
International Journal of Network Security, Vol.3, No.1, PP.54–64, July 2006 (http://isrc.nchu.edu.tw/ijns/) 54

Authenticated Access to Reserved Network

Resources

Kenneth L. Calvert, Srinivasan Venkatraman, and James N. Griffioen

(Corresponding author: Kenneth L. Calvert)

Laboratory for Advanced Networking, University of Kentucky

Lexington, Kentucky, USA. (Email: {calvert, griff}@netlab.uky.edu)

(Received Aug. 26, 2005; revised and accepted Oct. 1, 2005)

Abstract

Enhanced network services often involve preferential allo-
cation of resources such as transmission capacity (“band-
width”) and buffer space to packets belonging to certain
flows or traffic classes. Such services are vulnerable to
denial-of-service attacks if access to those resources is
granted based on information that can be forged, such as
source and destination addresses and port numbers. Tra-
ditional message authentication codes (MACs) are not de-
signed to solve this problem and have high per-packet pro-
cessing costs. In this paper we propose a packet authen-
tication algorithm specifically designed to solve the prob-
lem of protecting access to reserved network resources.
We present measurements from a prototype implementa-
tion, and argue that our approach is a better solution for
this problem than traditional MACs.

Keywords: Denial-of-service, integrated services, packet
authentication, RSVP

1 Introduction

Enhanced network services typically involve
infrastructure-based mechanisms that reserve resources—
bandwidth and/or buffer space—for the exclusive use of
packets belonging to particular classes or flows. These
quality-of-service (QoS) mechanisms rely on information
carried in the packets themselves to distinguish those
that are allowed to consume the reserved resources
from those that are not. Routers in Internet Protocol
(IP)-based networks generally classify packets based on
the contents of their IP and higher-level headers; packets
assigned to the same class (in particular, packets with
the same values of source and destination IP address and
transport ports) receive the same treatment with respect
to scheduling, buffer space, etc.

Because these header fields are controlled entirely by
the sending host, this classification mechanism is not se-
cure. In particular, it is easy for an attacker to create and

send packets with header information that will give access
to some other flow’s reserved resources. While this may
not directly benefit the attacker, it can prevent the legit-
imate packets of the class from receiving the level service
for which, presumably, someone has paid.

To counter such attacks, some form of authentication
check must be applied to packets before granting them
access to reserved resources. This can be done by re-
quiring that packets belonging to the legitimate flow have
some property that is hard for attackers to duplicate, easy
for legitimate senders to create, and inexpensive to ver-
ify. Traditional data origin authentication mechanisms
(such as keyed-hashes [15] or digitial signatures [17]) are
designed to solve a different problem, namely end-to-
end verification of the authenticity and integrity of data.
They are relatively expensive to verify, which—in this
context, where the main consideration is the upper bound
on processing cost per packet—opens the possibility of
denial-of-service by simply overwhelming the verification
system. Moreover, they provide a level of security that
is poorly matched to this problem. Consider that a false
acceptance rate of 10−20 would be considered ridiculously
high for a traditional message authenticity check (MAC)
mechanism, while a reduction of 10−5 in the amount of
bandwidth available to an end-to-end flow would be un-
likely to make a noticeable difference to the end user in
many applications that could benefit from enhanced ser-
vices. In other words, when deciding whether to grant
access to router resources, an acceptable rate of access
control failure is any one that is not noticeable by the end
user. Because enhanced QoS services are generally spec-
ified with only limited precision, “acceptable” here could
easily be many orders of magnitude higher than what is
provided by traditional message authentication codes.

In the next section, we discuss the threat model in
more detail. In Section 3 of this paper, we propose a set
of design requirements and consider related work, includ-
ing alternative solutions and their shortcomings. Section
4 introduces FPAC, a fast packet authentication check de-

International Journal of Network Security, Vol.3, No.1, PP.54–64, July 2006 (http://isrc.nchu.edu.tw/ijns/) 55

signed specifically to solve this problem, along with a pos-
sible extension to RSVP to support setup of the required
state. In Section 5, we present measurements from a pro-
totype implementation, and compare the computational
cost of various forms of FPAC to conventional MAC codes
such as HMAC. Section 7 summarizes and concludes the
paper.

2 Denial of Enhanced Services

In this section we first describe our high-level model of
how routers process packets to provide both enhanced
and best-effort forwarding services. Then we describe the
threat model under consideration. Throughout this pa-
per we use the term class to refer generically to a set of
packets that are treated similarly by routers with respect
to forwarding behavior—in particular, access to reserved
resources. A class may correspond to a single instance of
an application, for example a real-time multimedia flow
between a particular source and destination, or it may be
an aggregate of flows from a variety of sources travelling
to multiple destinations. Each packet in a class follows
a path through the network. Each path is assumed (for
now) to be a linear sequence of routers that is the same
for every packet in the class.

2.1 Router Processing Model

In general, packets arrive on the input channels or ports
of a router and undergo some input processing, then are
switched through an interconnect to the appropriate out-
put port. There they undergo more processing and even-
tually are transmitted on the output channel (refer to
Figure 1). Because many packets destined for the same
port may arrive at more or less the same time, while only
one packet may be transmitted at a time, arriving packets
may have to queue, and a scheduling mechanism decides
which is transmitted next. The queue has finite capacity;
when it is full, any packet arrival results in a packet be-
ing dropped. Which packet is selected from the queue for
transmission (or selected to be dropped when the queue
is full) is determined by the scheduling policy (respec-
tively drop policy). Enhanced services can be provided
by taking into account the class of a packet in making
these selections. In general, per-class state information
must be maintained by the scheduling mechanism in or-
der to implement such policies. (An example would be
information related to the number of bits from this class
transmitted in the recent past.) Some means of setting up
the necessary classifier and scheduling state is required;
the Resource Reservation Protocol RSVP [6] has been de-
signed for that purpose.

2.2 Threats

The adversary’s goal is to degrade the service provided
to some class, so that a significant fraction of packets
in that class fail to receive the expected (or guaranteed)

quality of service. For example, if the enhanced service
provides for a class to experience a very low loss rate,
provided its packets are transmitted at or below some
maximum rate, an attacker may try to increase the loss
rate experienced by that class. If a class’ packets are
supposed to experience a low delay variance (jitter), the
attacker may attempt to increase the variance of the delay
experienced by packets of that class. Depending on the
service agreement, these disruptions may result in lost
revenue for the provider. Note that this is a special form
of the more general denial of service problem [9].

The finite-capacity queue is the basis for the denial-of-
access attack: if an attacker can cause arriving packets to
find the queue full (i.e. filled with bogus packets), they
will be delayed or dropped, and the class will not receive
the enhanced quality of service to which it is entitled.
Thus, to mount a denial-of-service attack on a class X , an
attacker needs to arrange for bogus packets to be placed
in the queue associated with X at a rate that exceeds the
limits for X .1 Note that it may not require an especially
high rate of bogus packet insertion to accomplish this.
On the other hand, a nonzero but very low rate of bo-
gus packet insertion may be acceptable: enhanced service
specifications generally only specify parameters to within
some tolerance.

We assume the adversary has the following abilities:

• The ability to cause a potentially large number of
end systems (“zombies”), distributed around the net-
work, to transmit many packets containing arbitrary
source and destination address information.

• The ability to eavesdrop or snoop packets traveling
along a path, and to inject packets at some point
along the path. Either of these can be accomplished
by breaking into an end system (non-router) con-
nected to a shared-medium network anywhere along
the path—say, a management station in a service
provider’s network, or a host in the originating do-
main.

In designing our solution we also assume certain limits on
the adversary. We assume the attacker does not have the
ability to take full control of a router along the path, nor
to mount any kind of “cut and splice” attack (i.e. delay,
prevent, or modify packets in flight) on a channel along
the way. Given any such capability it is possible to disrupt
service to all flows along the path, notwithstanding any
data-plane mechanism we might propose. We assume that
the attacker cannot snoop a legitimate packet, modify and
transmit it, and have the modified packet arrive anywhere
along the path before the original. Although it is conceiv-
able that this assumption might not hold, any violation
would require that the attacker have access to routes with
lower delays than those used to provide enhanced services

1We assume that the enhanced service is correctly implemented,

so that other avenues of attack, e.g. modifying the per-class state

to make the scheduler think more bits have been transmitted than

is actually the case, are not open.

International Journal of Network Security, Vol.3, No.1, PP.54–64, July 2006 (http://isrc.nchu.edu.tw/ijns/) 56

switch state

state

input classify
process

output
schedule

{

per−class

process

receive transmit

Figure 1: Router processing model

to the attacked class, and that seems unlikely in view of
our other assumptions. Finally, we assume that end sys-
tems authorized to emit legitimate packets belonging to
the class are not compromised; otherwise such systems
might themselves consume all reserved resources.

3 Solution Space

Certain techniques have been proposed (and used) as
countermeasures against denial-of-service attacks of all
kinds, including attacks on end systems. Ingress filter-
ing is a technique in which packets that arrive at a bor-
der router via an interface that is not on the route to the
packet’s source address are assumed to be spoofed and are
discarded. These checks have several drawbacks. First,
they are not effective under certain conditions that are not
especially unusual, including asymmetric routes. Second,
they must be applied without exception on the perime-
ter of the network (i.e. the boundary between domains
containing end systems and the core of the network) to
be effective. If any border router fails to apply reverse-
path checks, the attacker may be able to inject spoofed
packets into the path. Finally, reverse path checks do not
stop an adversary that controls one or more end systems
co-located with the actual packet source.

Traceback has been proposed as a method of determin-
ing the origin of denial-of-service attacks, in order to iden-
tify and punish the attackers. Recently various methods
have been proposed for modifying the forwarding path
to enable reconstruction of the paths followed by pack-
ets [20, 23]. Although traceback may indeed be useful as
a deterrent, we do not consider it a solution because it is
fundamentally reactive rather than preventive. Traceback
does not prevent an attack from disrupting the enhanced
services for which customers have paid a premium. (For
that matter, its utility as a reactive mechanism is ques-
tionable if an attacker controls hundreds or even thou-
sands of zombie systems all over the world.) Before en-
hanced services can be commercially successful, providers
need to be confident they can be robustly implemented,
and are not subject to the whims of attackers.

Our proposed approach involves adding a step called
authentication in the router processing loop somewhere

before the scheduling step. Packets that fail the au-
thentication check are denied access to any reserved
resources. Although this involves modification of the
packet-processing path in routers, we believe the modi-
fications required are consistent with the processing re-
quired for enhanced services, both in scope and in kind.
In the next subsection we present desiderata for such an
authentication mechanism, considering both security and
performance.

3.1 Design Requirements

The authentication mechanism must have certain security
and performance properties in order to be considered a
solution to our problem. These include:

• Cryptographic strength. It must be infeasible
for an attacker to consistently forge packets without
breaking some believed-to-be-strong cryptographic
primitive(s). Brute-force methods (i.e. random
guessing) must yield a sufficiently low probability of
success that the service delivered to legitimate pack-
ets is unaffected.

• Replay prevention. The mechanism must include
a means to detect re-use of header information. This
implies that per-class state must be updated each
time a legitimate packet is verified. Given a fixed
field size in the packet, it also implies that the num-
ber of packets that can be verified is bounded; how-
ever, that number should be large, so that resynchro-
nization (rekeying) is required infrequently, even for
high-data-rate classes.

• Robustness. Because we are dealing with enhanced
services, losses and packet reorderings should be rare.
Nevertheless, the mechanism must tolerate a certain
(limited) degree of loss and reordering.

• Performance. It must be possible to perform the
authentication check fast enough to keep up with the
maximum possible arrival rate of packets at the au-
thentication check. Otherwise, an attacker can deny
service by overwhelming the mechanism. We assume
that authentication can be pipelined with other op-
erations, and consider only requirements that follow

International Journal of Network Security, Vol.3, No.1, PP.54–64, July 2006 (http://isrc.nchu.edu.tw/ijns/) 57

directly from the basic architecture of the router. For
simplicity, all incoming and outgoing links are as-
sumed to operate at the same rate, ρ bytes/s. Let α
be the “degree”, i.e. the number of incoming inter-
faces of the router. Assume for the moment that all
packets are S bytes in length; then S/ρ is the time
between packet arrivals on each link. Thus it must be
possible to authenticate at least α packets every S/ρ
seconds. Note that this constraint is strongest when
S is minimized, i.e. when all packets are minimum-
sized.

We call this the minimum-sized packet constraint.

• Implementability. The authentication mechanism
must be amenable to implementation in hardware, so
that it can be placed close to the scheduler (i.e., on
port cards in routers).

3.2 Alternative Authentication Solutions

Here we consider why traditional origin-authentication
solutions are not suitable as solutions for this problem.
Public-key signatures are the canonical method of verify-
ing authenticity. They have the advantage of not requir-
ing any secret information to be distributed to or stored
at the routers—only the public key associated with the
class is required for verification. Unfortunately at the
present state of the art signature verification is so com-
putationally expensive that it cannot possibly meet the
performance requirements outlined above. We therefore
do not consider it further.

Hop-by-hop authentication, where each router
“vouches” for the legitimacy of the packets it for-
wards to its neighbors, has the advantage that it does
not require distribution of any shared secret to routers
along a path. However, as with ingress filtering, it is
only effective when applied throughout the network,
to every packet (not just those belonging to the target
class) passing through every router along the targeted
path. This raises the cost for every user, not just those
who want reserved resources. Moreover, hop-by-hop
authentication requires that the authentication code be
re-created for each packet at each hop.

Conventional end-to-end MACs, such as HMAC [15] or
UMAC [3] provide high security and protection against
tampering, but do not protect against replay, and more
importantly have relatively high costs for minimum-sized
packets, and therefore open the possibility of an attack
based on saturating the verification mechanism itself.

In the next section we propose a solution based on
block ciphers.

4 Fixed-cost Packet Authentica-

tion

We now introduce FPAC, an authentication code intended
for use in controlling access to reserved network resources,

i.e. bandwidth and buffer space. FPAC enables a veri-
fier to conclude that, with reasonably high probability,
the code carried in a packet was constructed with knowl-
edge of a secret. The security of FPAC rests upon stan-
dard cryptographic primitives, primarily a block cipher.
FPAC is not a conventional message authentication code
(MAC), in that it does not protect against tampering of
data in the packet. We believe this is appropriate because,
as discussed in the previous section, FPAC is intended to
solve a different problem. To emphasize this distinction,
we refer to conventional MAC algorithms like HMAC [15]
as “end-to-end MACs” in the rest of this paper. Applica-
tions concerned about tampering and forgery need to use
an end-to-end MAC in addition to FPAC. FPAC can also
be conveniently parameterized, allowing users to select a
level of security appropriate for their needs. In the follow-
ing description, the sender is the originator of the packet
that is authorized to receive enhanced services; the ver-
ifier is the authentication mechanism in the router that
needs to determine a packet’s legitimacy.

4.1 Overview

FPAC requires two fields in the header of a packet that
is to be authenticated for access to reserved resources,
nonce and cookie. Sender and verifier are assumed to
share three secrets, k0, k1 and s0. (Note that every router
providing enhanced services must be a verifier and must
know these secrets; we discuss possible solutions for dis-
tributing them later in this section.)

FPAC is based on the standard technique of construct-
ing a bitstring to have a particular property, and then en-
crypting that string with a symmetric cipher using a key
known to both the sender and the verifier. The algorithm
is shown in Figure 2. The sender constructs the cookie
C from a random nonce X , the shared secrets, and a se-
quence number s. (The function choosenonce() selects
a fresh bit string in an unpredictable way; the function
nextrandseq(x) chooses the next sequence number semi-
randomly as described in the next subsection.)

First the sender maps the nonce to another value us-
ing the random function fk0

, which is known only to the
sender and verifier and need not be invertible. One pos-
sibility is for fk0

to be chosen (via k0) from a family of
universal hash functions [3]. These functions are ideal for
construction of V because they are very inexpensive to
compute and they produce outputs of about the right size.
Next the result V is concatenated with a sequence num-
ber (the computation of which is described below) and
the whole block is encrypted under a block cipher Ek[·]
using secret k1 as key. The resulting cookie is placed in
the packet along with the nonce.

The verifier knows the three secrets, and also keeps
track of sequence numbers contained in previously veri-
fied packets. It extracts the nonce and the cookie, com-
putes V , and verifies that the result of decrypting the
cookie begins with V . If so, it then verifies that the set
of already-seen sequence numbers does not contain s. If

International Journal of Network Security, Vol.3, No.1, PP.54–64, July 2006 (http://isrc.nchu.edu.tw/ijns/) 58

Sender:

secret k0, k1, s0;
set of sequence# sent;

s := nextrandseq(sent);
sent := sent ∪ {s};
X := choosenonce();
V := fk0

(X);
C := Ek1

[V |s];
place (X, C) in packet;

Verifier:

secret k0, k1, s0;
set of sequence# seen;

extract (X, C) from packet
V := fk0

(X);
P |s := Dk1

[C];
if (P = V ∧ s /∈ seen)

seen := seen ∪ {s}; accept packet;
else

discard packet;

Figure 2: Sender and Verifier algorithms for FPAC

that is the case, it records the fact that s was seen and for-
wards the packet; otherwise the packet is dropped. Thus
the cost of verifying FPAC is one block decryption, plus
the cost of computing V and comparing it to part of the
decryption result.

The security of FPAC rests on the block cipher, which
prevents an attacker from forging a valid cookie without
knowing k1. The purpose of the random function f is
to prevent known plaintext attacks (since the nonce X
is included with the packet). Given a strong cipher and
no information about k1, an attacker should not be able
to do better than brute force, i.e. trying arbitrary bit
strings in the hope that one decrypts to a valid authenti-
cator. In that case the likelihood of a successful forgery
depends on the size of V . At the same time, sequence
numbers cannot be re-used, so the size of s determines
the number of packets that can be sent before resynchro-
nization/rekeying is necessary. Thus, for a given size of
block cipher, there is a tradeoff in FPAC between the like-
lihood of forgery and the frequency of resynchronization.
A larger V makes forgery less likely, but the correspond-
ingly smaller s implies that fewer packets can be sent
before resynchronization.

The number of bits allotted to V and to s should be a
configurable parameter of the protocol; implementations
should allow selection from a set of supported splits. In
our implementations with 64-bit block ciphers, we have
used two different splits: a 24-bit V and 40-bit s, and
an equal split of 32 bits each. For most applications, we
believe a 24-bit V provides a sufficiently low likelihood
of forgery (under the assumptions above), while allow-
ing enough packets to be sent between resynchronizations.
New block ciphers, such as AES, provide an even larger
block size of 128 bits, while still achieving high perfor-
mance using hardware acceleration. With a 128-bit block
size, a rather large range of splits is possible.

4.2 Protection Against Replay

Protection against replayed packets is handled through
the use of sequence numbers, as in the Encapsulating Se-
curity Payload (ESP) of IPSec [14]: Each packet is as-
signed a sequence number by its originator, and the ver-
ifier keeps track of which sequence numbers have been

seen; sequence numbers are not reused. There are sev-
eral differences between our approach and ESP, however.
In ESP the sequence number is transmitted in cleartext,
outside the encrypted payload. In FPAC, the sequence
number is tied to the authentication check by encrypt-
ing both in the same block; this provides a check against
modification of the FPAC field, and in particular prevents
the authentication code from being re-used with a dif-
ferent sequence number. Second, sequence numbers are
not assigned in strictly monotonic order by the sender.
This has two purposes: it increases the entropy of the
anti-replay field in the encrypted block, to make linear
or differential cryptanalysis more difficult; and it reduces
synchronization requirements when packets are originated
by more than one sender (see discussion below). Third,
the sequence begins at a random value (the ESP sequence
number begins at 1). Again, this is intended to reduce the
attacker’s knowledge of the plaintext to make cryptanal-
ysis harder.

We now describe the construction of s. In this descrip-
tion all arithmetic is understood to be modulo 2w, where
w is the size of the sequence number in bits.

The sender maintains a send window of sequence num-
bers in the range Ls to Ls + T − 1 (inclusive); the initial
value of Ls, or initial sequence number (ISN) is chosen
randomly and is part of the secret information shared with
the verifiers (i.e. s0). Each verifier maintains a window of
acceptable sequence numbers, defined by the range Lr to
Lr + W − 1 (inclusive), where T < W and initially Lr is
set to the ISN. In addition, each verifier knows the value
of T . For each packet, the sender randomly chooses an
unused sequence number in the send window, and records
that it has been used. After verifying the authenticity of a
packet, each router checks whether the sequence number
of the packet is in its window and whether it has been seen
before; if not, it records the use of that sequence number
(e.g. by setting a bit in a bitmap).

It remains to specify how the sender and verifiers ad-
vance their respective windows, and the details of the con-
struction of s. The sender can advance Ls by an amount
j > 0 whenever sequence numbers Ls through Ls + j − 1
have been used. Similarly, the verifier can advance Lr by
an amount j > 0 whenever all sequence numbers in the
range Lr to Lr + j − 1 have been seen. (Note the win-

International Journal of Network Security, Vol.3, No.1, PP.54–64, July 2006 (http://isrc.nchu.edu.tw/ijns/) 59

dow must not be advanced if doing so would cause the
ISN (s0) to be in the window; this indicates that the se-
quence number space has wrapped. Sender should watch
for the send window to move within some fixed distance
of ISN, and initiate rekey/resynchronization operations
when that occurs; otherwise the class becomes vulnerable
to replay.)

The above policy for advancing the window at the veri-
fier is not adequate if losses can occur—the window would
never advance past the sequence number carried by any
lost packet. Therefore a verifier must also be prepared
to advance its window when it sees evidence that the
sender’s window has advanced. When the verifier sees
a sequence number j in the range Lr + T ≤ j < Lr + W ,
it can infer that it is safe to advance Lr to j − T + 1,
which maintains Lr ≤ Ls because j < Ls + T . How-
ever, this inference is only valid if no reordering and no
forgery have occurred. Because of the requirements to
limit the damage done by successful forgery and also to
tolerate some amount of packet reordering, the verifier
may want to wait for stronger evidence before advancing
the window past unused sequence numbers—say, seeing
more than some threshold number of packets in the range
Lr + T to Lr + W .

The exact choices of T , W , and the amount of evidence
required to advance the window past an unused sequence
number are policy decisions which embody tradeoffs. W
needs to be enough bigger than T to accomodate a case
where the sender advances the window in a large jump;
W ≥ 2T should suffice. A large value of T is desirable
so the sender can maximize the entropy of the sequence
number (see below); however, a larger T (and thus W)
requires more state at the verifier. Entropy can also be
kept higher by advancing the send window frequently.

The policy for advancing the verifier’s window past un-
seen packets should be set based on the probabilities of
loss, reordering and forgery. Because we are dealing with
enhanced services, loss and reordering are expected to be
rare events. A reasonable policy might be to require that
three (valid) packets with numbers beyond Lr +T be seen
for every unseen sequence number skipped.

Finally, consider the advancement of s. If we simply let
s be the arithmetically next sequence number, the high-
order bits of s will contain very little entropy. On the
other hand, if the sender chooses sequence numbers care-
fully the low-order bits of s will contain a good deal of en-
tropy. Assume that T is large enough that the low-order
byte of the sequence number in any packet is essentially
random. We want to “spread” this entropy over s a little
bit.

Let the actual sequence number be N , and divide N
into d-bit chunks. Assuming a 32-bit sequence number
and 8-bit chunks (bytes), let ni be the ith byte of N ,
with n0 the low-order and n3 the high-order byte. The
sender does the following: Let n′

0
= n0, and for i = 1, 2, 3

set n′

i
:= ni ⊕n′

i−1
. Then set s := n′

3
| . . . |n′

0
. The verifier

similarly divides s into n′

0
, . . . , n′

3
, and for i = 3, 2, 1 sets

ni := n′

i
⊕ n′

i−1
, and n0 := n′

0
. . The verifier uses N :=

n3|n2|n1|n0 as the sequence number, and applies the tests
described above. The effect of these two steps together
is to make it more difficult for an attacker to determine
whether the block cipher key has been guessed.

When multiple sources send packets to multiple des-
tinations using the same class, it presents problems for
the anti-replay mechanism. Some advance coordination
is required so that sources use different subsets of the
sequence number space. One possible solution is to parti-
tion the anti-replay sequence number space among source-
destination (or ingress-egress) pairs, using some bits of s
as a tag to designate the pair-path to which the packet
belongs. For example, using 8 bits suffices to designate
all combinations of 16 sources and 16 destinations. Each
source needs to know the tag for each destination with
which it communicates. Each verifier would need to main-
tain a separate, independent window of acceptable se-
quence numbers for each tag that it sees. The same s0

can be used for all tags.
The main drawbacks of this approach are a reduction

in sequence space available for each path, and additional
state required at each verifier. The reduced sequence
space can be ameliorated by using a cipher with a larger
block size, such as AES. Also, routers would see only tags
for paths of which they are a part; most routers would
need to keep state for only a few additional paths. On
the whole, however, the best solution may be to simply
establish a separate class for each sender.

4.3 Key Distribution

Each verifier along the path needs to acquire the secrets
k0, k1 and s0 from the sender in a secure fashion. This is
a nontrivial problem; group key distribution protocols are
an active research topic, especially for group services [1,
11]. Here we sketch the design of a solution that fits fairly
well within the general framework of RSVP.

The basic idea is to use extend RSVP so that the se-
crets needed to establish the FPAC state are carried in
an encrypted object in the RSVP path message [6]. To
accomplish this, a separate security association—i.e. a ci-
phersuite, keys, and other parameters needed to establish
a secure channel—must exist between each pair of adja-
cent RSVP-capable routers along the path. RSVP already
needs such hop-by-hop security associations to verify that
RSVP messages have not been tampered with, using the
integrity object [6]. In addition, a new fpacs object
would be defined for inclusion in the path message. The
fpacs object would contain a security association index
along with the three secrets, encrypted per the given se-
curity association. At each intermediate hop, the fpacs

object would be decrypted and re-encrypted under the
appropriate security association for the next hop. (This
is the same approach proposed for authentication with
the RSVP integrity object.)

The challenge is that the RSVP sending or forwarding
a path message may not be aware of what the next hop
will be, and therefore may not know which security as-

International Journal of Network Security, Vol.3, No.1, PP.54–64, July 2006 (http://isrc.nchu.edu.tw/ijns/) 60

2. Establish security association

3. FPACACK

4. PATH(FPACS)

1. PATH(empty FPACS)

R2R1

0. PATH(FPACS)

Figure 3: Message exchange for FPAC setup

sociation to use to encrypt the fpacs object. Therefore
an approach similar to that used to establish the initial
sequence numbers for RSVP integrity objects can be
used. (Refer to Figure 3.) The path message is initially
sent with an “empty” fpacs object, e.g. with the SA
index set to zero.

When a node receives such a message, it first deter-
mines whether a security association already exists with
the sender of the message, and if not, establishes one using
a standard key-management protocol. It then sends an
fpacack message (a new RSVP message, similar in func-
tion to the challenge message used for sequence number
initialization in RSVP [2]) back to the sender, to inform
it of the identity of the next hop for this class. The sender
then transmits subsequent path messages with complete
fpacs objects, including keys encrypted according to the
security association. Note that only the fpacs portion
of the path message is encrypted; the rest is transmitted
normally. Also, note that an intermediate node may need
to transmit path messages with fpacs objects encrypted
under multiple different security associations (e.g. in the
case of a multicast destination). This is, however, similar
to what must already be done for the integrity object.

Routers in a path that belong to a single administra-
tive domain could easily be configured with a common
security association for fpacs objects. For the case of
border routers, it seems likely that such routers will need
security associations for other purposes, especially if they
cooperate in providing premium or enhanced services to
customers.

4.4 Security

The security of FPAC rests on the security of the under-
lying block cipher. The use of the block cipher in FPAC
has been designed to to minimize known plaintext, and to
make it difficult for an attacker to determine whether the
key has been found. We believe that this design makes it
infeasible to systematically forge packets. Random FPAC
values will successfully verify with a probability that de-
creases exponentially with the length of the authentica-
tor V . When the anti-replay check is also considered,
the probability of a random FPAC code being accepted is
at most 2−BW , where B is the size of the block cipher.
So for a 64-bit block cipher and a window of 2048 accept-
able sequence numbers, the probability of random forgery
is no more than 2−53. This is sufficiently low to ensure
that forged packets do not steal a significant amount of

Table 1: Average Verification Costs for 1024-byte packets

Algorithm Cycles/Packet

HMAC-MD5 20951
FPAC (Khufu-8) 999
FPAC (Blowfish-16) 2056
FPAC (Khufu-8) with anti-replay 1521
FPAC (Blowfish-16) with anti-replay 2520

reserved resources from a class.

5 Implementation and Evaluation

We added authentication to the traffic control facility of
the Linux kernel (ver. 2.2.14). Traffic control provides
queueing disciplines, classes within queueing disciplines,
classification filters, and policing. Each network device
has an associated queueing discipline, which determines
how packets enqueued for that device are treated. When
a packet is forwarded by the kernel, after the outgoing
interface and next hop address are determined, control
gets the packet, classifies it, and decides if it should be
queued, dropped, or delayed.

In our implementation, authentication can be enabled
for a particular class. The necessary information, includ-
ing secrets, is distributed out-of-band in our implementa-
tion; anti-replay is a configurable option. The authenti-
cation method (and required secrets/initialization infor-
mation) are specified by the sender using a socket option
on the sending socket. At intermediate routers, this in-
formation is specified for the class via the tc program,
which provides an administrative interface to the traffic
control facility. At the source node, the FPAC code is
added in the kernel as part of the IP protocol processing.
It is carried in an IPv4 option whose length depends on
the particular authentication algorithm selected. At in-
termediate nodes, packets are authenticated during clas-
sification.

We implemented several authentication algorithms and
versions of FPAC, including HMAC-MD5, FPAC, in two
versions based on 16-round Blowfish [21] and 8-round
Khufu [21] as block ciphers, respectively. (Note that the
latter offers increased performance at the expense of re-
duced security.) Publicly-available versions of Blowfish,
Khufu, and MD5, with minor hand-tuning, were used. It
must be noted that as freely available code, the perfor-

International Journal of Network Security, Vol.3, No.1, PP.54–64, July 2006 (http://isrc.nchu.edu.tw/ijns/) 61

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 c

yc
le

s

Packet number (of size 1024 bytes)

FPAC with and without Anti-replay

FPAC Blowfish w/anti-replay
FPAC Blowfish

FPAC Khufu
FPAC Khufu w/anti-replay

Figure 4: Cycle count per packet

mance of these implementations should not be interpreted
as any kind of limit or indication of what can be achieved
with these algorithms. Rather, our purpose here is to il-
lustrate the general differences between approaches and
costs for the different parts of the algorithm.

First we measured the number of CPU cycles required
for each packet verification, with and without anti-replay,
for the different authentication algorithms. We instru-
mented our implementation to count the cycles required
to verify a packet on the forwarding path, using the cycle
counter (TSC register) on a 500 MHz Pentium III. For
each algorithm, we measured the cycles required for each
of 1000 packets of 1024 bytes each; the numbers presented
in Table 1 are the resulting averages. The interval mea-
sured was the time from when the authentication routine
was called (as part of traffic control processing) until it
returned. Note that these measurements are from packets
that arrived on one 100Mbps Ethernet interface and were
forwarded to another, on an unloaded machine.

Figure 4 shows details of the individual per-packet
measurements for four versions of FPAC using two dif-
ferent block ciphers, with and without anti-replay. Vari-
ations in the individual cycle counts are believed to be
due to the varying state of the cache upon packet ar-
rival. The difference between the top and bottom curves
illustrates the performance cost of increasing security, in
going from an 8-round block cipher without anti-replay
to a 16-round cipher with anti-replay—about 1300 cycles
per packet. Also, based on these figures we can place
the cost of the anti-replay check at about 500 cycles per
packet. Finally, we note that cost of HMAC-MD5 (which
does not include anti-replay) is about one decimal order
of magnitude higher than the slowest version of FPAC,
due to its need to “touch” every bit in the packet.

Figure 5 shows that the per-packet cost of FPAC is
independent of the packet size. We measured the cycle
count for packets of sizes from 100 bytes to 1400 bytes
in intervals of 200 packets. Each point is the average of

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 c

lo
ck

 c
yc

le
s

Packet size (in bytes)

HMAC-MD5
UMAC

FPAC-a (Blowfish)
FPAC-a (khufu)
FPAC-u (khufu)

Figure 5: Verification cost vs. packet size

the measured value of 1000 packets of that size; again,
each measurement was taken on a forwarded packet, with
no cache warming. Again, all the FPAC implementations
exhibit constant time, and are faster than conventional
MACs by a significant margin, even for the smallest pack-
ets.

This graph also includes data for UMAC, an end-to-
end MAC designed specifically for extreme speed in soft-
ware implementations [3]. UMAC belongs to the family of
MACs based on universal hash functions, and the version
measured provides a probability of forgery of about 2−60.
The numbers shown were obtained using a publicly avail-
able user-space implementation. The code was run on the
same machine used for the other measurements, and the
number shown was obtained by taking the “cycles per
byte” result output by the UMAC implementation and
multiplying it by the packet size. Note well that the code
from which the UMAC measurements were obtained is
extensively tuned. Most importantly, it primes the cache
before measurement, by executing the code once on the
input data before starting the clock. This makes a differ-
ence of about a factor of two in the total per-packet time.
Nevertheless, our fastest FPAC implementation is still a
factor of three faster than UMAC, even for smaller packet
sizes. These results show that eliminating unneeded secu-
rity properties pays off with significant performance im-
provement: even a straightforward implementation of the
FPAC algorithm significantly outperforms conventional
MACs implemented in software.

Finally, we verified that our authentication mechanism
does what it is supposed to do, by measuring performance
of a class with reserved bandwidth during a simulated
denial-of-service attack. The test setup is shown in Fig-
ure 6. The router B is connected to the sender A, receiver
C, and the attacker D via three different interfaces. At
router B, bandwidth of 500,000 bits/sec was reserved for
packets with destination address C. The sender at A and
the DoS attacker at D can both send UDP packets to C.

International Journal of Network Security, Vol.3, No.1, PP.54–64, July 2006 (http://isrc.nchu.edu.tw/ijns/) 62

Receiver

C

Sender

A

Attacker

D

DoS

Router − B

Figure 6: Test setup for measurements

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000 1200

A
rr

iv
al

 ti
m

e
(in

 s
ec

on
ds

)

Number of Packets (of size 1024 bytes)

Packet Arrival time with DoS Attacker

non-FPAC sender, no attack
non-FPAC sender, with attack

FPAC sender, no attack
FPAC sender, with attack

Figure 7: Packet arrivals vs. time

We recorded (at C) the arrival times of packets sent from
A, with and without the DoS interference from D, and
with and without FPAC; the results are shown in Figure 7.
Three of the four curves (“non-FPAC sender with no at-
tack”, “FPAC sender with no attack”, and “FPAC sender
with attack”) coincide: they show data arriving at C at
exactly the reserved rate. The other curve (“non-FPAC
sender with attack”) shows that when the DoS stream is
present and FPAC is not used, the rate of arrival of legiti-
mate packets at C is reduced by about a factor of two. We
emphasize that the point of these graphs is mainly quali-
tative and illustrative, rather than quantitative. The use
of block ciphers such as AES [18] offers the potential for
both higher performance (due to the availability of com-
mercial hardware accelerators that can reduce the cost
of encryption/decryption to a few dozen cycles per byte)
and better security (due to AES’s larger block size, which
gives a substantially lower probability of succeeding by
random guessing).

6 Related Work

Denial-of-service for regular best-effort service has re-
ceived a good deal of attention among researchers; the
problem problem of preventing denial of access attacks
against reserved resources has received substantially less.
The proposed standards for Integrated Services in the In-
ternet [5, 22, 26, 27] mention the problem, but do not
specify any particular solution. RSVP, the signaling pro-
tocol specified for use with Integrated Services, contains
provisions for authentication of signaling messages, but
they are irrelevant to the problem of authentication of
data packets. Some researchers have considered the prob-
lem of DoS attacks using the signaling and reservation
mechanisms as specified [19]. The active networking com-
munity has considered the general problem of controlling
access to all kinds of node resources, but proposed solu-
tions rely on conventional authentication mechanisms [8].
Shalunuv and Teitelbaum argue that the very notion of
“Quality of Service” should already imply resistance to
DoS [24], and suggest (as do we) that providers’ inabil-
ity to guarantee quality in the face of attacks has limited
demand for enhanced services. Handley and Greenhalgh
have outlined a novel architecture [10] that includes fea-
tures designed to make denial of service more difficult for
all traffic, not just traffic for which resources are reserved.

Braun [7] proposed a method that allows providers
of Differentiated Services to distinguish valid packets
from malicious packets, by having the source “sign” each
packet and QoS routers verify each packet. Braun’s
method, however, does not use cryptographic primitives,
and therefore its security properties are difficult to quan-
tify.

The high computational cost of conventional end-to-
end MAC methods bashed on cryptographic hash func-
tions is a well-known problem [25]. Additional evidence of
this is provided by the competition to design the fastest
hash function. UMAC [3] is claimed to be one of the
fastest current MAC functions for implementation in soft-
ware. UMAC is claimed to cost less than one machine
cycle per byte for messages larger than about 2Kbytes,
however its per-byte cost for small messages is signifi-
cantly larger. Also, the cost of UMAC will always ex-
ceed the minimum cost of an HMAC-SHA1 computation,
because UMAC requires computing HMAC-SHA1 over a
small block.

Both the security and performance of FPAC rest
on the same properties of an underlying block cipher.
Schneier [21] presents a comprehensive overview of block
ciphers, including a performance comparison of several al-
gorithms. Schneier claims that his Blowfish algorithm can
be implemented for 26 cycles per byte, or about 210 cy-
cles for a block encryption. We have so far been unable to
reproduce those numbers, but we have not attempted to
optimize our code signficantly. Given a block algorithm
of such speed, the per-packet times of FPAC would be re-
duced by a factor of about three from those given in the
previous section.

International Journal of Network Security, Vol.3, No.1, PP.54–64, July 2006 (http://isrc.nchu.edu.tw/ijns/) 63

7 Conclusions

We have carefully examined the problem of protecting
the resources required to implement enhanced network
services. We concluded that the most plausible attack
scenario involves an adversary whose capabilities are suf-
ficiently limited that it is reasonable to forego some of
the security guarantees provided by conventional message
authentication checks, in order to reduce the cost of per-
packet authentication. This cost must be low enough to
preclude denial-of-service attacks based on exceeding the
capacity of the verification machinery.

Accordingly, we have proposed a new approach that
provides reduced security at significantly reduced per-
packet cost. The approach, which we call FPAC, is not a
substitute for more powerful algorithms when it comes to
end-to-end security and integrity. However, it is a good
match for the problem of ensuring that reserved band-
width and buffering are always available for those users
who have paid for premium service. It is not clear whether
the general lack of enthusiasm for premium services in the
present Internet is due to the inability of service providers
to preclude attacks like those considered here. If that is
indeed the case, FPAC—or other codes designed for the
same purpose—may enable deployment of such services
to grow in the future.

We have implemented FPAC, and presented data on
its performance. However, comparing performance of
software-based implementations is somewhat beside the
point. The goal is to design a mechanism suitable for im-
plementation in hardware, FPGA or network processor
that can run at many multiples of line speed. We believe
FPAC achieves that goal.

References

[1] R. Atkinson and S. Floyd, IAB Concerns and Recom-
mendations Regarding Internet Research and Evolu-
tion, Internet Architecture Board, RFC 3869, Aug.
2004.

[2] F. Baker, B. Lindell, and M. Talwar, RSVP Crypto-
graphic Authentication, RFC 2747, Jan. 2000.

[3] J. Black, S. Halevi, H. Krawcyk, T. Krovets, and P.
Rogaway, “UMAC: Fast and secure message authen-
tication,” in CRYPTO ’99, LNCS 1666, pp. 216-233,
Sringer-Verlag, 1999.

[4] S. Blake et al., An Architecture for Differentiated
Service, RFC 2475, Dec. 1998.

[5] R. Braden, D. Clark, and S. Shenker, Integrated
Services in the Internet Architecture: An Overview,
RFC 1663, June 1994.

[6] R. Braden, Resource Reservation Protocol (RSVP)
– Functional Specification (ver. 1), RFC 2205, Sept.
1997.

[7] M. J. Braun, Mitigating Denial of Service
Attacks on Differentiated Services Networks,
Naval Postgraduate School, A960704, Sept. 2002,
http://www.stormingmedia.us/96/9607/A960704.html.

[8] R. Campbell, D. Mickunas et al, Building a Dynamic
Interoperable Security Architecture for Active Net-
works, Quarterly Project Report of the Seraphim
Project, Jan. 2001.

[9] CERT Coordination Center, Denial of Service
Attacks, Carnegie Mellon University, Oct. 2005,
http://www.cert.org/tech tips/denial of service.html.

[10] M. Handly and A. Greenhalgh, “Steps towards a
DoS-resistant Internet architecture,” in ACM Work-
shop on Future Directions in Network Architecture,
pp. 49-56, Portland, Oregon, Aug. 2004.

[11] T. Hardjono and B. Weis, The Multicast Group Se-
curity Architecture, Internet Engineering Task Force,
RFC 3740, Mar. 2004.

[12] S. Kent and R. Atkinson, Security Architecture for
the Internet Protocol, RFC 2401, Nov. 1998.

[13] S. Kent and R. Atkinson, IP Authentication Header,
RFC 2402, Nov. 1998.

[14] S. Kent and R. Atkinson, IP Encapsulating Security
Payload (ESP), RFC 2406, Nov. 1998.

[15] H. Krawcyk, M. Bellare, and R. Canetti, HMAC:
Keyed-hashing for Message Authentication, RFC
2104, Feb. 1997.

[16] M. Moyer, J. Rao, and P. Rohatgi, “A survey of secu-
rity issues in multicast communications,” IEEE Net-
work Magazine, vol. 13, no. 6, pp. 12-23, Nov./Dec.
1999.

[17] National Institute of Standards and Technology, Dig-
ital Signature Standard, Federal Information Pro-
cessing Standards Publication 186, 1994.

[18] National Institute of Standards and Technology, Ad-
vanced Encryption Standard, Federal Information
Processing Standards Publication 197, Nov. 2001.

[19] D. Reeves, F. Wu, P. Wurman, D. Stevenson,
and X. Wu, Protecting Network Quality of Ser-
vice Against Denial of Service Attacks, North
Carolina State University, A938024, Dec. 2003,
http://www.stormingmedia.us/93/9380/A938024.html.

[20] S. Savage, D. Wetherall, A. Karlin, and T. Ander-
son, “Practical network support for IP traceback,”
in ACM SIGCOMM 2000, pp. 295-306, Aug. 2000.

[21] B. Schneier, Applied Cryptography, Wiley, 1996.
[22] S. Shenker, C. Partridge, and R. Guerin, Specifica-

tion of Guaranteed Quality of Service, RFC 2212,
Sept. 1997.

[23] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F.
Tchakountio, S. Kent, and W. Strayer, “Hash-based
IP traceback,” in ACM SIGCOMM 2001, pp. 3-14,
Aug. 2001.

[24] S. Shalunov and B. Teitelbaum, “Quality of service
and denial of service,” in ACM SIGCOMM 2003, pp.
137-140, Karlsruhe, Germany, Aug. 2003,

[25] J. Touch, “Performance analysis of MD5,” in ACM
SIGCOMM ’95, pp. 77-86, Cambridge, USA, Sept.
1995.

[26] J. Wroclawski, The Use of RSVP with IETF Inte-
grated Services, RFC 2210, Sept. 1997.

[27] J. Wroclawski, Specification of the Controlled-Load
Network Element Service, RFC 2211, Sept. 1997.

International Journal of Network Security, Vol.3, No.1, PP.54–64, July 2006 (http://isrc.nchu.edu.tw/ijns/) 64

Kenneth L. Calvert is Associate
Professor in the Department of Com-
puter Science at the University of
Kentucky. His research deals with
the design and implementation of ad-
vanced network protocols and ser-
vices. Current projects include
network programmability, generalized

routing, network security, and models of Internet topol-
ogy. He holds a PhD in Computer Science from the Uni-
versity of Texas at Austin.

Srinivasan Venkatraman holds a Bachelor of Engineer-
ing in Computer Science and a Master of Science in Math-
ematics, both from the Birla Institute of Technology and
Science, Pilai, India. He also holds a Master of Science in
Computer Science from the University of Kentucky, Lex-
ington, Kentucky, USA. He has also worked as a Senior
Software Engineer at Wipro Infotech in Bangalore, India.

James N. Griffioen is an associate
professor in the department of com-
puter science at the University of Ken-
tucky. His received a Ph.D in com-
puter science from Purdue University
in 1991. His research interests in-
clude network protocols, distributed
systems, and multimedia systems.

