRIOT, in theory, can
generically support any number of encryption, hashing,
and key management algorithms. However, increasing the
number of algorithms is practically infeasible due to the
limited storage capabilities on current wireless devices.
The second part in the security policy controls the level
and scope of the security operations to be applied on the
fields of the log records. According to this specification,
the security of every field belongs to one of three security
modes:
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1) A Secure All mode: this mode states that all the con-
tents of the field must be secured, and specifies the
strength of the encryption to be applied on this field.
Four encryption levels are supported by PATRIOT:
a High Security level which is equivalent to 256-bit
AES [12] encryption (By AES encryption we mean
an encryption complying with the AES standard as
provided by the National Institute of Standards and
Technology (NIST) and we don’t specify the Rijndael
algorithm itself); a Medium Security level which is
equivalent to 192-bit AES encryption; a Low Security
level which is equivalent to-128 bit AES encryption,
and a No Security level.

2) A Secure Range mode: this mode specifies the field
sections to be secured in byte ranges together with
the level of security to be applied on each range.
The term ”byte” in this context doesn’t represent
a physical unit of data storage but rather a logical
unit whose specification depends on the representa-
tion of the field data being secured. This logical and
generic representation is very essential since it allows
the specification of these ranges without any depen-
dency on the data encoding mechanism and repre-
sentation.

3) A Secure None mode: the field must be stored as is
without any encryption.

Not all the log records generated by the log generator
will be treated in the same way by the Security Engine.
PATRIOT’s security policy introduces the concept of log
classes. According to this concept, every record generated
will be secured depending on the log class it belongs to.
The log class membership criterion is based on one of the
fields of the generated log record satisfying a particular
regular expression. If the generated log record doesn’t sat-
isfy any of the log classes specified in the security policy,
it will be secured based on a default log class. Moreover,
every log class specifies whether or not the fields of the
log record satisfying this class are to be added to the hash
chain that enforces the integrity of the whole log file. This
is illustrated in Figure 2 which presents the structure of a
typical high-level policy configuration. It should be noted
here that PATRIOT leaves the issue of resolving any con-
flict, which may arise if a log record satisfies two different
log classes, to the implementer. That is, the implementer
may assign the log record to the first log class it satisfies
in the policy configuration, to the default log class, or in
any other implementation-specific way.

4.2.1 Policy Compaction

The policy information is initially stored in a high-level
format on the trusted server side. This high-level policy
representation allows the policy authority to easily spec-
ify and customize the policy configuration using intuitive
and flexible concepts and terms. Before delivering the
policy configuration to the wireless device, there has to

Encryption_Algorithm: Rijndael

Hashing_Algorithm: SHA-1

Trusted_Server_URL: fea.aub.edu.lb

Key_Management_Algorithm:DH

Secure_Log_URL: c:/system/securelog/securelog.txt

Field_Count:3

Field_Separator: TAB

//End of part 1, start of part 2

Log_Class_1 (Field1==regular expression 1)

{

Field1

{

Encryption: Secure_None //Secure_None mode

Integrity_Enforcement:No

//field1 of log records belonging to this class

// will not be included in the hash chain

}

Field2

{

Encryption: <1-15 , High_Security>

<25 - 43, Low_Security >

//Securing byte

//ranges

Integrity_Encforcement: Yes

}

Field3

{

Encryption: <1-4, No_Security>

<5-*, Medium_Security>

Integrity_Enforcement:Yes

}

} // end of Log_Class_1

Log_Class_2 (Field3==regular expression 2)

{

Field1

Figure 2: Sample high-level policy configuration
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be a mechanism that converts the high-level policy rep-
resentation into a low-level binary representation that is
understood by the wireless device’s operating system. For
this reason, PATRIOT introduces the Policy Compactor
component. This component is responsible for parsing
the high-level policy configuration file and converting it
into a compact binary representation before transmitting
it to the device. The policy compaction and optimization
mechanism plays a major role in reducing network traf-
fic (if the policy configuration is to be transmitted to the
wireless device using the wireless network) and the stor-
age and processing requirements on the wireless device.

4.2.2 Policy Loading

PATRIOT introduces the Policy Loader component for
loading the low-level policy configuration on the wireless
device. The Policy Loading mechanism and the process
of getting the policy configuration from the trusted server
to the wireless device may take different forms depending
on some security considerations and assumptions that are
discussed in the next section.

4.2.3 Policy Security

The security policy in PATRIOT contains sensitive infor-
mation that controls the various security operations of the
logging system. Any malicious modification to this infor-
mation may lead to dangerous security attacks (consider
the scenario where all the security modes are maliciously
modified to the Secure None mode or where all the secu-
rity levels and the integrity enforcement parameters are
nullified). Thus, assuring the integrity of the policy infor-
mation, before and after loading it on the wireless device,
must be given exceptional attention. Securing the policy
configuration integrity before it is loaded on the wireless
device can be easily accomplished by signing this policy
information with the private key of the policy authority
and appending the resulting digital signature to the pol-
icy configuration. This mechanism doesn’t depend on the
transport medium used. That is the policy configuration
could be loaded to the device over the wireless network,
using a physical storage facility such as a memory stick
or a smart card, or it could be initially built into the
wireless device by the device’s manufacturer (after some
coordination with the policy authority). When the policy
configuration is loaded for the first time on the device, the
Security Engine component checks its validity by verify-
ing the digital signature appended to it using the policy
authority public key.

Securing the integrity of the policy configuration on the
wireless device, particularly in the memory of the wireless
device, from malicious modification attacks is considered
more challenging. This is due to the fact that the initiator
of the attack may be the user of the device who has all
the administrative privileges on this device. Let’s consider
the following alternatives: if the binary policy configura-
tion is loaded from the trusted server over the wireless

network, it can be appended to the Security Engine com-
ponent as an external binary plug-in (after checking its
integrity). However, in this scenario we must assume that
the attacker is not capable of modifying this binary plug-
in representing the policy configuration. To enforce this,
memory locking mechanisms may be used to protect the
policy configuration address space; however this depends
on whether the device’s operating system provides this
capability through some Application Programming Inter-
faces (APIs). To relax the above assumption, the policy
configuration could be sent to the device on a read-only
memory (ROM) stick or on a tamper-resistant smart card,
or it can be even burnt into the device’s ROM initially
by the device’s manufacturer. In this case the Security
Engine component must be configured to only load the
necessary policy configuration portions from the ROM to
the RAM whenever they are required, and to purge these
portions from the RAM once it is done with them. This
reduces the chance that the policy configuration is ma-
liciously written when it is in the RAM of the device.
A third alternative is to use a tamper-resistant crypto-
graphic coprocessor to run the Security Engine and to
store the policy configuration. The concept of validat-
ing software outputs using a cryptographic coprocessor is
extensively described in [10].

4.3 The Security Engine

The Security Engine is the component responsible of se-
curing the integrity and confidentiality of the log records
on the wireless device. It carries out a secure authen-
tication and key agreement mechanism with the trusted
server at system startup. This allows the wireless device
and the trusted server to validate each other’s identities
and to share the Source Key (SK0). SK0 is the source key
that will be used by the Security Engine to open the se-
cure log file and to derive the encryption keys for securing
the confidentiality of the log records. A description of how
a log file can be opened and closed securely using a shared
key with a trusted server is described in [11]. The security
services supported by the Security Engine are controlled
and configured based on the information present in the
policy configuration which provides the primary informa-
tion source that the Security Engine consults for taking
security decisions. The operation of the Security Engine
in generating secure log records is described in Figure
3. The functions and notations used in Figure 3 are de-
scribed below:

• Log Recordi: This is the ith log record generated by
the Log Generator. Still this log record has to go
to the Security Engine to be secured and stored in a
secure log file.

• Secure Log Recordi: This is the secure log record pro-
duced by the Security Engine after applying the pol-
icy confidentiality and integrity rules on the ith log
record (Log Recordi).

• Fn(i): This is the nth field in the ith log record.
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Figure 3: Secure log generation by the security engine component

• SKi: This is the ith source key. SKi is a hash of
SKi−1. It completely overwrites SKi−1 and derives
the ith encryption keys used to secure the confiden-
tiality of Log Recordi. Since SKi is produced using
a one-way hash function, an attacker capturing SKi

can’t derive SKi−1, SKi−2, K SK0.

• HEKi, MEKi, and LEKi: These are the High,
Medium, and Low encryption keys for encrypting
the ith log record. They respectively represent the
high, medium, and low security levels specified in PA-
TRIOT’s security policy. HEKi is a 256-bit key. It
is generated by hashing SKi using a 256-bit-output
hash function, such as SHA-1 [8]. MEKi is a 192-
bit key. This key is generated by hashing SKi us-
ing a 192-bit-output hash function, such as HAVAL
[13]. LEKi is a 128-bit key. It is generated by hash-
ing SKi with a 128-bit-output hash function, such as
MD5 [9].

• Policy EncHEKi,MEKi,LEKi
(F1(i), F2(i), K, Fn(i)):

This function encrypts Log Recordi fields according
to the rules specified in the security policy. The
High Security, Medium Security, and Low Security
levels are provided using the HEKi, MEKi, and
LEKi encryption keys respectively. Note that some
fields and field portions may not be encrypted.
Moreover, different field portions may be encrypted
using different encryption strengths. (See Figure 2).
manufacturer. In this case the Security

• FFH(Policy EncHEKi,MEKi,LEKi
(F1(i), F2(i), K,

Fn(i))): This function extracts from the Policy Enc
function output, the secure fields whose Integrity En-
forcement parameter is set to Yes in the security pol-
icy. These secure field values are concatenated and
included in the hash chain that guarantees the in-
tegrity of the secure log file.

• HCHi: This is the hash chain constructed by hashing
the output of the FFH function and the hash chain
entry of the previous secure log record (HCHi−1

of Secure Log Recordi−1). Since HCHi includes

HCHi−1, it is possible to verify the integrity of all
previous secure log records by only authenticating
HCHi. Initially, HCH

−1 must be given a default
value to start the hash chain.

• MACi: This is the MAC of HCHi under the key
SKi+1. MACi is used to authenticate HCHi.

The design of the Security Engine makes it impossible
for an attacker to read or modify log entries generated
before the time of the attack. If the attacker captures
the secure log file after Secure Log Recordi is generated,
he will only be able to retrieve SKi+1 from the memory
of the device. Since SKi+1 is derived using a one-way
hash function from SKi, the attacker will not be able to
deduce SKi and as a result the encryption keys HEKi,
MEKi, and LEKi derived from SKi are also protected.
By protecting SKi, the privacy and confidentiality of the
log records is assured and the authenticity of the hash
chain is guaranteed.

5 Verification of the Secure Log

File

PATRIOT allows the verification of the secure log file
on the wireless device side. This is done by deploying a
trusted verification software component on the wireless
device at the verification time. The verification authority
controlling and validating the operations of the wireless
device must audit the deployment and verification opera-
tions. The verification authority supplies the verification
component with the initial source key SK0. With SK0,
the verification component can generate all subsequent
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Figure 4: Percent storage overhead vs. the log record size

source and encryption keys. It checks the validity and
authenticity of the hash chain using the HCH and MAC
entries and makes sure that the log file doesn’t contain any
traces of a possible malicious attack. It should be noted
here that the verification of the authenticity of the hash
chain can be done without decrypting the log records.
This is due to the fact that the hash chain depends in its
construction on the encrypted fields of the log record.

6 Performance Analysis

This section presents a formal mathematical analysis of
PATRIOT’s performance. Most of the equations pre-
sented in this performance analysis are conducted in a
platform-neutral manner without relying on any device
hardware or operating system (unless specified otherwise
in the text). In the rest of this section we will use the
following notation:

1) FT
j represents the size in bytes of the jth field in the

audit log.

2) F
E(k)
j represents the number of encrypted bytes in

the jth field in the audit log based on the specifica-
tions of the kth log class in the security policy.

3) P (k) represents the probability that a generated log
record complies with the criteria of the kth log class
in the security policy (satisfies the regular expression
s pecified by the kth log class in the security policy).

4) it represents the number of records generated in a
time interval t.

5) µj(it) is the mean size of the contents of the jth field
in the i log records generated in the time interval t.

6) µ
E(k)
j is the average number of encrypted bytes of the

jth field in the i log records generated in time t and
based on the specification of the kth log class in the
security policy.

7) µ
EL(k)
j is similar to µ

E(k)
j where the encryption mech-

anism is done using the low encryption level.

8) µ
EM(k)
j is similar to µ

E(k)
j where the encryption

mechanism is done using the medium encryption
level.

9) µ
EH(k)
j is similar to µ

E(k)
j where the encryption mech-

anism is done using the high encryption level.

10) PDE is the percent decrease in encryption opera-
tions resulting from the use of policy-based encryp-
tion mechanisms.

11) PDE(t) is the percent decrease in encryption opera-
tions at time t.

12) PLE(t) is the percentage of bytes encrypted accord-
ing to the low encryption level in the time interval
[0 − t].

13) PME(t) is the percentage of bytes encrypted accord-
ing to the medium encryption level in the time inter-
val [0 − t].

14) PDH represents the percent decrease in hashing oper-
ations resulting from the use of policy-based hashing
mechanisms. PHE(t) is the percentage of bytes en-
crypted according to the high encryption level in the
time interval [0 − t].

15) PDH represents the percent decrease in hashing oper-
ations resulting from the use of policy-based hashing
mechanisms.
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16) N represents the number of fields composing the log
record.

17) C represents the number of log classes specified in
the security policy.

6.1 Percent Decrease in Encrypted Bytes

The percent decrease in encrypted bytes, PDE, result-
ing from the use of content-based encryption mechanisms,
compared to the traditional security approach which en-
crypts the whole contents of the log file, is given as follows:

PDE =

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If the size of the fields composing the log record is not
fixed, then FT

j may have a different size in every generated

log record and as a result F
E(k)
j may also vary. So to find

PDE, we have to take into consideration the number of
records it generated in a given time interval t. Let FT

j (i)

be the size of the jth field in ith generated log record and

F
E(k)
j (i) be the number of encrypted bytes in the jth field

of the ith generated log record. The encryption is done
according to the specification of the kth log class in the
security policy. We have that

µj(it) =
(FT

j (1) + FT
j (2) · · · + FT

j (it))

it

and

µ
E(k)
j (it) =

F
E(k)
j (1) + F

E(k)
j (2) + · · · + F

E(k)
j (it))

it
⇒ PDE(t) =






M1

(µ1(it)+µ2(it)+···+µN (it))
P (1)+

M2

(µ1(it)+µ2(it)+···+µN (it))
P (2) + · · ·+

M3

(µ1(it)+µ2(it)+···+µN (it))
P (C)






× 100

⇒ PDE(t) =
( ∑

C

k=1
(
∑

N

j=1
(µj(it)−µ

E(k)

j
(it)))

∑

N

j=1
µj(it)

)

× 100

M1 = µ1(it) − µ
E(l)
1 (it) + µ2(it) − µ

E(l)
2

+ · · · + µN (it) − µ
E(l)
N (it)

M2 = µ1(it) − µ
E(2)
1 (it) + µ2(it) − µ

E(2)
2 (it)

+ · · · + µN (it) − µ
E(2)
N (it)

M3 = µ1(it) − µ
E(C)
1 (it) + µ2(it) − µ

E(C)
2 (it)

+ · · · + µN (it) − µ
E(C)
N (it)

By replacing the values of µj(it) and µj(E(k)(it)in the
above equation, PDE(t) can be expressed as follows:

⇒ PDE(t) =
(

∑C
k=1(

∑N
j=1(

∑it

s=1(F
T
j (s) − F

E(k)
j (s))))

∑N

j=1

∑it

s=1 FT
j (s)

P (k)

)

Example 1 Let N = 6, C = 4, it = 10, P (1) = 0.2,
P (2) = 0.4, P (3) = 0.3, P (4) = 0.1 Consider the matrices
F, CP, FPC1, FPC2, FPC3 and FPC4 where:

• F [i, j] = FT
j (i)

• CP [i, j] is the percent encryption in the jth field based
on the specifications of the ith log class.

• FPC1[i, j] = FT
j (i) − F

E(1)
j (i)

• FPC2[i, j] = FT
j (i) − F

E(2)
j (i)

• FPC3[i, j] = FT
j (i) − F

E(3)
j (i)

• FPC4[i, j] = FT
j (i) − F

E(4)
j (i)

F =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

35 70 15 55 261 22
72 44 13 80 365 20
33 26 70 55 177 16
45 76 32 23 209 14
33 99 83 30 198 20
24 60 44 35 277 45
77 66 32 70 160 31
90 12 50 34 255 12
43 66 11 54 302 33
61 44 71 66 422 77

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

CP =

∣

∣

∣

∣

∣

∣

∣

25 40 22 44 22 89
75 38 50 50 41 72
23 77 16 50 10 73
44 52 22 42 12 57

∣

∣

∣

∣

∣

∣

∣

⇒

N
∑

j=1

it
∑

s=1

F T
j (s) = 4915

N
∑

j=1

(

it
∑

s=1

(F T
j (s) − F

E(1)
j (s))) = 3412.23

N
∑

j=1

(

it
∑

s=1

(F T
j (s) − F

E(2)
j (s))) = 2569.35

N
∑

j=1

(

it
∑

s=1

(F T
j (s) − F

E(3)
j (s))) = 3570.84

N
∑

j=1

(

it
∑

s=1

(F T
j (s) − F

E(4)
j (s))) = 3612.64

C
∑

k=1

(

N
∑

j=1

(

it
∑

s=1

(F T
j (s) − F

E(k)
j (s))))P (k) = 3142.702

⇒ PDE = 63.94%

6.2 Percent Decrease in Hashing Opera-

tions

In this section we will calculate the percent decrease in
hashing operations resulting from the use of policy-based
hashing mechanisms.
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Let RH(k) represents the number of fields entering the
hash chain by having their Integrity Enforcement param-
eter set to Ÿesäs specified by the kth log class in the se-
curity policy (see Figure 2).

PDH record =
(

N1

N

)

× 100

⇒ PDH record =

(

∑C

k=1
(N − RH(k)) × P (k)

N

)

× 100

N1 = ((N − RH(1)) × P (1) + · · · + (N − RH(C)) × P (C))

Example 2 Let C = 4, N = 6, R = [4 3 1 2] where R[i] =
RH(i)

P = [0.2 0.4 0.3 0.1] where
P [i] = P (i) ⇒PDH record = 58.33%

6.3 Performance Gain

In Section 6.1 we calculated the percent decrease in
encrypted bytes resulting from the use of content-based
encryption mechanisms. In this section we will calculate
the performance gain achieved due to applying multi-
level, fine-grained encryption.

Let:

1) F
EL(k)
j (i) be the number of encrypted bytes in the jth

field of the ith generated log record. The encryption
mechanism is done using the low encryption level and
based on the specification of the kth log class in the
security policy.

2) F
EM(k)
j (i) is similar to F

EL(k)
j (i) where the encryp-

tion mechanism is done using the medium encryption
level.

3) F
EH(k)
j (i) is similar to F

EL(k)
j (i) where the encryp-

tion mechanism is done using the high encryption
level.

µ
EL(k)
j (it) =

(F
EL(k)
j (1) + F

EL(k)
j (2) + · · · + F

EL(k)
j (it))

it

µ
EM(k)
j (it) =

(F
EM(k)
j (1) + F

EM(k)
j (2) + · · · + F

EM(k)
j (it))

it

µ
EH(k)
j (it) =

(F
EH(k)
j (1) + F

EH(k)
j (2) + · · · + F

EH(k)
j (it))

it
⇒ PLE(t) =
















(µ
EL(1)
1

(it)+µ
EL(1)
2

(it)+···+µ
EL(1)

N
(it))

(µ1(it)+µ2(it)+···+µN (it))
P (1)

+
(µ

EL(2)
1

(it)+µ
EL(2)
2

(it)+···+µ
EL(2)

N
(it))

(µ1(it)+µ2(it)+···+µN (it))
P (2)

+ · · ·+
(µ

EL(C)
1

(it)+µ
EL(C)
2

(it)+···+µ
EL(C)

N
(it))

(µ1(it)+µ2(it)+···+µN (it))
P (C)

















× 100

⇒ PLE(t) =

(

∑C

k=1

∑N

j=1
µ

EL(k)
j (it)

∑N

j=1
µj(it)

)

× 100

Simularly

⇒ PME(t) =

(

∑C

k=1

∑N

j=1 µ
EM(k)
j (it)

∑N

j=1 µj(it)

)

× 100

⇒ PHE(t) =

(

∑C
k=1

∑N
j=1 µ

EH(k)
j (it)

∑N

j=1 µj(it)

)

× 100

Let X, Y, and Z be the cost of an encryption opera-
tion using the low, medium, and high encryption levels
respectively. This cost may be the number of CPU cycles
to perform an encryption operation or the RAM foot-
print consumed by an encryption operation, or a function
of both. It should be noted that the values of X, Y , and
Z are platform-dependent where 0 < X < Y < Z since
the complexity of encryption is proportional to the size
of the encryption key. Assume that the traditional secu-
rity approach of securing audit logs uses an encryption
strength equivalent to the medium encryption level used
in PATRIOT.

The performance gain G at time t, resulting from the
use of content-based encryption mechanisms, relative to
the traditional approach is given as follows:

G(t) =
(

Y1

Y

)

× 100

Y1 = Y − ((PLE(it)/100 × X + (PME(it)/100) × Y

+(PHE(it)/100) × Z

Example 3 Let N = 6, C = 4, it = 10, P (1) = 0.2,
P (2) = 0.4, P (3) = 0.3, P (4) = 0.1. Consider the matri-
ces F, CL, CM, CH, FELC1, FELC2, FELC3, FELC4,
FEMC1, FEMC2, FEMC3, FEMC4, FEHC1,
FEHC2, FEHC3, and FEHC4 where:

• F [i, j] = FT
j (i) (same as in Example 1)

• CL[i, j] is the percent of low encryption operations in
the jth field based on the specifications of the ith log
class.

• CM [i, j] is the percent of medium encryption opera-
tions.

• CH [i, j] is the percent of high encryption operations.

• FELC1[i, j] = F
EL(1)
j (i) FELC2[i, j] = F

EL(2)
j (i)

• FELC3[i, j] = F
EL(3)
j (i) FELC4[i, j] = F

EL(4)
j (i)

• FEMC1[i, j] = F
EM(1)
j (i) FEMC2[i, j] = F

EM(2)
j (i)

• FEMC3[i, j] = F
EM(3
j (i) FEMC4[i, j] = F

EM(4)
j (i)

• FEHC1[i, j] = F
EL(1
j (i) FEHC2[i, j] = F

EL(2)
j (i)

• FEHC3[i, j] = F
EL(3)
j (i) FEHC4[i, j] = F

EL(4)
j (i)
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CL =

∣

∣

∣

∣

∣

∣

∣

∣

5 12 10 0 22 30
30 30 5 0 20 5
8 20 6 5 8 33
5 10 2 2 6 20

∣

∣

∣

∣

∣

∣

∣

∣

CM =

∣

∣

∣

∣

∣

∣

∣

∣

10 13 2 22 0 0
10 4 30 20 1 30
5 15 5 20 0 20
4 25 10 15 5 7

∣

∣

∣

∣

∣

∣

∣

∣

CH =

∣

∣

∣

∣

∣

∣

∣

∣

10 15 10 22 0 59
35 4 15 30 20 37
10 42 5 25 2 20
35 17 10 25 1 30

∣

∣

∣

∣

∣

∣

∣

∣

⇒ PLE = 14.20% PME = 7.00%

PHE = 14.85% G= 65.55%

6.4 Storage Overhead

The storage overhead per log record in PATRIOT depends
on the size of the log class identifier in the security policy
and the size of the hash chain and MAC entries in the log
record. Consider the following notations:

1) SizeOf(LGCI) represents the size of the log class
identifier in bytes.

2) SizeOf(HCH) represents the size of the hash chain
entry in bytes.

3) SizeOf(MAC) represents the size of the MAC entry
in bytes.

The percent storage overhead (PSO) per log record is
given as follows:

PSO/record =

(

S1

S1 +
∑N

j=1 FT
j

)

× 100

S1 = SizeOf(LGCI) + SizeOf(HCH)

+SizeOf(MAC)

The size of the log class identifier is implementation-
dependent since it depends on the number of log classes
defined in the security policy. In general, SizeOf(LGCI)
is given as follows:

SizeOf(LGCI) =
log2(C)

8

SizeOf(HCH) and SizeOf(MAC) depend on the hash
and MAC algorithms respectively.

Example 4 LetSizeOf(LGCI) = 1 byte,
SizeOf(HCH) = 16 bytes, and SizeOf(MAC) = 8

bytes. Assuming that the minimum value of
∑N

j=1 FT
j is

90 bytes for a log record consisting of 6 log fields (N = 6)
the maximum storage overhead is 21.73 %. The percent
storage overhead per log record versus the log record size
is shown in Figure 4.

7 PATRIOT Implementation

PATRIOT was designed in a platform-neutral manner
and its design features are optimized for implementation

on a wide range of available wireless client platforms. A
sample simulation implementation for PATRIOT was de-
veloped for a Pocket PC client device using the .NET
Compact framework 2.0 specifications.

In this Section, a brief description of the implementa-
tion along with the technologies, tools and devices used
are presented. We begin with an overview of the .Net
Compact Framework 2.0 followed by a description of the
emulator and the Pocket PC device used. In addition,
the implementation software components and classes are
detailed along with their functionalities. Finally a de-
scription of the performance of the parsing, encryption,
decryption, and hashing operations is provided.

7.1 .NET Compact Framework Overview

The .Net Compact Framework is Microsoft’s platform for
developing mobile applications on low profile devices. It
targets personal digital assistants (PDAs), mobile phones
and set-top boxes. PDAs are usually referred to as Pocket
PCs. The .NET Compact Framework features a low mem-
ory footprint of 0.5 MB of RAM and 1.35 MB ROM on

Windows Mobile for Pocket PC 2003 or Windows CE
.NET Devices with typical application sizes of 5-100 KB.

7.2 Emulation and Testing Environment

PATRIOT’s simulation was developed using Microsoft Vi-
sual Studio 2005 beta 2 [7] integrated development envi-
ronment. Visual Studio ships with embedded Pocket PC
emulators that can be easily utilized to test and debug
mobile .NET applications. It is even possible to configure
the environment variables and the specifications of the
virtual device such as the total memory, memory allo-
cated to programs, serial ports and network addresses. In
the experiments that have been conducted in this work,
all the specifications were left as default except for the
total memory which was set to 64 MB.

The simulation application was later tested on an HP
iPAQ rx3115 Pocket PC device with a Samsung S3C 2440
processor (300MHz) and 56 MB of RAM. Windows Mo-
bile 2003 is the operating system used. The device comes
with integrated WiFi capabilities which were useful to test
the interactions with a server over the wireless network.

7.3 Software Components

The code was totally written in the C# programming
language. The application consists of two projects put
together in one solution. One is the library that has all
the functionality organized within .Net namespaces and
classes. The root namespace is ”Library” and all the func-
tionality needed is organized in appropriate namespaces
there under. The other part is the user-friendly interface
which provides the tester with an easy way to interact
with and test the system. The system is an emulation of
a secure logging system. To emulate a logger, a text file
that contains a large number of log records is used. The
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Table 1: Performance results

Encryption Encryption Encryption Decryption Decryption Encryption
Time Rate Time Time Rate Time

Per record Per record
Policy-based 22 sec 331.7 kbps 23.45 ms 38 sec 192.0 kbps 40.51 ms

logger
Traditional logger 32 sec 228.0 kbps 34.12 ms 58 sec 125.8 kbps 61.83 ms

(record basis)
Traditional logger 42 sec 173.7 kbps 44.77 ms 80 sec 91.2 kbps 85.28 ms

(field basis)

system reads the text file one record at a time and feeds
the PolicyEncryptor component. All this is done after
loading and parsing the security policy. The decryption
process follows almost the same steps by reading the se-
cured log file line by line, each line corresponding to one
record, and then feeding the PolicyDecryptor component
which is responsible of reconstructing the original data
according to the specifications provided by the security
policy.

7.4 Procedure Overview

The first step in order to launch the secure log emula-
tor is to read the policy from the corresponding text file
and send it to the PolicyParser component which out-
puts the representing Policy object. This policy, along
with the initial keys, is used to initialize the Policy En-
cryptor component. Then, the Encryptor will be ready
to receive requests to encrypt / decrypt records from the
logger emulator. Each record is being read and later sent
to the Encryptor which in turn checks for the log class
of the current record after referring to the policy already
loaded. As before, the record log class matching is done
using regular expressions.

7.5 Analysis and Performance Compari-

son

A log file of around 900 records each consisting of three
fields is used. The total size of the log file is 890 KB.
These fields are: date, time and description of the event
that is to be logged. In the tests, the classes are being dis-
tinguished based on date or time patterns. For example,
one class might be for events that happens in a certain
month of the year because of the sensitivity of operations
that are undertaken yearly in that specific month, such as
the yearly budget revision for an organization. The com-
parison is made with a traditional security system that
secures the log file by encrypting all its contents. In this
method the whole record is encrypted and hashed.

One thing to consider is the parsing time of the policy,
which does not exist in the traditional logger. This pro-
cess, the reading of the file and parsing the policy, took
in the environment discussed so far around 370 millisec-

onds total. This is done one time at the starting-up of
the system. Clearly, it is not a real deficiency for the pol-
icy driven system since it happens once at startup. For
the traditional security method, two cases are studied: se-
curing the log on record basis or on field basis. Table 1
presents some performance measurements conducted on
both the traditional security mechanism and the policy-
based security system for around 900 records. The tradi-
tional method was undertaken in Medium level security
(192-bit key) while the policy based approach is adaptive.
For each class of records, each field or even part of a field
can be secured with the four previously discussed security
levels. The hashing rate was found to be 1085.9 kbps.

From Table 1 it is possible to notice clearly the im-
provement that is achieved by just encrypting/ decrypting
what is really needed to be secured. Policy-based num-
bers differ slightly depending on the policy being used. In
general, the results show an improvement of 48% over the
field basis method and 31% over the record basis encryp-
tion.

8 Conclusion

In this paper we presented PATRIOT, a policy-driven se-
curity architecture for protecting the confidentiality and
integrity of logging systems on wireless devices. PA-
TRIOT employs a flexible, fine-grained, and multi-level
encryption methodology that suits the diverse nature and
capabilities of existing wireless devices. The architec-
ture is based on well-known cryptographic protocols and
is designed in a platform-neutral manner that makes it
deployable on a wide range of wireless devices and op-
erating systems. The paper presented a description of
PATRIOT’s design and architecture and presented using
a formal mathematical performance analysis and a simu-
lation on an HP iPAQ rx3115 Pocket PC device the ad-
vantages of a policy-based security solution for securing
audit logs on wireless devices.
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