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Abstract

On a wired network, physical authentication is implic-
itly provided by access: if a user is able to plug a cable
into a network socket, he must have cleared other secu-
rity checks such as the receptionist and/or locked doors.
In the case of a wireless local area network (WLAN), the
signal propagation is not limited by a fixed boundary, and
unauthorized access from outside the security perimeter
is possible, and in many instances facile. In this paper, we
present a probabilistic technique for localization of users
in a WLAN. The presented technique is able to iden-
tify intruders based on their location, and thus success-
fully defend a “parking lot” attack. The approach relies
on a probabilistic mapping from received signal strength
(RSSI) to location. Calibration inside and around the
security perimeter must precede the localization phase.
During the localization phase, the RSSI of all the WLAN
users is measured by multiple monitoring stations posi-
tioned to provide an overlapping coverage of the area (the
access points needed to provide the WLAN coverage can
double as monitoring stations). A Bayesian technique is
used to estimate the location of the unsuspecting mobile
user, and the position estimate of each user is updated
with every new RSSI measurement at any of the monitor-
ing stations. The presented approach is server-based, i.e.,
it works without the knowledge or cooperation of the user
being tracked, thereby enabling the proposed security ap-
plication, as well as location-aware services. Validation
of the concepts was implemented using an experimental
tested in an office environment. The results demonstrate
the ability of the proposed technique to estimate the user
location to a very high degree of accuracy.

Keywords: Active attacker, localization, physical security
perimeter

1 Introduction

Wireless Local Area Networks (WLANs), (especially
those compatible with IEEE 802.11 [12]) are fast becom-

ing the networks of choice for enterprises, small offices and
households all over the world. With a variety of avail-
able inexpensive hardware, WLANs are facing tremen-
dous growth, which is expected to continue in the future.
The lack of cables makes WLANs easy to install for sys-
tem administrators and, at the same time, offer mobility
and flexibility for the users. This kind of portability at a
reasonable price, without a noticeable drop in bandwidth,
has been mainly responsible for WLAN’s widespread us-
age in the home environment.

Unfortunately, with the advent of WLANs, arises the
issue of security in a wireless environment. Security in
WLANs takes center stage, due to its inherent broadcast
mechanism. Every packet that is transmitted can be eas-
ily captured by any receiver in its range. Most WLANs
do offer some form of security; but as their popularity
has increased, a host of flaws have been identified both
in the standards, as well as in the implementation of the
standards [1, 6, 8, 19].

Intending to correct the flaws discovered in the security
of IEEE 802.11, a number of authentication and encryp-
tion schemes have been proposed and/or are in the process
of standardization: 802.1X, EAP, MAC filtering, 802.11i,
TKIP, etc. [5]. A common flaw of all password-based se-
curity systems is that the passwords may be poorly chosen
or can be obtained through social engineering. Our goal is
not to replace those schemes, but rather to enhance their
effectiveness, by creating a virtual security perimeter in-
side a physical security perimeter.

The lack of physical boundaries of WLANs creates sig-
nificant security issues for system administrators. Since
the signal range cannot be easily controlled, it is likely
that the signal will extend beyond the boundaries cre-
ated by wired LANs. This leaves the system open to
what is commonly known as the parking lot attack (Fig-
ure 1). In a parking lot attack, an attacker can eaves-
drop on WLAN communication by setting up a laptop
with a WLAN adapter in the communication range of
the WLAN.

One important feature that is missing from all of the
existing proposals for security is the ability to distin-
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Figure 1: The parking lot attack

guish between the users located within a physical secu-
rity perimeter and those outside such a perimeter. Such
a feature can be used to implementing access restriction
based on the physical location of the user. If users outside
the security perimeter are not allowed to connect to the
organization’s WLAN, it would become much more dif-
ficult for an attacker to access the network from outside
the security perimeter.

In this paper, we propose an algorithm to localize and
track a user based on the signal strengths of the packets
that he transmits, and thus be able to block the network
access of an attacker based on his physical location. The
proposed approach aims to restore the properties of the
physical security perimeter that was lost with the intro-
duction of wireless networks: only users inside the phys-
ical security perimeter would be allowed access, while all
other users would be denied access. The solution pre-
sented does not require custom equipment; in some cases,
only a firmware upgrade of the access points is needed.
Alternatively, special monitoring stations might be de-
ployed. The system works without the cooperation (pos-
sibly even without the knowledge) of the WLAN users.
Since the monitoring stations are passive, it is impossible
to detect their presence from the users’ point of view.

The emphasis of our work is not on achieving fine
grained localization (with precision of a few centime-
ters), since it is not essential for authentication. The fo-
cus of our work is on achieving coarse localization that
can answer with high reliability the question, “Is the
user inside or outside the security perimeter?” To an-
swer this question we propose a “reverse localization” al-
gorithm that combines Bayesian localization techniques

with emergency cellular localization ideas (the base sta-
tions collaborate to localize the user, rather than the user
actively localizing itself, like in GPS).

The main drawback of the proposed approach is that
it can be used to locate and track only an active attacker.
If the attacker is passive i.e., just eavesdropping, it is im-
possible to detect him (with this or any other technique).
While passive attackers can be extremely dangerous by
gathering sensitive information, arguably, the active at-
tackers can cause the maximum amount of damage. Fur-
thermore, the approach is only applicable if the coverage
area is protected by a physical security perimeter (e.g., a
building or a military base), thus being not suitable for
public access WLANs (e.g., airports, hot-spots, etc.).

The paper is organized as follows: Section 2 discusses
the related work in the area of localization. Section 3
presents our proposed localization algorithm. Thereafter,
we present the results of our tracking and localization
experiments in Section 4. Section 5 concludes the paper.

2 Related Work

The localization field is a rather mature field, with sig-
nificant research activity in many application areas The
problem is known in literature under many names, includ-
ing localization, locationing, geolocation, positioning, etc.
An excellent survey of the area was published a couple of
years ago [10].

The Global Positioning System (GPS) is perhaps the
most well-known positioning system currently in use.

The US Federal Communications Commission’s E911
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Table 1: Classification of RF-based localization tech-
niques

Indoor Outdoor
Host-based RADAR, etc GPS

Server-based Proposed technique E911 services

telecommunication initiatives require that wireless phone
providers develop a way to locate any phone that makes a
911 emergency call. Significant research was thus geared
towards localizing the cellular phone users in outdoor en-
vironments. Many applications call for indoor solutions
to the problem of localization. Nowadays, many com-
panies offer a variety of solutions based on visual track-
ing, ultrasound, or even radios with dedicated hardware
[7, 11, 14, 17, 18, 20, 21]. The popularity of WLANs,
(especially of the IEEE 802.11 standard), sparked a sig-
nificant interest in indoor localization systems based on
the already available 802.11 access points (used for radio
coverage of a larger WLAN) [3, 4, 9, 15, 16].

According to [10], the localization systems can be clas-
sified in host-based and server-based systems. In a host-
based system, the users gather information from the in-
frastructure with the goal of localizing themselves; a clas-
sical example is the GPS system. In a server-based sys-
tem, the infrastructure gathers information from the users
and determines the location of the users; such systems are
presented, for example, in [3, 4, 9, 15, 16]. Similarly, the
RSSI-based localization systems can be classified in out-
door and indoor systems. The main difference between
the two types of systems is that outdoors, many times,
the assumption of a circular propagation pattern holds.
In this paper we are presenting a server-based, indoor lo-
calization system (see Table 1), and evaluate its suitabil-
ity for a physical authentication system. The localization
system can have many other applications, e.g., tracking of
inventory items, personnel, location aware services, etc.

3 Proposed Approach

In the proposed approach we use a network of monitor-
ing stations spread over the coverage area of the WLAN.
Each monitoring station listens on the wireless medium,
and captures all packets that are correctly received (they
operate in “promiscuous” mode, i.e., it does not filter the
received packets by its own MAC address). Upon the re-
ceipt of a packet, the monitoring station also measures
the RSSI associated with that packet, and it then sends
the MAC address of the sender and the RSSI measure-
ment to a central server that combines the information
from all monitoring stations into a best estimate of the
position of all users (both authorized users and attackers).
A system administrator can thus create policies denying
WLAN access to users outside certain areas (see Figure
2).

The proposed localization and tracking technique can

Firewall

Internet

Monitoring Stations
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Figure 2: Intrusion detection based on user localization

be divided into two phases:

• The calibration (sometimes referred to as the “finger-
printing”) phase; the purpose of the calibration phase
is to collect labeled data (packets labeled with the
location of the sender) from different points spread
over the tested, and then filter this data into a usable
form for the localization phase.

• The localization phase; the goal of the localization
phase is to estimate the location of the source(s) of
unlabeled data (i.e., any 802.11 packet). Somewhat
similar to the approach presented in [15], we follow
a Bayesian approach for dynamic state estimation.
The state of the system, at any given time, is repre-
sented by a probability distribution function defined
as the probability of a sender being present in a given
area. The state is updated as a function of the pre-
vious state and new data measurements. We have
used a recursive filtering approach, in which each new
measurement is processed individually, and the re-
ceived data is processed sequentially rather than as
a batch.

3.1 Calibration

The calibration (or finger-printing) phase is a key step in
which the system “learns” the mapping of the probability
density function as a function of the RSSI. In this phase,
labeled data (location of the sender of a packet and the
received signal strength) is collected, and processed into a
simplified form that will later be used by the localization
phase to estimate the position of the wireless user in real-
time.

In practical terms, in the calibration phase, a mobile
node periodically broadcasts its position at different po-
sitions in the tested; each of the monitoring stations cap-
tures these packets along with the RSSI corresponding to
the packet. This information is further sent to the server
from each of the monitoring stations. Corresponding to
each packet received by a monitoring station, a tuple con-
sisting of the location (x,y coordinates), RSSI and the
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monitoring station identifier (MSID) of the MS that cap-
tures the packet is sent to the server. An almost equal
number of labeled packets with varying RSSI is expected
at each of the monitoring stations, if they are spread uni-
formly over the tested and have an almost equal range.
The packets are collected both from “inside” as well from
“outside” the physical security perimeter.

For simplicity, assume that the tested is divided into
an N × N grid represented as a matrix, each element
of a matrix corresponding to a square of the surface of
the tested. After the calibration phase the server will
have a database with one entry for each packet received
by a monitoring station, each entry being of the form
(< x, y >, MSID, RSSI), where < x, y > is the location
of the mobile station at the time when the packet was
sent, MSID is the identifier of the monitoring station that
received the packet (more than one monitoring station
may receive a packet), and RSSI is the received signal
strength of the received packet received.

For a collection of data elements with a constant
MSID=MSi and a constant RSSI=λ, let ηi,j be the num-
ber of elements at location (i, j) on the X-Y plane. In
this case, corresponding to a packet received by monitor-
ing station MSi with a signal strength λ, the probability
that the user is at position (x, y) is:

pi,λ(x, y) =
ηx,y

∑i=N

i=1

∑j=N

j=1
ηi,j

. (1)

During the localization phase, these measurements be-
come constraints on the position estimates of the users.
Thus, the constraint c(n) resulting from capturing the nth

packet is:

c(n) =











p(x1, y1) p(x2, y1) . . . p(xN , y1)
p(x1, y2) p(x2, y2) . . . p(xN , y2)

...
...

. . .
...

p(x1, yN ) p(x2, yN) . . . p(xN , yN )











,

where p(x, y) is given by Equation (1).
It would be very tedious and error prone to send cali-

bration data from each square of the N × N matrix. In-
stead we collect data from a relatively small, approxi-
mately uniformly distributed, points and interpolate the
results using a Gaussian filter [13] similar to the one de-
scribed in Section 3.2.1.

3.2 Localization

In the localization phase, each monitoring station upon
the reception of a packet will send at the server a triplet
with the MAC address of the sender of the received packet
(readily available in the 802.11 MAC header), the signal
strength of the packet and the monitoring station identi-
fier. The goal of the server is to determine the probability
distribution function for each user by combining the data
collected from multiple monitoring stations.

We define the position estimate of a user z(n), after
the server received the nth measurement from that user

Figure 3: 2-D Gaussian distribution with mean (0,0) and
σ = 1

as the probability density function (pdf) of the position
on the X-Y plane. We chose to represent this probability
as a two-dimensional matrix:

z(n) =











p(x1, y1) p(x2, y1) . . . p(xN , y1)
p(x1, y2) p(x2, y2) . . . p(xN , y2)

...
...

. . .
...

p(x1, yN ) p(x2, yN) . . . p(xN , yN )











,

where p(xi, yi) is the probability of finding the user at
location (xi, yi).

For localization, we define a model that relates this
state with the corresponding tuples (MSID, RSSI) re-
ceived from the monitoring stations. We also consider
the change in state over time, due to movement of the
mobile node. Any algorithm concerning a dynamic sys-
tem consists of at least two models [2]:

• System model - a model describing the evolution of
the state with time;

• Measurement model - a model relating each measure-
ment with the change in state.

3.2.1 System Model

We assume that the mobile nodes that we aim to track
are mobile, and that their random movement has a normal
distribution, centered at the starting location. Thus, we
periodically perform the convolution of the state with a
Gaussian filter. The effect of this convolution operation is
the “spreading” of the position estimate of a user reflect-
ing the increase in the uncertainty due to user movement.
In 2-dimension, an isotropic Gaussian (see Figure 3) is of
the form

G(x, y) =
1

2πσ2
e−

x
2+y

2

2σ2 .

Thus, the state is periodically updated:

z(n + 1) = z(n) ∗ G, (2)

where, by ∗ we denote the convolution function.
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3.2.2 Measurement Model

The measurement model defines the relationship of the
state estimate to successive measurements. Section 3.1
describes the algorithm to compute the constraints over
the X-Y plane for a given pair of RSSI and MSID values.
The computed 2-dimensional constraint is used to update
the position estimate of the node:

z(n + 1) = z(n) ∩ c(n), (3)

where z(n+1) is the new position estimate, z(n) is the old
position estimate, and c(n) is constraint resulting from
the measurement. The position estimate is initialized
with a uniform distribution:

z(0) =
1

N2











1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1











. (4)

An important factor that has to be considered while
developing an algorithm is the reproducibility of the ex-
perimental data. With 802.11 wireless cards (as with
practically all wireless transceivers) there is a significant
variance in the RSSI over time. Thus, for every received
signal strength λ we average all constraints resulting from
signal strengths between λ − β and λ + β.
Summary

The localization algorithm, including the system model
and the measurement model, can be summarized as:

1) Initialize the position estimate (z(0)) as the entire
space (as in Equation (4)).

2) For each packet received from a monitoring station:

• if the packet received from monitoring station
MSi with RSS λi, calculate the average con-
straint c(n) by averaging over the constraints in
the range [λi − σ . . . λi + σ]; and

• update the position estimate z(n+1) according
to Equation (3);

3) Periodically, update the system model as Equa-
tion (2).

4) Goto Step 2.

Once the localization procedure results in position es-
timates, is relatively easy to exclude (either at the access
points, or at the common switch/router) all users local
outside the security perimeter.

A denial of service attack that uses the proposed sys-
tem can be imagined. An attacker can capture the MAC
address of a legitimate user and transmit packets from
outside the security perimeter. The system will then lo-
calize the attacker and deny access both to the attacker
and the legitimate user. However, this is arguably better
than allowing both of them access to the network.

BS1

BS2

BS3
BS4

361

BS5

Figure 4: The experimental tested

4 Experimental Setup and Re-

sults

Initially we planned to use a network simulator to evaluate
the performance of such a system. However, all current
network simulators have inadequate physical layer models
for indoor environments. Hence, in order to evaluate the
performance of the system, we decided to implement a
system prototype.

4.1 Experimental Setup

The experimental setup consists of five monitoring sta-
tions (MS), a mobile node (MN), and a server. The MN
is connected at the campus WLAN, and any packet being
transmitted by the mobile node is received by the MSs.
Each MS has a wireless as well as a wired interface. It
captures all packets on the wireless interface and trans-
mits the RSSI, Source MAC and MSID tuple to the server,
using the wired network. The server which is connected
to the monitoring stations via the wired network, receives
and processes the information to estimate the location of
the MNs.

The experimental tested is located on the third floor of
the Electrical and Computer Engineering Department in
Daniels Hall. We have limited the experimental area to
two perpendicular corridors of the Department (Figure 4).
We set up a network of 5 monitoring stations relatively



International Journal of Network Security, Vol.3, No.1, PP.73–84, July 2006 (http://isrc.nchu.edu.tw/ijns/) 78

uniformly distributed over the tested. The monitoring
stations are placed in such a way that their range cov-
ers the entire tested. Our aim is to track WLAN users
anywhere along the two corridors, and in the adjoining
rooms. The yellow area, Room No. 361, acts as the ex-
perimental “outside the perimeter” for the purpose of our
tested. Figure 4 shows a floor map of our tested. The
map in Figure 4 is divided into a grid 100× 100; whereas
the dimensions in reality are 66m × 73m. Each cell is
thus 0.66m on the x-axis and 0.73m on the y-axis. The
position of the calibration readings is shown with small
red circles in Figure 4.

• Monitoring Station: The setup consists of an iPAQ
(Model No. H3870) connected to a computer, via
a serial link supporting data transfer rates of up to
115 Kbps. Each iPAQ is equipped with an Orinoco
gold Classic PC card for capturing the packets of the
tracked users. The iPAQs run Familiar Linux 0.6
(Opie) with kernel 2.4.18-rmk3. Each of the comput-
ers attached to the iPAQ has a 333 MHz Pentium II
processor, running RedHat Linux 7.3 (kernel 2.4.18-
3).

• Server: Our server is a desktop with a 2.4 GHz Intel
Pentium 4 processor, 512 MB RAM, running RedHat
Linux 7.3 (kernel 2.4.18-3).

• Mobile Node: A laptop with a 1.8 GHz Intel Pen-
tium 4m processor, 256 MB RAM, running RedHat
Linux 8.0 (kernel 2.4.18-14), acts as the mobile node.
A Cisco Aironet 350 series PC card is used as the
transmitter (the Cisco cards are capable of varying
their transmission power).

The goal of our experiment is to locate an intruder
and identify whether he is inside or outside a given secu-
rity perimeter with a very high degree of reliability. For
our implementation, we set the security perimeter as the
boundary of Room No. 361 (Figure 4). A user inside the
room is considered an intruder. In order to compare the
estimated position of the user with his real coordinates,
the real position of the user has to be known. A utility
enabling the user to specify his real position by clicking on
the map, was developed. This position was considered as
the “real position” of the user and compared with the es-
timated position, which is calculated using the measured
RSSI of each of the packets transmitted by the user.

The following metrics are used to judge the efficacy of
our implementation.

• Error of location estimate defined as the Euclidean
distance between the real position of the user and
the estimated position given by our implementation.
The performance of the algorithm with respect to the
error in estimation can be visualized by plotting the
percentile of the error estimate against the error in
distance. Another measure that reflects the perfor-
mance is the average error in estimating the user’s
location.

• Misinterpretation of position: A misinterpretation
occurs when the actual position of the user is dif-
ferent from the estimated position, with respect to
the security perimeter. Misinterpretation of position
can be of two types (a) False Positives and (b) False
Negatives.

– A False Positive is the case when the esti-
mated position of the user is outside the security
perimeter (positive), although the real position
of the user is inside.

– A False Negative is the case when the estimated
position of the user is inside the security perime-
ter (negative), although the user is actually out-
side the security perimeter.

The probability of False Negatives is a very impor-
tant metric, as the objective is to detect the intruder
effectively (a user outside the security perimeter). It
is more important to be able to detect and block
intruders without any exceptions than to allow a le-
gitimate user close to the security perimeter (False
Positives). The probability of False Negatives should
ideally be zero. The probability of False Positives
is also an important measure which would reflect the
inconvenience caused to a legitimate user in the vicin-
ity of the security perimeter. It is a measure of the
probability that if a user has been detected outside
the perimeter, what is the chance that he is actually
a legitimate user inside the security perimeter.

During the implementation, a number of parameters
had to be chosen. These design parameters can be di-
vided into two sets corresponding to the calibration and
localization processes.

One of the primary calibration parameters is σloc,
which is the standard deviation for the Gaussian filter
used to interpolate between the data-point measurements.
During the data collection process, selected data points
spread uniformly over the tested were chosen for the sake
of convenience and to reduce the time taken to calibrate
the tested. A Gaussian filter was then applied over the
collected data, to generate new data points over the en-
tire tested. Some of the factors to be considered while
choosing σloc were:

• The indoor signal strength does not have a normal
distribution, as indoor obstructions (e.g., walls) cause
a significant attenuation in signal power. Thus, σloc

should be sufficiently small (< 0.5m) considering the
fact that actual RSSI measurements can vary signifi-
cantly across very short distances (e.g across a wall).

• RSSI variation is very small over short open spaces
(e.g open corridors), and we did not observe a no-
ticeable change in measured RSSI between locations
2-3 meters apart. This would lead us to set σloc to
as much as 2-3m.



International Journal of Network Security, Vol.3, No.1, PP.73–84, July 2006 (http://isrc.nchu.edu.tw/ijns/) 79

• In our implementation, our cell size is about 0.65m
on the X-axis and 0.70m on the Y-axis. When we
apply the Gaussian filter, we scale the Y-axis corre-
spondingly to make the filter circular in nature, and
thus keep a unit on the Y-axis equivalent to the unit
on the X-axis, which is 0.65m.

Considering these factors, we choose the value of σloc =
1m which is a compromise solution considering the above
factors. Thus, σloc ≈ 1.5 cell units.

The system model for the localization process was dis-
cussed in Section 3.2.1. The system model helps in con-
tinuous tracking of the mobile user. The main parameter
in this model is σsys, which is the standard deviation of
the Gaussian filter that is applied to the probability dis-
tribution matrix of the user at periodic (one second in
our case) intervals. The Gaussian filter is applied to ac-
count for the movement of the user and to track the user.
Thus, assuming that with a 97% probability that the mo-
bile user does not move at a speed of more than 3m/s, we
keep 3σsys = 3m, therefore σsys = 1m. Thus, σsys ≈ 1.5
units.

The measurement model (Section 3.2.2) describes our
approach at finding the constraint matrix to update the
estimated position every time a new packet is received.
The constraint matrix is calculated by averaging prob-
ability density matrices for a range of RSSI values over
which we can assume the RSSI to vary for the same loca-
tion. During calibration, a large number of packets were
collected for every position rotating the laptop around
the point to account for variation in RSSI due to the di-
rectionality of the wireless adapter. This data collection
method causes a variation in the RSSI, but it might not
be sufficient to reflect the variation in RSSI over time. We
noticed that the range of values we collected from the MS
show a maximum variation in RSSI, (β) of about three
units. Thus, to produce a constraint we will average the
constraints from 2β = 6 different RSSI values, (similar to
the deviation in RSSI assumed in [4]).

Thus, the main three parameters that may affect the
results of the proposed algorithm are chosen as:

σloc = 1.5,

σsys = 1.5,

β = 3,

where the units are a function of the cell size.

4.2 Experimental Results

Figure 5 shows the cumulative probability of the localiza-
tion error, i.e., on the y axis there is the probability that
the localization error is smaller than the value on the x

axis. There is a 30% chance that the estimated location
is less than 0.95m from the real position, at least 50% of
the errors are less than 1.5m, and 90% less than 3.3m.
The average estimation error is 1.73m. Other metrics to
observe are:
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Figure 5: Cumulative Probability of Error vs. Error in
estimation σloc = 1.5, σsys = 1.5 and β = 3

• False Negatives = 0. This means a 0% error in re-
liably estimating if the user is outside the security
perimeter. Thus, we are reliably able to determine if
the user is outside the security perimeter.

• False Positives = 10.4%. This translates to an ap-
proximately 10% chance that the user, who has been
estimated to be outside the security perimeter, is ac-
tually inside the perimeter. When the user is close to
the edge of the security perimeter, or standing close
to an exit, he could be mistakenly identified as being
outside the perimeter. This relatively high number
of False Positives is mainly due to the inaccuracies
in measuring the real position of the user during the
measurements.

4.3 The Effect of Variation in Design Pa-

rameters

In this section, we evaluate the effect of the design param-
eters on the metrics of interest (localization error, False
Positives and False Negatives). We will change one pa-
rameter at a time, while keeping the other parameters
constant.
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4.3.1 The Effect of the Variation of the Standard
Deviation of the Gaussian Filter used for
Calibration (σloc)

Figure 6 shows that the average error in estimation in-
creases with an increase in the standard deviation (σloc)
for the Gaussian filter used in the calibration process.
The average error does not increase with the decrease of
σloc due to the relatively dense data points collected dur-
ing the calibration phase (i.e., interpolation is not really
needed). On the other hand, when σloc increases, we ef-
fectively reduce the resolution of the system during the
calibration phase. The possibility of a wrong estimate in-
creases as multiple locations might have a similar set of
RSSI values.
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Figure 7: The effect of varying the standard deviation of
the Gaussian filter used in calibration (σloc) on probabil-
ity of false positives, keeping σsys = 1.5 and β = 3

In Figure 7, we observe that the False Positives in-
crease with an increase in the standard deviation of the
Gaussian filter used for σloc. Figure 7 closely correlates
well with Figure 6, (the average error). As the error of
estimation increases, we see an increase in the number of
False Positives.

An interesting observation is that the probability of
False Negatives remains zero when varying σloc. This
could be due to the large difference in measured RSSI
when the user is outside the security perimeter(i.e in room
No.361 for our implementation) and when it is inside, be-
cause of the presence of two monitoring stations in Room
361. None of the points outside Room 361 (i.e., inside
the security perimeter) would provide an alternate solu-
tion for the set of RSSIs because of the large difference
in RSSI inside and outside the room. Also, the effect on
the estimated position is minimal because we use a cir-
cular Gaussian filter which spreads the values circularly
over the region, and the mean remains the same. If the
probability density is very high inside a particular area,
the estimated position would remain in the area even on
applying a Gaussian filter with a high standard deviation.

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7  8  9

A
ve

ra
ge

 E
rr

or
(m

)

σsys

Average Error

Figure 8: The effect of varying the standard deviation
of the Gaussian filter in the system model(σsys) on the
average localization error, with σloc = 1.5 and β = 3
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Figure 9: Effect of varying σsys on the Error distribution,
σloc = 1.5 and β = 3

4.3.2 The Effect of Varying the Standard Devia-
tion used for Gaussian Filtering in the Sys-
tem Model (σsys)

In Figure 8, we observe that the average error in estima-
tion has a minimum for σsys ≈ 0.8. The value of the
minimum is dependent on the average speed of the user
during the test-run. While assuming σsys = 1.5 in Sec-
tion 4.1, we assumed the maximum speed of a user to be
3 m/s for calculating a σsys, which would lead to a stable
system enabling continuous tracking of the user. While
collecting data for the experiment, the average speed was
much lower. In this case, even though the minimum is
clearly around σsys = 0.8, it is better to keep σsys high
to maintain a stable system that can track mobile users
moving at a higher speeds.

In Figure 10, it can be seen that the probability of
False Positives increases with the increase in the stan-
dard deviation of the Gaussian filter used in the system
model. The probability of False Positives first decreases
on varying σsys from 0.2 to 0.3 and increases for values
of σsys > 1. The decrease for values between 0.2 and 0.3
can be attributed to the difference in the tracking speed
with respect to the actual average speed of the user dur-
ing the course of the experimentation. The increase in
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Figure 10: The effect of varying the standard deviation of
the Gaussian filter used in the system model (σsys) on the
probability of False Positives, with σloc = 1.5 and β = 3

the probability of the False Positives with an increase in
σsys can be attributed to the spreading of the probability
densities by the Gaussian filter. Even a slight change in
the estimated position can cause a sharp increase in the
number of False Positives due to the rigid boundary.

Our model performs very well in deciding that users
that are actually outside are outside the security perime-
ter. The probability of False Negatives is always less than
a 1%; in fact it is exactly equal to 0%, for 0.4 < σsys < 1.9.
Thus, the system is able to locate the intruder that is out-
side the security perimeter with 100% accuracy.
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Figure 11: Effect of varying the standard deviation of the
Gaussian filter used in the system model (σsys) on the
probability of False Negatives, with σloc = 1.5 and β = 3

4.3.3 The Effect of Varying the Range of the
measured Received Signal Strength (β)

Figure 12 shows that by varying the assumed variance
in the RSS (β), the average error starts increasing after
β > 6. In this case the resolution of the RSSI measure-
ments is reduced and thus it is expected that the precision
of the localization will suffer. For 1 < β < 6, the aver-
age error in estimate is almost constant. This means that
for a specified location, the received signal strength at a
particular MS does not vary by more than 6 RSSI units.
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Figure 12: The effect of varying the assumed variance
in RSS(β) on the Average Error, with σloc = 1.5 and
σsys = 1.5

The average localization error is just as small for β = 1 as
for higher values of β. This somewhat unexpected result
can be explained by the fact that during the data collec-
tion process, we obtained data for calibration by sending
a large number of packets transmitted in different direc-
tions. The natural variation in the RSSI of these packets
might be satisfying almost the entire set of RSSI values
that can be recorded at a MS from a particular position.
However, if we consider a zero deviation in RSSI, i.e., for
β = 0, the system is not able to locate the user and be-
comes unstable.
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Figure 13: Effect of β on False Positives, σloc = 1.5 and
σsys = 1.5

Figure 13 shows the effect of varying β on the prob-
ability of False Positives. We observe that even though
the average error in estimate hardly varies for 1 < β < 6,
there is a drop in the number of False Positives for the
same region. This justifies our assumption of a variation
in observed RSSI. The number of False Positives rises dra-
matically as we increase β and it also corresponds with
an increase in the average estimated error.

The probability of a False Negative is zero for all values
of 2 < β < 30. At β = 1, there exists a small probability
of 0.2%, of estimating the user inside the security perime-
ter even though he is actually outside.
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4.3.4 The Effect of Varying the Transmission
Power

If the system is calibrated at a certain transmission power
level, and the intruder accesses the network while using a
different transmission power level, the system may not be
able to localize it exactly. We decided to estimate the lo-
calization error as a function of the transmission power of
the WLAN users. Thus, we performed the calibration at
a power level of 20mW, and then varied the transmission
power levels of the mobile node from 1mW to 100mW and
observed the localization error.

The Cisco Aironet wireless adapter allowed us to vary
the transmission power from 1mW to 100mW. All existing
WLAN adapters use a transmission power in this range
(using a higher power is basically useless as the access
points themselves use up to 100mW transmitters). Thus,
in addition to robustness to power transmission level, this
experiment reflect the robustness to different adapters (we
also verified with a Lucent Orinoco card). We observed
a variation of about 10-12 units of RSSI between power
levels of 1 mW and 100mW. This deviation is relatively
small when compared to the deviation due to the change
in location.
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Figure 14: The effect of varying transmission power on
the cumulative probability of the localization error, with
σloc = 1.5, σsys = 3 and β = 7
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σloc = 1.5, σsys = 3 and β = 7

In Figure 14 and Figure 15, we see that the average
error in estimation is the smallest for 20mW (the power
used during calibration). This is as expected. We had to
keep the β = 7 for the estimation to converge in the case
of 1mW and 100mW runs.

For a transmission power level of 1mW, the average
error in position estimate is about 11.88m; it decreases to
3.96m for 5mW and 1.8m for 20mW, and increases back
to 4.2m at 100mW.

The probability of a False Positive for 20mW is about
10%, which means that 10% of the estimated positions
outside the security perimeter are actually inside the
perimeter. This number increases to 60% at a power level
of 50mW.

The probability of a False Negative for 5mW is around
5%, which is still low, but not 100% accurate. At power
levels of 20mW, 30mW and 50mW, the probability of a
False Negative is 0%, thus indicating that the intruder is
always detected.

Thus, the change in the power level at the transmitter
is almost irrelevant for the accuracy of the proposed ap-
proach. Essentially the path loss significantly out-weights
the change in transmission power, and an attacker could
not defeat the proposed approach by changing (even of-
ten) its transmission power.

4.3.5 Fault Tolerance

To evaluate the effect of the failure of the monitoring sta-
tions, we switch off two monitoring stations, one at a time.
The MSs are shown in Figure 4. We consider two different
cases (a) MS3 failed and (b) MS3 and MS4 failed.
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Figure 16: The effect on performance of the localization
system with the failure of MSs, with σloc = 1.5, σsys = 3
and β = 3

Figure 16 shows that the localization error increases
if there is a fault in the monitoring network. However,
the localization process does not fail. Even when two out
of the five MSs fail, we are able to locate the user with
considerable accuracy.

• MS3 failed:
Average Error = 2.56m, False Negatives = 0.16%,
False Positives = 10.8%.
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• MS3 and MS4 failed:
Average Error = 5.52m, False Negatives = 0.25% and
False Positives = 25.55%.

If more than two MSs fail, the system becomes unstable
and only users in a small part of the tested are successfully
located.

5 Conclusion

We proposed and implemented a novel server-based ap-
proach to locate the users of a WLAN using only the
received signal strength of packets transmitted by the
WLAN users. Even though our initial intention was to
provide only a coarse-grained localization, and an ex-
tremely reliable method to determine if a user is outside
the defined security perimeter, our implementation was
able to locate and continuously track users with an aver-
age error in estimated position of around 1.65m ≈ 5.4 feet,
which is rather good for indoor localization in a WLAN.
We were also able to achieve an almost 100% accuracy
in identifying the intruder (user outside a fixed security
perimeter). The learning process in our approach, i.e., the
calibration phase, took about 30 minutes for our tested.
Thus, this technique offers a very low lead time for deploy-
ment of a new setup. We did not use any specialized hard-
ware for the implementation, although we did use extra
monitoring stations to detect the RSSI of the user’s pack-
ets. The ideal implementation would be a small hardware
upgrade on the access points which would enable them to
double up as monitoring stations.
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