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Abstract

This paper introduces mainly the concept of the Public
Key Cryptosystem or PKC, whose security is based on
the new Discrete Logarithm Problem known as DLP-III
and DLP-IV with the two distinct exponentiations, i.e.
γ ≡ αaβb mod p in the multiplicative group of the finite
field Z∗

p of the order p − 1. We show that the proposed
Public Key Cryptosystem based on DLP-IV provides
more security because of double computation comparing
with the well known the Discrete Logarithm Problem II
or DLP-II with one exponentiation, i.e. β ≡ αa mod p in
the multiplicative group of the finite field Z∗

p of the order
p− 1 at the same efficiency level.

Keywords: Discrete logarithm problem or DLP, public key
cryptosystem or PKC,

1 Introduction

It is well known that the security of any Public Key Cryp-
tosystem (PKC) depends upon hardness of a mathemat-
ical problem. The PKC known as RSA [4] was based on
factoring problem whereas the PKC given by ElGamal
[2] was based on the Discrete Logarithm Problem (DLP).
Prior to this, DLP-I used in Diffie and Hellman protocol
[1] was with one exponentiation and one unknown ran-
dom integer in the finite cyclic group G of the order n as
below:

1) Discrete Logarithm Problem I (DLP-I):
The Diffie and Hellman protocol [1] was having the
discrete logarithm problem with one exponentiation
and one random integer as follows: β = αa, in the
finite cyclic group G of the order n, where α is gen-
erator of G, β ∈ G, and a is the random integer such
that 0 ≤ a ≤ n − 1. Here, the difficulty of comput-
ing the value of the random integer a is called the
discrete logarithm problem of β to the base α. It is
denoted as:

a = logα β.

The difficulty of said above problem was the com-
putation of the value of the unknown random inte-

ger. First improvement in this direction was to solve
above DLP under the multiplicative group of the fi-
nite field Z∗

p of the order p − 1 where p is the large
prime.

2) Discrete Logarithm Problem II (DLP-II):
The improvement in the above problem was formu-
lated as below: β ≡ αa mod p, in the multiplicative
group of the finite field Z∗

p of the order p− 1, where
p is a prime number, α is a primitive element under
modulo p, Z∗

p , and a is the random integer.

It was ElGamal [2] who proposed PKC based on
DLP-II. Later, several modifications were made in
DLP-II to improve the security of the PKC. In this
paper, using the logic that double computation of
two distinct DLP would provide double security at
same efficiency level, we first propose, a discrete log-
arithm problem - III or DLP-III with the two dif-
ferent exponentiations and two random and distinct
integers in the finite cyclic group G of the order n.
Consequently, we then obtain another DLP-IV in the
multiplicative group of the finite field Z∗

p of the order
p− 1 where p is the large prime.

3) Discrete Logarithm Problem III (DLP-III):
The discrete logarithm problem with the two differ-
ent exponentiations and the two random and distinct
integers, we define as below: γ ≡ αaβb, in the finite
cyclic group G of order n, such that α 6= βi and
a 6= bi, where α and β be two distinct generators
of G, γ ∈ G, and a, b be the two distinct random
integers.

4) Discrete Logarithm Problem IV (DLP-IV):
Next, as a direct consequence of the discrete loga-
rithm problem - III, we propose DLP-IV as below:
γ ≡ αaβb mod p, in the multiplicative group of the
finite field Z∗

p of order p − 1, such that α 6= βi and

a 6= bi, where p is a prime number, α and β be two
primitive elements under modulo p, γ ∈ Z∗

p , and a, b
be two distinct random integers.

We assert that computing the values of the two distinct
random integers a and b in DLP-III and DLP-IV with the
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two distinct exponentiations respectively are more diffi-
cult as compare to DLP-I and DLP-II with one exponen-
tiation. The Shanks Baby-Step Giant-Step method [5],
Pollard-ρ method [5], Pohling-Hellman method [3] and
Index-Calculus method [5] are the best known methods
for computing any DLP. Using these methods, we demon-
strate that double computation is required in DLP-III and
DLP-IV as compare to DLP-I and DLP-II respectively,
making them more difficult. For the simple reason, the
algorithms corresponding DLP-III and DLP-IV would re-
quire the more time and space. As result, the design
of public key cryptosystems based on the discrete log-
arithm problem III and IV becomes more secure at the
same efficiency level as compare to the all those public key
cryptosystems, which are based on the discrete logarithm
problem with one exponentiation.

It is important to mention that their efficiency remains
the same. Because, any programming for the purpose of
the computation of the two Discrete Logarithm Problems
or DLPs with two different parameters would take equal
time as the computation of one Discrete Logarithm Prob-
lem or DLP. Resultant, this makes the new DLPs, i.e.
DLP-III and DLP-IV equally efficient as compare to the
previous DLP, i.e. DLP-I and DLP-II respectively. In
the following, we only need to recall the computing algo-
rithms for DLP-III and DLP-IV and to show that those
require the double computation.

2 The Algorithm for Computing

the Discrete Logarithm Prob-

lem

2.1 The Shanks Baby-Step Giant-Step

Algorithm

First, we give the Shanks Baby-Step Giant-Step Algo-
rithm [5] as follows:

1) m← √n

2) for j ← 0 to m− 1, do compute αmj

3) sort the m ordered pairs (j, αmj) with respect to their
second coordinates, obtaining a list L1

4) for i← 0 to m− 1, do compute βα−i

5) sort the m ordered pairs (i, βα−i) with respect to
their second coordinates, obtaining a list L2

6) Find a pair (j, y) ∈ L1 and a pair (i, y) ∈ L2 (i.e. find
the two pairs having identical second coordinates)

7) logα β ← (mj + i) mod n

2.2 The Index-Calculus Algorithm

Next, we give the Index-Calculus Algorithm [5] for cyclic
group G of the order n, as follows:

INPUT: A generator α of the finite cyclic group G of the
order n, and an element β ∈ G.

OUTPUT: The discrete logarithm problem a = logα β.

1) Select a factor base S:
Choose a subset S = {p1, p2, p3, . . . , pt} of G such
that a “significant proportion” of all the elements
in G can be efficiently expressed as the product of
elements from S.

2) Collect linear relations involving logarithms of
elements in S:

a. Select a random integer k, 0 ≤ k ≤ n − 1, and
compute αk.

b. Try to write αk as a product of elements in S:

αk =

t∏

i=1

pci

i

i

, ci ≥ 0. (1)

If successfully take logarithms of both the sides
of Equation (1) to obtain a linear relation:

k =
t∑

i=1

ci logα pi(modn). (2)

c. Repeat Steps 2a and 2b until t + c relations of
the form (2) are obtained (c is a small positive
integer, e.g. c = 10, such that the system of
equations given by t = c relations has a unique
solutions with high probability).

3) Find the logarithms of elements in S:
Working modulo n, solve the linear system of t + c
relations (in t unknowns) of the form (2) collected in
Step 2 to obtain the value of logα pi, 1 ≤ i ≤ t.

4) Compute a:

a. Select a random integer k, 0 ≤ k ≤ n − 1, and
compute βαk.

b. Try to write βαk as a product of elements in S:

βαk =
t∏

i=1

(pi)
di , di ≥ 0.

If the attempt is unsuccessful, then repeat Step
4a, otherwise taking logarithms of both the
sides of the above equation yields logα β =
(
∑t

i=1
di logα pi−k) mod n. Thus compute a =

(
∑∑t

i=1
di logα pi− k) mod n, and return to a.

The Index-Calculus algorithm for computing the dis-
crete logarithm problem in the multiplicative group of the
finite field Z∗

p would be consequently as follows.
For the multiplicative group of the finite field Z∗

p , p is
a prime, the factor base S can be chosen as the prime
numbers. The relation (1) is generated by computing k
mod p and then using trial division to check whether this
integer is a product of the primes in S.
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3 The ElGamal Public Key Cryp-

tosystem

Let us now recall the ElGamal public key cryptosystem
[2] before we propose our PKC: The ElGamal public key
cryptosystem based on the classical discrete logarithm
problem with one exponentiation in the multiplicative
group of the finite field Z∗

p of the order p − 1, is defined
as follows.

Let p be a prime such that the discrete logarithm prob-
lem in Z∗

p of the order p− 1, is infeasible and let α ∈ Z∗

p

be a primitive element. Let P = Z∗

p , C = Z∗

pXZ∗

p , and
define K = {(p, α, a, β) : β ≡ αa mod p}.

The value p, α and β are the public key and a is the
private key. For K = (p, α, a, β) and for a(secret) random
number k ∈ Zp−1, define eK(x, k) = (y1, y2) where y1 =
αk mod p and y2 = xβk mod p, for y1, y2 ∈ Z∗

p , and
dK(y1, y2) = y2(y

a
1 )−1 mod p.

4 The Proposed Public Key Cryp-

tosystem

Next, we give the algorithm of the key generation, the
encryption and the decryption for the proposed public key
cryptosystem corresponding to DLP-IV in the following
subsections.

4.1 The Key Generation

Each entity creates the public key and the corresponding
private key. Each entity A observe the following steps:

1) Generate a large random prime p and the two distinct
primitive generators α and β, such that α 6= βi of the
multiplicative group Z∗

p of the integers modulo p of
the order p− 1.

2) Select the two random integers a and b, such that
a 6= bi and 1 ≤ (a, b) ≤ p− 2.

3) Compute αa mod p and βb mod p.

4) A’s public key is (p, α, β, αa, βb) and A’s private key
is (a, b).

4.2 The Encryption

B encrypts the message m for A, which A decrypts. B
observe the following steps:

1) Obtain A’s public key (p, α, β, αa, βb).

2) Represent the message as an integer m in the range
{0, 1, 2, 3, 4, . . . , p− 1}.

3) Select the random integer k, such that 1 ≤ k ≤ p−2.

4) Compute γ ≡ αk mod p, δ ≡ βk mod p, and η ≡
m(αa)k(βb)k mod p.

5) Send the cipher text c = (γ, δ, η) to A.

4.3 The Decryption

To recover the plaintext m from c, A observe the following
steps:

1) Use the private key (a, b) to compute γp−1−a mod p,
and γp−1−b mod p (note, γp−1−a = γ−a = α−ak and
δp−1−b = δ−b = β−bk).

2) Recover m by computing (γ−a)(δ−b)(η) mod p.

5 The Complexity of DLP-III and

DLP-IV

In this section, we prove the theorems in support of the
complexity of DLP-III and DLP-IV. First, we prove the
theorem on the complexity of DLP-III as follows.

Theorem 1. DLP-III involves the two distinct discrete
logarithm problems in the form of DLP-I.

Proof. We know that the mathematical structure of DLP-
I in the finite cyclic group G of order n is defined as
follows:

αa ≡ β.

Taking the logarithm of both the sides of the above equa-
tion to the base α is

logα β = a,

or a = logα β. (3)

Next, the mathematical structure of DLP-III in the finite
cyclic group G of order n is defined as follows:

αaβb = γ. (4)

Taking logarithm of both the sides of Equation (4) to the
base α, we have

logα(αaβb) = logα γ,

⇒ logα αa + logα βb = logα γ,

⇒ a logα α + b logα β = logα γ,

⇒ a + b logα β = logα γ,

⇒ a = logα γ − b logα β,

⇒ a = logα γ − logα βb,

⇒ a = logα(γ/βb). (5)

Again, taking logarithm of both the sides of Equation (4)
to the base β:

logβ(αaβb) = logβ γ,

⇒ logβ αa + logβ βb = logβ γ,

⇒ a logβ α + b logβ β = logβ γ,

⇒ a logβ α + b = logβ γ,

⇒ b = logβ γ − a logβ α,

⇒ b = logβ γ − logβ αa,

⇒ b = logα(γ/αa). (6)
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Equation (3) represents DLP-I whereas Equations (5)
and (6) represents DLP-III with two distinct discrete log-
arithm problems in the form of DLP-I, eventually making
the computation of DLP-III more difficult. This com-
pletes the proof. �

Next, we prove the theorem on the complexity of DLP-
IV as follows:

Theorem 2. DLP-IV involves the two distinct discrete
logarithm problems in the form of DLP-II.

Proof. We know that, The mathematical structure of
DLP-II in the multiplicative group of the finite field Z∗

p

of order p− 1 is defined as follows:

αa ≡ β mod p.

Taking logarithm of both the sides of the above equation
to the base α:

log α(β mod p) ≡ a. (7)

Now, the mathematical structure of DLP-IV in the mul-
tiplicative group of the finite field Z∗

p of order p − 1 is
defined as follows:

αaβb ≡ γ mod p. (8)

Taking logarithm of both the sides of Equation (8) to the
base α, we have,

logα(αaβb) ≡ logα(γ mod p),

⇒ logα αa + logα βb = logα(γ mod p),

⇒ a logα α + b logα β = logα(γ mod p),

⇒ a + b logα β ≡ logα(γ mod p),

⇒ a ≡ logα(γ mod p)− b logα β,

⇒ a ≡ logα(γ mod p)− logα βb.

⇒ a ≡ logα(
γ

βb
mod p). (9)

Again, taking logarithm of both the sides of Equation (8)
to the base β:

⇒ logβ(αaβb) ≡ logβ(γ mod p),

⇒ logβ αa + logβ βb ≡ logβ(γ mod p),

⇒ a logβ α + b logβ β ≡ logβ(γ mod p),

⇒ a logβ α + b ≡ logβ(γ mod p),

⇒ b ≡ logβ(γ mod p)− a logβ α,

⇒ b ≡ logβ(γ mod p)− logβ αa,

⇒ b ≡ logβ(
γ

αa
mod p). (10)

Equation (7) represents DLP-II where as Equations (9)
and (10) represents DLP-IV involving two distinct dis-
crete logarithm problems in the form of DLP- II and thus
making the computation of DLP-IV more difficult. This
completes the proof. �

Similarly, we prove the theorem on complexity of DLP-
III using the Shanks Baby-Step Giant-Step Algorithm as
follows.

Theorem 3. The Shanks Baby-Step Giant-Step Algo-
rithm requires the double computation to compute DLP-
III, i.e. γ = αaβb such that α 6= βi, a 6= bi as compare
to DLP-I, i.e. β = αa in the finite cyclic group G of the
order n.

Proof. Applying the Shanks Baby-Step Giant-Step Algo-
rithm [2.1] for computing DLP-I. First, Steps 2.1(a) and
2.1(b) can be precomputed, if desired (this will not affect
the asymptotic running time, however).

If an ordered pair (j, y) ∈ L1(The first list) and an
ordered pair (i, y) ∈ L2(The second list) then (α)mj =
y = β(α)−i. Therefore, (α)mj+i = β.

Taking the logarithm of both the sides of the above
equation to the base α:

logα{(α)mj+i} = logα β,

(mj + i) logα α = logα β,

mj + i = logα β, where, 0 ≤ j, i ≤ m− 1. (11)

Since all terms in the above congruence are now known,
except for logα β, we can easily solve for logα β.

Next, if we apply Shanks Baby-Step Giant-Step Algo-
rithm [2.1] to DLP-III, i.e. δ = αaβb such that α 6= βi,
a 6= bi in the finite cyclic group G of the order n.

If (j, y) ∈ L1 (The first list) and (i, y) ∈ L2 (The
second list), there are three cases are listed as follows.

Case 1:

(αaβb)mj = y = γ(αaβb)−i.

Therefore,

(αaβb)mj+i = γ. (12)

Taking the logarithm of both the sides of Equation (12)
to the base α:

logα(αaβb)mj+i = logα γ

⇒ (mj + i) logα(αaβb) = logα γ

⇒ (mj + i){logα αa + logα βb} = logα γ

⇒ (mj + i){a logα α + b logα β} = logα γ

⇒ (mj + i){a + b logα β} = logα γ

⇒ mj + i = (logα γ)/(a + b logα β),

where, 0 ≤ j, i ≤ m− 1. (13)

Since all terms in the above congruence are now
known, except for logα β and logα γ, first we can solve
for logα β then after logα γ, simultaneously.

Case 2:

Again taking the logarithm of both the sides of Equa-
tion (12) to the base β:

logβ(αaβb)mj+i = logβ γ

⇒ (mj + i) logβ(αaβb) = logβ γ

⇒ (mj + i){logα αa + logα βb} = logα γ
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⇒ (mj + i){a logβ α + b logβ β} = logβ γ

⇒ (mj + i){a logβ α + b} = logβ γ

⇒ mj + i = (logβ γ)/(a logβ α + b),

where, 0 ≤ j, i ≤ m− 1. (14)

Since all terms in the above congruence are now known,
except for logβ α and logβ γ, first we can solve for logβ α
then after logβ γ simultaneously.

Case 3:

Again taking the logarithm of both the sides of Equa-
tion (12) to the base γ:

logγ(αaβb)mj+i = logγ γ

⇒ (mj + i) logγ(αaβb) = 1

⇒ (mj + i){logγ αa + logγ βb} = 1

⇒ (mj + i){a logγ α + b logγ β} = 1

⇒ mj + i = 1/(a logγ α + b logγ β),

where, 0 ≤ j, i ≤ m− 1. (15)

Since all terms in the above congruence are now known,
except for logγ α and logγ β, first we can solve for logγ α
then after logγ β simultaneously.

If we compare Equation (11) from the Equations (13),
(14) and (15) respectively, then we can see that the
Shanks Baby-Step Giant-Step Algorithm requires the
double computation to compute DLP-III, i.e. γ = αaβb

such that α 6= βi, a 6= bi as compare to DLP-I, i.e.
β = αa in the finite cyclic group G of the order n, be-
cause DLP-III involves to two distinct discrete logarithm
problems in the form of DLP-I in each case (By Theorem
1) whereas DLP-I has itself only one discrete logarithm
problem. Therefore DLP-III definitely requires the double
computation. This situation makes DLP-III more difficult
than DLP-I. �

Finally, we prove the theorem on the complexity of
DLP-IV using the Index-Calculus Algorithm as follows.

Theorem 4. The Index-Calculus Algorithm requires the
double computation to compute DLP-IV, i.e. γ =
αaβb mod p such that α 6= βi, a 6= bi as compare to DLP-
I, i.e. β = αa mod p in the multiplicative group of the
finite field Z∗

p of the order p− 1.

Proof. The Index-Calculus Algorithm [2.2] for computing
DLP-II, i.e. β ≡ αa mod p in the multiplicative group of
the finite field Z∗

p of the order p − 1 bears considerable
resemblance to many of the best factoring algorithm. The
index-calculus method uses a factor base, which is a set
B of the small primes. Suppose B = {p1, p2, p3, . . . , pB}.
The first step is to find the logarithms of the primes in
the factor base.

The second step is to compute the discrete logarithm
problem of the desired element γ, using the knowledge
of the discrete logarithm problems of the elements in the
factor base.

Let C be a bit bigger than B: say C = B + 10.

Now, we suppose that we have already successfully
carried out the precomputation step and we compute a
desired logarithm logα β by means of a Las-vegas type
randomized algorithm [5]. Choose a random integer
s(1 ≤ s ≤ p− 2) and compute

γ ≡ βαs mod p.

Now attempt to factor γ over the factor base B. If this
can be done, then we obtain a congruence of the form:

βαs ≡ pc1

1 pc2

2 . . . pcB

B (mod p).

This can be written equivalently as

logα β + s

≡ c1 logα p1 + c2 logα p2 + . . . + cB logα pB(modp− 1).

(16)

Since all terms in the above congruence are now known,
except for logα β, we can easily solve for logα β.

Now, we apply the Index-Calculus Algorithm to
DLP-IV, i.e. γ = αaβb mod p such that α 6= βi, a 6= bi in
the multiplicative group of the finite field Z∗

p of the order
p− 1. Then three cases arise.

Case 1:

If we have already successfully carried out the precompu-
tation step, then, we compute DLP-IV as follows.

Choose a random integer s(1 ≤ s ≤ p−2) and compute:

δ ≡ γ(αβ)s mod p.

We attempt to factor γ over the factor base B. If this can
be done, then we obtain a congruence of the form:

γ(αβ)s ≡ pc1

1 pc2

2 . . . pcB

B (mod p). (17)

Taking the logarithm of the above congruence (17) to the
base α, then

logα γ + s + s logα β

≡ c1 logα p1 + c2 logα p2 + . . . + cB logα pB(modp− 1).

(18)

Since all terms in the above congruence are now known,
except for logα β and logαγ, first we solve for logα β and
then for logαγ.

Case 2:

Taking the logarithm of the above congruence (17) to the
base β, then

logβ γ + s logβ α + s

≡ c1 logβ p1 + c2 logβ p2 + . . . + cB logβ pB(mod p− 1).

(19)

Since all terms in the above congruence are now known,
except for logβ α and logβ γ, we solve for logβ α and then
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for logβ γ.

Case 3:

Taking the logarithm of the above congruence (17) to the
base γ, then

1 + s logγ α + s logγ β

≡ c1 logγ p1 + c2 logγ p2 + · · ·+ cB logγ pB(modp− 1).

(20)

Since all terms in the above congruence are now known,
except for logγ α and logγ β, we solve for logγ α and then
logγ β.

Now if we compare the congruence (16) from the con-
gruences (18), (19), and (20) respectively, then we can
clearly see that the Index-Calculus Algorithm requires
the double computations to compute DLP-IV, i.e. γ ≡
αaβb mod p such that α 6= βi, a 6= bi as compare to DLP-
II, i.e., β = αa mod p in the multiplicative group of the
finite field Z∗

p of the order p−1, because DLP-IV involves
the two distinct discrete logarithm problems in the form
of DLP-II in each case (By Theorem 2) whereas DLP-II
has itself only one discrete logarithm problem to compute.
As result, DLP-IV becomes more difficult than DLP-II.
�

6 Conclusion

The problems proposed by us still hold the fact that the
scope of DLP-I and DLP-II are unlimited. DLP-I and
DLP-II which were initially proposed by Diffie and Hell-
man in the year 1976 and had numerous improvements
in the past still possess tremendous potential of improve-
ment from security point of view. This paper is not only
introduced the new public key cryptosystem, but also
tried to put the new concept of the discrete logarithm
problem as the form of DLP-III and DLP-IV.
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