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Abstract

Recently proposed content manipulation signatures
schemes have a broad range of applications, such as au-
thenticated content extraction, adaptive multimedia con-
tent delivery, and XML authentication. Most of the con-
structions are based on Merkle trees. We show that these
constructions are unable to enforce manipulation (extrac-
tion) policies, i.e. rules defining what manipulations are
permitted/prohibited. We propose a generalization of
Merkle trees, so called Relaxed Merkle trees. We present
their ability to enforce some useful classes of policies, an-
alyze their expressive power, and discuss few enhance-
ments.

Keywords: Merkle tree, policy enforcement, signature
schemes

1 Introduction

Merkle tree [3] is a complete labelled binary tree such
that the values assigned to the internal nodes are one-
way functions of the values assigned to their children.
The one-way function is usually instantiated as a stan-
dard cryptographic hash function (e.g. SHA-256). The
values assigned to the leaves are (depending on applica-
tion) messages, documents, or fragments of a document.

Merkle trees are a versatile tool for many crypto-
graphic applications. Recently, various constructions
employing Merkle trees were proposed, such as content
extraction signatures and XML authentication [5],
homomorphic signature schemes [1], and systems for
authentication of adaptive multimedia content [6]. Com-
putational problems on Merkle trees, such as traversal
problem [7], attracted a lot of attention, too.

Our contribution. We show that certain schemes for
content manipulation signatures (particularly those stud-
ied in [5, 6]) are not able to enforce policies regarding
what manipulations of content are permitted/prohibited.
We propose an enhanced version of Merkle trees, which
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we call Relaxed Merkle trees. These trees can easily sub-
stitute Merkle trees in above mentioned content manip-
ulation signature schemes. We present examples of some
policies of practical significance together with correspond-
ing Relaxed Merkle trees. Finally, we analyze the expres-
sive power of Relaxed Merkle trees.

The paper is structured as follows. Section 2 contains
a brief overview of Merkle trees and notation used in the
paper. In Section 3 we present two content manipulation
signature schemes and show their inability to enforce ma-
nipulation policies. Relaxed Merkle trees are introduced
in Section 4, together with examples of policies which can
be enforced by such trees. Finally, in Section 5, we ana-
lyze the expressive power of Relaxed Merkle trees.

2 Preliminaries and Background

Definitions and notation presented in this section are used
through the whole paper. Let H be a one-way and col-
lision resistant hash function. Let (Pk, Sk) denote a key
pair of public and private keys for a standard signature
scheme (e.g. RSA, DSA). Let SigSk(m) denote a signature
algorithm that outputs a signature σ of message m, and
let VrfPk(m, σ) denote a corresponding signature verifica-
tion algorithm.

Let M be a document consisting of n fragments: M =
〈m0, m1, . . . , mn−1〉. For convenience, we switch freely
between numeric and corresponding binary string repre-
sentation of indices. For any subdocument M ′ ⊆ M we
denote the set of all indices of fragments in M ′ by IM ′ ,
i.e. M ′ = 〈mi | i ∈ IM ′ 〉.

A (strictly) binary tree T is a tree with the property,
that each node except leaves has exactly two (left and
right) children. By labelling each left edge by 0 and each
right edge by 1, all nodes are uniquely identified by “path”
strings consisting of digits along the path from root. We
denote a node of T by vw, where w is the path string.
Thus, the left and right children of an interior node vw are
vw0 and vw1, respectively. The empty string ε identifies
the root vε of T .

A complete binary tree T is said to have height h if it
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has 2h leaves and 2h − 1 interior nodes.
Merkle Tree. Let us assume that the number of frag-
ments of document M is n = 2h. A Merkle Tree is a
complete binary tree of height h with nodes labelled by
binary strings. The label assigned to node vw is denoted
by V(vw). The labels are computed bottom-up according
following rule (the operator “||” denotes a concatenation):

V(vw) =

{

H(mw), if vw is a leaf (|w| = h);

H(V(vw0) || V(vw1)), otherwise (i.e. |w| < h).

The string V(vε) assigned to the root represents authen-
tication data for document M . It is signed by document
originator in content manipulation signature schemes, see
Section 3.

Let L(vw) be the set of all leaves in a subtree with
root vw. We say the value (label) of node vw hides leaves
L(vw), since V(vε) can be computed from V(vw) (and
other values) without knowing the values of L(vw).

Let M ′ ⊆ 〈m0, . . . , mn−1〉 be a subsequence (subdoc-
ument) of document M . The set of authentication nodes
for M ′ (or simply authentication set for M ′), denoted by
Auth(M ′), is the minimal set of nodes such that leaves
hidden by the values of these nodes correspond to frag-
ments M \M ′, i.e.

⋃

vw∈Auth(M ′)

L(vw) = {vw | w ∈ IM\M ′}.

It is easily seen that for any M ′, the root value V(vε)
can be computed from M ′ and values (labels) of nodes
from Auth(M ′). The values of authentication nodes
for M ′ are denoted by Aval(M ′) = {V(vw) | vw ∈
Auth(M ′)}.

Example 1. Let n = 8. Let M ′ = 〈m0, m2, m3〉 =
〈m000, m010, m011〉. Then the value V(v001) hides leaf
v001, and the value V(v1) hides leaves v100, v101, v110, v111.
Thus, Auth(M ′) = {v001, v1} and Aval(M ′) =
{V(v001),V(v1)}. The root value V(vε) can be computed
from M ′ and Aval(M ′) as follows:

V(vε) =

H(H(H(H(m0)||V(v001))||H(H(m2)||H(m3)))||V(v1))

3 Signatures Based on Merkle

Trees

Merkle tree is a versatile tool for signatures schemes allow-
ing certain manipulation of document content. We briefly
describe two recently proposed schemes. We show these
schemes are unable to enforce manipulation policies.

3.1 Content Extraction Signatures

Steinfeld et al. [5] proposed a content extraction sig-
natures. The originator signs a document M . The
scheme allows any untrusted intermediary to produce an

extracted signature on selected fragments of M . The
extracted signature can be verified by any third party,
while hiding the removed parts of the document. Similar
scheme was proposed by Johnson et al. [1].

Let Com be a message commitment algorithm satisfy-
ing standard cryptographic properties – hiding and bind-
ing. Given a message m, Com(m, r) denotes the commit-
ment to message m under random value r. Let (Sk, Pk)
be a pair of private and public keys of the originator.

Let M = 〈M0, . . . , Mn−1〉 be a document. The
originator commits to the document fragments: mi =
Com(Mi, ri). The originator computes Merkle tree for
〈m0, . . . , mn−1〉. The scheme employs so-called content
extraction access structure (CEAS) which the originator
uses to specify permitted subdocuments, i.e. subdocu-
ments allowed for extraction. The CEAS is an encoding of
the subsets of indices in the original document M . Thus,
M ′ ⊆ M is permitted subdocument if and only if IM ′ ∈
CEAS. The signature of M is σ = CEAS, σc, r1, . . . , rn−1,
where σc is the signature of the root value in Merkle tree
concatenated with CEAS: σc = SigSk(CEAS || V(vε)).

The intermediary can produce a signature σ′ of ex-
tracted document M ′ ⊆M from (M, σ) as follows:

σ′ = CEAS, σc, Aval(M ′), 〈ri〉i∈I
M′

. (1)

The verification of extracted signature consist of the
following steps. First, the verifier computes mi =
Com(Mi, ri), for i ∈ IM ′ . Then (s)he recomputes V(vε)
from mi’s and Aval(M ′). Actual verification employs two
checks:

IM ′ ∈ CEAS & VrfPk(CEAS || V(vε), σc).

The problem. Including CEAS enables the verifier to
verify whether the extraction policy was followed. On the
other hand, the signature created according Equation (1)
proves the authenticity of M ′ regardless CEAS. Although
the check IM ′ ∈ CEAS fails, the successful verification of
σc proves that the originator signed a document contain-
ing M ′. Thus, the scheme allows to check compliance to
the extraction policy, but it does not enforce it. In many
scenarios it is desirable that nobody (except the origi-
nator) should be able to prove the authenticity of any
M ′ ⊆M such that IM ′ 6∈ CEAS.

Example 2. Let n = 4, and M = 〈M0, M1, M2, M3〉. Let
CEAS = {{0, 1}, {0, 1, 2},
{0, 1, 2, 3}} reflects the requirement that fragments M0,
M1 must be contained in every subdocument M ′, and M2

must be contained whenever M3 ∈ M ′. Let σ be the sig-
nature of M produced by originator according the scheme.
The intermediary (anyone) can produce following signa-
ture σ∗ of subdocument M∗ = 〈M1, M2〉:

σ′ = CEAS, σc, Aval(M∗), 〈r1, r2〉,

where Aval(M∗) = {V(v00),V(v11)}. Certainly, the
first check in verification of extracted signature fails:
IM∗ = {1, 2} 6∈ CEAS. Nevertheless the second one
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VrfPk(CEAS || V(vε), σc) is successful, and it proves the
authenticity of M∗. The verifier knows that M∗ was not
intended to be extracted from the original document, but
these fragments were signed by the originator (as a part of
M). The scheme is unable to enforce CEAS. The scheme
should prevent producing authenticity proofs for subdocu-
ments prohibited by CEAS.

Remark. Steinfeld et al. [5] proposed some other con-
structions for content extraction signatures. All of them
exhibit the same drawback – the extraction policy is in-
cluded through CEAS, and cannot be enforced in verifica-
tion.

3.2 Authentication of Adaptive Multime-

dia Content

Suzuki et al. [6] proposed a multimedia delivery system
that preserves the end-to-end authenticity of original con-
tent while allowing content adaptation by intermediaries.
The system works on a meta-data level, specifying how
media components (files) are handled. Meta-data is pro-
vided prior actual content delivery. The scheme assumes
three principals – the originator of multimedia content,
an intermediary (a proxy) and an end-user. The content
(e.g. a sport event or a concert) is modelled as a sequence
of fragments. The proxy is allowed to remove fragments
of content and to insert its own content (e.g. advertise-
ments) on prescribed positions. The end-user should be
able to verify the authenticity of the original content (or
remaining portions of it) and the content inserted by the
proxy. Moreover, the scheme should prevent undetected
removing of proxy’s content. As usual, the principals do
not trust each other.

The authors solve these requirements by introducing
“placeholders” in original content. The originator creates
document M = 〈m0, . . . , mn−1〉, where some of the frag-
ments are placeholders for proxy’s content. The place-
holders contain the public key of the proxy.

The originator signs M as follows: σ = SigSk(V(vε)),
where Sk is the originator’s private key. Deletion of frag-
ments is guaranteed by the “hiding” property of Merkle
tree. The proxy can create signature for M ′ ⊆ M in
the following way: σ′ = σ, Aval(M ′). Verification em-
ploys reconstruction of V(vε) from M ′ and Aval(M ′),
and checking VrfPk(V(vε), σ

′). The proxy inserts its con-
tent by attaching and signing it separately. The end-user
checks the validity of both signatures. A prevention of
malicious deletion of proxy’s content (e.g. removing ad-
vertisements) is achieved through proxy’s signatures of
all placeholders. Then, any placeholder without a corre-
sponding signature constitutes evidence that the proxy’s
content was illegitimately deleted.

We do not consider the attitude “no other party can
remove proxy’s content without detection” (as stated in
[6]) sufficient for such multimedia content delivery system.
The problem, just like in previous scheme, lies in the abil-
ity to remove any content in such a way, that the authen-

ticity of delivered content can be verified. By enforcing
policy we mean that illegitimate deletion of content is not
only detectable, but the authenticity of remaining content
cannot be verified.

The authors of [6] seem to be aware of the problem
with possible content tampering. Therefore, they envi-
sion the use of tamper-proof devices together with policy
encoding and checking.

Remark. A more efficient variant of the scheme instanti-
ates the placeholders using hash-sign-switch technique [4]
based on trapdoor hash function [2]. Details can be found
in [6]. Nevertheless the prevention of malicious deletion
of proxy’s content is the same. Thus, the manipulation
policy cannot be enforced.

4 Relaxed Merkle Trees

In order to address policy enforcement in content manip-
ulation signature schemes we propose a generalization of
Merkle trees – Relaxed Merkle trees (RMT). The main
idea behind RMT is to make V(vε) directly dependent on
some fragments mi so that the signature verification can-
not be performed without them. As we show, RMT offer
more that just “these fragments are mandatory” policies.

Definition 1. A Relaxed Merkle tree T based on hash
function H for document M = 〈m0, . . . , mn−1〉 is a
strictly binary tree with binary strings assigned to the
nodes of T in the following way:

1) for every fragment mi there exists exactly one leaf
vw, such that 00 ||mi or 01 ||H(mi) is assigned to
vw (and for every leaf there is some mi, such that
00 ||mi or 01 ||H(mi) is assigned to the leaf);

2) the values assigned to internal nodes are computed ei-
ther with or without hashing from their children’s val-
ues as V(vw) = 11 ||H(V(vw0) || V(vw1)) or V(vw) =
10 || (V(vw0) || V(vw1));

3) the value assigned to the root of T is com-
puted as hash of its children’s values: V(vε) =
H(01 || (V(v0) || V(v1))); the root value for single frag-
ment document is defined as V(vε) = H(00 ||m0).

Moreover, the concatenations are unambiguous, i.e. for
all binary strings from x || y = z ||w follows x = z, and
y = w; and for any binary strings x || (y || z) 6= (x || y) || z.

The conditions regarding concatenations can be easily
met by suitable encoding. The role of various two-bit
prefixes is to facilitate proof of collision resistance of RMT
(see below).

To simplify our presentation we employ graphical rep-
resentation of RMT. The nodes of RMT are represented
by squares or circles, depending on the way how the node’s
value is computed (circles denote nodes with hashing, and
squares denote nodes without hashing), see Figure 1.
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(a) leaves (b) internal nodes

mi

H(mi)mi

mi

V(vw0) || V(vw1)

V(vw1)V(vw0) V(vw0) V(vw1)

H(V(vw0) || V(vw1))

Figure 1: Graphical representation of Relaxed Merkle trees (prefixes are omitted)

Remark. The complexity of V(vε) computation in RMT
is the same as the complexity of computing root value in
original Merkle tree, if the hash function H is an iterated
hash function. All we need for this computation is to
remember intermediate results in recursive (post-order)
algorithm.

Collision resistance of RMT. RMT can be viewed as
special hash functions. Collision resistance is an impor-
tant property of RMT, and enables their use in signature
schemes. Since we can construct many RMT for partic-
ular document, the definition of collision resistance must
take into account the tree associated with document. Let
HT (M) be the root value of RMT T for document M .

Definition 2. RMT are collision resistant if it is hard
to find distinct document-tree pairs (M, T ) 6= (M∗, T ∗),
such that HT (M) = HT∗(M∗).

It can be easily seen that collision resistance of RMT
depends on collision resistance of underlying hash func-
tion H .

Theorem 1. Let H be a collision resistant hash func-
tion. Then RMT based on this hash function are collision
resistant.

Proof. (Sketch) Let us assume that RMT are not collision
resistant. Hence, there are (M, T ) 6= (M∗, T ∗) such that
HT (M) = HT∗(M∗). Both trees T and T ∗ must be either
single node or multiple nodes. Otherwise, we get a colli-
sion in H (because of different prefixes in inputs). Single
node trees leads easily to collision in H (when M 6= M∗)
or equal document-tree pairs (when M = M∗) – a con-
tradiction.

For multiple node trees we get V(vε) = V(v∗
ε
), i.e.

H(01 || (V(v0) || V(v1))) = H(01 || (V(v0) || V(v1))). As-
suming collision resistance of H and unambiguous con-
catenations in RMT we get V(v0) = V(v∗0) and V(v1) =
V(v∗1). We proceed similarly deeper through trees T and
T ∗. Since different computation possibilities are encoded
by distinct prefixes, we either find a collision in H or con-
clude that T = T ∗ and M = M∗ – a contradiction.

Remark. Omitting two-bit prefixes from construc-
tion of RMT leads to collisions. For example, let
T and T ∗ be trees with three nodes. All nodes
in T are computed with hashing. In T ∗, only
root and right leaf are computed with hashing.

m1m0

Figure 2: Relaxed Merkle tree T

Thus, HT (〈m0, m1〉) = H(H(m0) ||H(m1)), and
HT∗(〈m∗

0, m
∗
1〉) = H(m∗

0 ||H(m∗
1)). If m∗

0 = H(m0) and
m∗

1 = m1 we get a collision.

Remark. One-wayness of RMT easily follows from
one-way property of underlying hash function H .

Computation of authentication set on RMT. Ap-
plications of signature schemes based on Merkle trees
need a procedure for computation of the authentication
set of some subdocument M ′, i.e. Auth(M ′). Knowing
Auth(M ′) allows direct computation of Aval(M ′). An
important observation is that for some RMT there are
subdocuments M ′ ⊆ M such that Auth(M ′) and subse-
quently Aval(M ′) do not exist.

Example 3. Let T be an RMT (depicted in Figure 2)
for two fragments document M = 〈m0, m1〉. The root
value is V(vε) = H(01 || ((00 ||m0) || (01 ||H(m1)))). It
is easily seen that the authentication set for subdocument
M ′ = 〈m1〉 does not exist because the leaf v0 cannot be
hidden by any value – V(v0) contains the fragment itself,
and V(vε) hides v1 as well. Looking at V(vε) it is ob-
vious that m0 is directly required in V(vε) computation,
and therefore cannot be omitted in any subdocument. On
the other hand, the authentication set for subdocument
M ′ = 〈m0〉 exists: Auth(M ′) = {v1}.

Nonexistence of Auth(M ′) for some subdocuments M ′

is the key property that allows enforcing policies in con-
tent manipulation signature schemes, see Section 4.1. An
algorithm for computing the authentication set (if such
set exist) for given tree and subdocument is shown in Ap-
pendix.

4.1 Policies

The essential part of content manipulation signature
scheme is the ability of untrusted intermediary to com-
pute signature σ′ of subdocument M ′ ⊆M from the sig-



International Journal of Network Security, Vol.3, No.1, PP.65–72, July 2006 (http://isrc.nchu.edu.tw/ijns/) 69

nature σ of document M . The decision of originator on
which subdocuments can be extracted with valid signa-
tures is called policy. The policy can be modelled as a
Boolean function P : {0, 1}n → {0, 1} in the following
way: for any M ′ ⊆ M an intermediary can produce a
valid signature σ′ of M ′, if and only if P (xM ′) = 1. The
n-ary vector xM ′ = (x0, . . . , xn−1) is assigned to M ′ in
the following way: xi = 1 ⇔ i ∈ IM ′ . The subdocu-
ment M ′ is called permitted, if P (xM ′ ) = 1, otherwise it
is called prohibited.

We have shown that including policy description into
signature (e.g. through CEAS) is not enough, see Sec-
tion 3.1. We want to make impossible for an intermediary
to produce evidence that prohibited subdocument M ′ was
signed by the originator. This is what we refer as “policy
enforcement”. The idea is to use such RMT for document
M such that the authentication set for M ′ ⊆ M exists if
and only if P (xM ′) = 1. The nonexistence of authentica-
tion set for certain subdocument M ′ forces the intermedi-
ary to provide additional fragments from M \M ′ in order
to allow the recomputation of root value V(vε). Since only
for permitted subdocuments the corresponding authenti-
cation sets exist, additional fragments together with M ′

will form a permitted document.

Definition 3. Let T be an RMT for document M =
〈m0, . . . , mn−1〉, and let P : {0, 1}n → {0, 1} be a pol-
icy. We say that T enforces policy P if for any M ′ ⊆M :
P (xM ′ ) = 1 ⇔ Auth(M ′) exists.

An RMT uniquely determines an enforced policy. We
can replace Merkle trees by RMT in content manipulation
signature schemes, such those discussed in Section 3, and
enforce policies intended by the originator. Moreover, us-
ing CEAS becomes redundant. Certainly, minor changes
might be necessary, e.g. including RMT description.

4.2 Examples of Policies

The examples presented in this section show that RMT
can enforce some practical policies. Hence, this approach
is useful in “real world” scenarios.

There is one to one correspondence between particular
policy variable and document’s fragment. Therefore, for
convenience we express policies, i.e. Boolean functions, in
terms of document’s fragments.

In order to improve the readability, we will omit the
two-bit prefixes in descriptions of RMT nodes’ values.

Advertisements. Let M be a document (e.g. a movie
or a journal) containing some advertisements. Let M =
〈m1, . . . , mk, a1, . . . , at〉 (without any particular order),
where mi’s are “data” fragments and ai’s are adverts in
document M . The originator intention is to allow those
extraction of M , that contain all adverts. The policy for
this requirement (the advertisements policy) is

P (m1, . . . , mk, a1, . . . , at) = a1 ∧ . . . ∧ at.

m1 m2 m3 m4 a1 a2 a3 a4

Figure 3: Relaxed Merkle tree for advertisements policy
(k = t = 4)

Relaxed Merkle tree for this policy is depicted in Fig-
ure 3. The left subtree corresponds to the Merkle tree
of document 〈m1, . . . , mk〉. The right subtree is a simple
concatenation of adverts a1, . . . , at. In order to verify sig-
nature of the root value V(vε) = H(V(v0) || a1 || . . . || at),
a verifier needs to know the values of all adverts. On the
other hand, any data fragments can be hidden by values
of suitable chosen authentication nodes, see Section 2.
Thus, the RMT effectively enforces the advertisements
policy.

Interview. Let M be an interview. We can look on
interview as a document containing a header h (with in-
formation such as place, date, interviewer, interviewee),
and a list of question and answer pairs 〈qi, ai〉. Thus,
M = 〈h, q1, a1, . . . , qk, ak〉. A natural policy for an inter-
view is to allow precisely those content extractions which
contain the header and for every extracted answer, the
corresponding question must be extracted as well. Cer-
tainly, questions can be extracted without their answers,
but header must be always included. This interview pol-
icy is described by the following Boolean function:

P (h, q1, a1, . . . , qk, ak) = h ∧ (a1 ⇒ q1) ∧ . . . ∧ (ak ⇒ qk).

RMT for interview policy is depicted in Figure 4.
The extension for any k is straightforward. It is easy
to verify that RMT enforces the interview policy. The
header must be included in any extraction, since the root
value directly depends on it: V(vε) = H(h || . . . ). When
particular ai is present in an extraction, the qi must be
present as well, because the value of the qi’s and ai’s
parent, i.e. H(qi ||H(ai)), cannot be computed without
qi. On the other hand, qi can be extracted without
corresponding answer – ai can be hidden by H(ai). To
conclude, any subset of pairs 〈qi, ai〉 can be hidden by
some intermediary nodes, thus allowing their omission
from an extraction.

Merkle policy.

Merkle tree is a special case of Relaxed Merkle tree.
The policy enforced by Merkle tree is denoted as Merkle
policy. For document M = 〈m0, . . . , mt−1〉 this policy
can be expressed as Boolean function P (m0, . . . , mt−1) =
m0 ∨ . . . ∨mt−1. The policy specifies that any extracted
subdocument is permitted.
Remark. The examples presented in this subsection
silently ignored the problem of empty subdocument, i.e.
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h

a1 a2q1 q2 a3 a4q3 q4

Figure 4: Relaxed Merkle tree for interview policy (k = 4)

the value of P (0, . . . , 0). Formally, any policy P must
satisfy the condition P (0, . . . , 0) = 1, see Section 5. On
the other hand, we do not care whether an intermediary
is able to prove the authenticity of empty subdocument
(i.e. authenticity of V(vε)). This is a similar problem
as in standard signature schemes (e.g. RSA, ElGamal),
where random message forgery can produce a valid signa-
ture, but leads to unpredictable hash value of the message
(thus not a real forgery, having one-way hash function).

5 On Expressive Power of RMT

Let T be an RMT. The policy enforced by T will be de-
noted by PT . Having complete document M , the value
of root node, i.e. V(vε), can be always computed. On
the other hand, since V(vε) is a hash of its children, any
intermediary can produce a signature of empty subdocu-
ment M ′ in the following way: σ′ = 〈σ,V(vε)〉. Lemma 1
summarizes these observations.

Lemma 1. Let T be an RMT. Then PT (1, . . . , 1) = 1,
and PT (0, . . . , 0) = 1.

5.1 Compositions

Since trees have a recursive structure, a natural problem
arises: how to express policy PT by means of policies PT0

and PT1
, where T0 and T1 are left and right subtrees of T ,

respectively. Such “composition” is useful for computing
policy enforced by particular RMT, or producing RMT
for given policy (if such RMT exists).

Since subtrees can have root nodes computed with-
out hashing our analysis deals with such “square-rooted”
trees as well. Recall, according our graphical notation, we
denote nodes computed with (without) hashing as circle
(square) nodes.

Let f(x1, . . . , xn) be an n-ary Boolean function. The
function obtained from f by setting its output to 1 for
all-zero input is denoted by f+, i.e. f+(x1, . . . , xn) =
f(x1, . . . , xn) ∨ ¬(x1 ∨ . . . ∨ xn).

Following theorems easily follows from the construction
of RMT:

Theorem 2. Let T be a single node RMT, with corre-
sponding fragment x.

1) Let T be a square node. Then PT = x.

x3x2

vε

v0 v1

v11v10

policy P1(x2, x3)

policy PT (x0, x1, x2, x3)

x1x0

v01v00

policy P0(x0, x1)

Figure 5: Composition of policies

2) Let T be a circle node. Then PT = 1.

Theorem 3. Let T be an RMT with left subtree T0 and
right subtree T1.

1) Let the root of T be a square node. Then PT = PT0
∧

PT1
.

2) Let the root of T be a circle node. Then PT = (PT0
∧

PT1
)+.

Example 4. Figure 5 illustrates the composition theo-
rems. From Theorem 2 we get policies for trees with root
nodes v00, v01, v10, v11: Pv00

= x0, Pv01
= x1, Pv10

= x2,
Pv11

= 1. Applying Theorem 3 we obtain policies for trees
with roots v0, and v1: P0(x0, x1) = Pv00

∧Pv01
= x0 ∧ x1,

and P1(x2, x3) = (Pv10
∧Pv11

)+ = (x2 ∧1)+ = (x3 ⇒ x2).
Finally, the policy for tree T is: PT (x0, x1, x2, x3) =
(P0 ∧ P1)

+ = (x0 ∧ x1 ∧ (x3 ⇒ x2))
+, which is a policy

corresponding to CEAS from Example 2, see Section 3.1.

5.2 Limitations and Extensions

A natural demand is to enable the broadest possible set
of policies expressed and enforced by RMT. Starting with
documents consisting of two fragments, M = 〈x1, x2〉,
four possible policies follow from Lemma 1: x1 ⇔ x2,
x1 ⇒ x2, x2 ⇒ x1, and 1. There are four different RMT
with two leaves, and they correspond to these policies.
Thus, for every two-fragments policy satisfying Lemma 1
there is an RMT which enforces it.

A situation becomes more complicated with three-
fragments documents. There are policies that cannot be
enforced by any RMT.

Lemma 2. Let M = 〈x1, x2, x3〉 be a document. The
policy P (x1, x2, x3) = (x1x2 ∨ x1x3 ∨ x2x3)

+ cannot be
enforced by any RMT.

Proof. Let T be an RMT with three nodes enforcing P .
One node must be in depth 1. Since the policy is sym-
metric, we can assume without loss of generality that the
fragment assigned to this leaf is x1. Let T ′ denotes the
left or right subtree of T with two leaves. If the leaf
for x1 is a square node, from Theorems 2 and 3 we get
PT = (x1 ∧ PT ′)+. Then PT (0, 1, 1) 6= P (0, 1, 1), a con-
tradiction. On the other hand, if the leaf for x1 is a
circle node, we get PT = (1 ∧ PT ′)+ = P+

T ′ . Then
PT (0, 1, 0) = PT (1, 1, 0), so PT 6= P – a contradiction.

A way to overcome the limitations of RMT are exten-
sions enhancing the structure of RMT. First idea is to
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x1 xk y1 yt

x1 xk y1 ytx1 xk y1 yt

Figure 6: Equivalence of trees with multiple children and
RMT

x1 x2 x1 x3

x2 x3

Figure 7: Tree for policy P (x1, x2, x3) = (x1x2 ∨ x1x3 ∨
x2x3)

+

enable more than two child nodes for one parent node.
The value assigned to a node is a hash of concatenation
of children’s values (a circle node) or simple concatena-
tion without hashing (a square node). It is easy to verify,
that this extension is just “syntactical sugar” – equiva-
lent representation can be found on RMT, see Figure 6 (a
triangle node represents any node type, i.e. either circle
or square).

Second, more powerful idea is to enable multiple as-
signments of fragments to the leaves. Indeed, this leads to
trees that enforce policies, the RMT are unable to enforce.
Let us take the example from Lemma 2: P (x1, x2, x3) =
(x1x2 ∨ x1x3 ∨ x2x3)

+. The tree depicted in Figure 7
enforces exactly policy P .

6 Conclusion

We presented a generalized version of Merkle trees – Re-
laxed Merkle trees. This generalization allows to enforce
policies in content manipulation signature schemes. We
analyzed expressive power of RMT and show their limi-
tation and possible extensions.
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Appendix: Algorithm for Comput-

ing Auth(M ′) on RMT

Let T be an RMT for document M = 〈m0, . . . , mn−1〉.
Let M ′ be a subdocument of M . The algorithm Com-
puteAuth computes Auth(M ′) for given T and M ′ in time
O(n). Since the authentication set for some trees and
subdocuments does not exist, the algorithm tests this sit-
uation as well.

The algorithm recursively computes sets Aw and Nw

(function ComputeSets). Set Aw is the set of all nodes
that hide all fragments absent from M ′ in subtree with
root vw. Set Nw is the set of all fragments not hidden by
Aw in subtree with root vw.

Having computed Aε and Nε, the authentication set for
M ′ exists if and only if Nε = M ′. Then, Auth(M ′) = Aε.
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A description of function ComputeSets, see Figure 9,
requires following notations. Let vε(S) denote a root node
of a tree S. Let fr(v) be a fragment assigned to leaf v, i.e.
fr(v) = mi if either 00 ||mi or 01 ||H(mi) is assigned to
v.
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