
International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 23

Password-Based Encrypted Group Key
Agreement

Ratna Dutta and Rana Barua

(Corresponding author: Ratna Dutta)

Stat-Math Unit, Indian Statistical Institute

203, B.T. Road, Kolkata, India 700108 (Email: {ratna r,rana}@isical.ac.in)

(Received Aug. 18, 2005; accepted Sept. 19, 2005)

Abstract

This paper presents an efficient password-based authenti-
cated encrypted group key agreement protocol immune to
dictionary attack under the computation Diffie-Hellman
(CDH) assumption. In a password-based key agreement
protocol, the users only share a human-memorable low en-
tropy password; and using this low-entropy password, the
users can agree upon a high-entropy session key which
they may use to build a secure communication chan-
nel among themselves. While designing such protocols,
one should limit the number of on-line password guess-
ing and achieve the security against dictionary attack.
Our protocol is obtained from the multi-party key agree-
ment protocol of Kim et al. We analyze the security in
the security model formalized by Bellare et al. following
their proof techniques. Our proposed scheme achieves ef-
ficiency in both communication and computation aspects
and is proven to be secure in both the ideal cipher model
and the random oracle model.

Keywords: CDH problem, dictionary attack, encrypted
group key agreement, password-based protocol

1 Introduction

A password-based group key agreement protocol allows
a group of users, who share only a low entropy human-
memorable password and communicating over a public
network, to agree upon a high entropy session key among
themselves. This session key can later be used to imple-
ment secure multi-cast sessions.

In common scenario, a user cannot remember long ran-
dom numbers and he has to store it somewhere in his
system. This requires an extra security burden and in-
troduces a new point of weakness. Password-based pro-
tocols enable us to remove this weakness. These proto-
cols require the users simply to remember a low quality
human-memorable weak secret shared password (say, a
4 digit PIN number or a 6 character string) chosen uni-
formly from a relatively small dictionary rather than high

quality symmetric encryption key. A password-based key
agreement enables to establish a strong session key from
a weak shared secret.

Password-based key agreement protocols can be use-
ful for highly mobile environments, such as emergency
rescue and military operations [44, 46, 56], confer-
ence/meeting [3, 46], personal networking [8, 26] etc.
These applications require collaboration among a small
group of users where the system lacks a fixed security in-
frastructure. The users share only a human-memorable
low entropy password. Using this low entropy password,
users can agree upon a high entropy session key by invok-
ing a secure password-based group key agreement proto-
col and use this strong symmetric session key to build a
secure communication channel among themselves.

Password-based protocols are associated with many se-
curity concerns, mainly because most user’s passwords
are drawn from a relatively small and easily generated
dictionary. An adversary can try all possible combina-
tions of secret keys in a given small set of values (i.e. the
dictionary) using a brute-force method. This attack is
not effective in case of high-entropy key, but can be very
damaging when the secret key is a low-entropy password,
because the attacker has a non-negligible chance of win-
ning. This off-line exhaustive search is called dictionary
attack. To achieve security against dictionary attack is
a fundamental security goal in designing password-based
authenticated key agreement protocols.

Another security attribute is on-line guessing attack
or impersonation attack in which the adversary attempts
to impersonate a user by guessing the password. If
the attack fails, the adversary can eliminate this value
from the set of possible passwords. For a real world
adversary, such on-line attacks are hardest to prevent
and easiest to detect. We make a realistic assumption
that the number of on-line attacks an adversary can
mount is severely limited; the adversary will not be able
to eliminate (guess) more than one password after one
active interaction with some user. We do not impose
such restrictions on other attacks like off-line password
guessing, eavesdropping etc.

International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 24

Survey on Previous Work: The problem of password-
based protocols has an extensive history. The first work
to deal with off-line dictionary attacks is by Bellovin and
Merritt [7]. They introduced a family of Encrypted Key
Exchange (EKE) protocols to withstand dictionary at-
tack. This work is very influential and become the basis
for much future work in the area. Following it, a number
of protocols for password-based key exchange have been
proposed [25, 50], security of which are based on heuristic
arguments. For a survey of works and techniques related
to password-authentication, we refer to [24, 30, 42].

Halevi and Krawczyk [24] first considered a rigor-
ous treatment of the security model for password-based
authenticated protocol and provided a scheme formally
proven to be secure under standard assumptions. Bo-
yarsky [9] enhanced this protocol to make it secure in the
multi-user scenario. The Halevi-Krawczyk model consid-
ered an asymmetric hybrid model in which one party (the
server) may hold a high-quality key and the other party
(the human) may hold a password. This model is inap-
plicable to settings in which communication has to be es-
tablished among humans sharing a common low-entropy
password. Recently, two formal models for password-
based key exchange have been proposed. One by Bellare,
Pointcheval and Rogaway [6] which is based on [4, 5] and a
second by Boyko, MacKenzie and Patel [10] following [48].

Bellare et al. proposed a 2-party password-based
protocol in [6]. An extension of this work to multi-
party setting is presented by Bresson et al. [13]. Bres-
son et al. [12] examine the security of 2-party AuthA

password-authenticated key exchange protocol standard-
ized by IEEE P1363 Study Group and prove its security
following the proof technique of [13]. The security of all
these schemes are both in the random oracle and the ideal
cipher model.

In the ideal cipher model, a keyed cipher is viewed as
a family of random permutations that are queried via or-
acle to encrypt and decrypt. If the same query is asked
twice, identical answers are provided and for each new
query, a truly random value is prodeced by the oracle. In
practice, any deterministic symmetric encryption function
can instantiate the ideal cipher (see [6] for concrete con-
structions). For example, AES [43] can be used for this
purpose. Ideal cipher model does not provide the same
security guarantees as those in the random oracle and the
standard models, but it is certainly superior to those pro-
vided by ad-hoc protocol designs. Reducing ideal-cipher
model assumption is an interesting research problem.

Using the multi-party simulatibility technique [41],
Boyko et al. [10] and MacKenzie et al. [38] presented
protocols (2-party) which are secure in the random or-
acle model. Goldrich and Lindell [21] provided a protocol
based on general assumptions and prove its security in
the standard security model of [10]. Unfortunately, their
protocol is much inefficient for practical use and does not
allow concurrent executions. Independent of this work,
Katz, Ostrovsky and Yung [28] suggested a highly efficient

password-authenticated key exchange (2 party) protocol
under standard DDH assumption in the security model
of [6].

There are several works extending 2-party Diffie-
Hellman key exchange protocols to multi-party setting.
To design group key agreement protocols in password-
based setting is another flavor of group key agreement.
The only work in this area is, to the best of our knowl-
edge, by Bresson et al. [13]1. As already mentioned, their
proposed scheme is secure in both the random oracle
model and the ideal cipher model.

Our Contribution: In this work, we present a very
efficient encrypted group key agreement protocol in
password-based setting where the members of the group
share only a human-memorable password and the system
may not have any secure public key infrastructure.

In our construction, users communicate over an inse-
cure public network and share only a low quality pass-
word among themselves. No secure private communica-
tion channel is assumed to be held by the users. The goal
of our work is to agree upon a high quality common secret
key among the users bootstrapped from this low quality
password. Once the users agree upon a high quality se-
cret session key, they can use this key to build secure multi
cast channel among themselves and can communicate in
a private and authenticated manner. The emphasis of
this work is in protecting passwords against dictionary
attacks that take advantage of low entropy of the chosen
password.

Recently, Kim, Lee, Lee [31] presented an efficient con-
stant round authenticated group key agreement proto-
col. Our password-based group key agreement is based on
their protocol. It is not a trivial task to convert a prov-
ably authenticated group key agreement into a password-
based group key agreement. The straight-forward con-
version of the protocol of Kim et al. [31] by replacing
the signature scheme by a symmetric encryption scheme
using the password as secret key does not enable the pro-
tocol to regist off-line dictionary attacks due to presence
of redundancy in the second round communication. To
remove this redundancy, we make several modifications
in the unauthenticated version of the protocol of [31]
and then apply encryption-based authentication mecha-
nism using the password as secret key to transform it
into a secure password-based protocol that withstand dic-
tionary attack. This yields our password-based scheme.
We provide a concrete security analysis of our protocol in
the security model formalized by Bellare et al. [6] under
CDH assumption and security against dictionary attack
is achieved in both the random oracle and the ideal cipher
model.

Our proposed scheme is efficient from communication

1Very recently, we came to know about another password-based
group key agreement by Lee et al. [34]. However, the protocol is
not authenticated because there is no way to convince a user that
the message that he receives is indeed comming from the intended
participant.

International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 25

point of view as it requires only 2 rounds and uses sym-
metric key encryption instead of signature for message
authentication. This reduces the bandwidth of the mes-
sages sent and makes the protocol faster as compared to
signature-based key agreement protocols. Thus the com-
munication efficiency is increased.

On a more positive note, each group member performs
at most 3 modular exponentiations, 4 one-way hash func-
tion evaluations, n − 1 XOR operations, 2 encryptions
and n + 1 decryptions. The operations dependent on the
number of group members are the XOR operation and
symmetric key decryption operation. These highly re-
duce the total cost of computation as compared to other
multi-party (password-based [13]) key agreement proto-
cols [15, 31]. In contrast to the password-based group key
agreement protocol of Bresson et al. [13], our protocol is
applicable for large number of participants. The number
of participants in the protocol of [13] is restricted to be
small (n ≤ 100); otherwise the protocol becomes imprac-
tical and inefficient as the number of rounds is linearly
dependent on n. Our protocol being of constant round
and highly efficient, does not require to impose such a
restriction on n.

The rest of the paper is organized as follows. In Section
2, we recall some definitions and the security model for
password-based group key agreement. Our protocol is
presented in Section 3. The security analysis is focused
in Section 4. In Section 5, we discuss how to incorporate
mutual authentication to our protocol. We analyze the
efficiency of our protocol in Section 6 and finally, conclude
in Section 7.

2 Preliminaries

In this section, we define the Computation Diffie-Hellman
(CDH) problem and describe the security notion that
a password-based group key agreement protocol should
achieve. We use the notation a∈RS to denote that a is
chosen uniformly from the set S.

2.1 Computation Diffie-Hellman (CDH)
Problem

Let G = 〈g〉 be a multiplicative group of some large
prime order q. Then Computation Diffie-Hellman (CDH)
problem in G is defined as follows:

Instance: (g, ga, gb) for some a, b ∈ Z∗
q .

Output: gab.

The success probability of any probabilistic, polynomial-
time algorithm A in solving CDH problem in G is defined
to be:

SuccCDH
G,A = Prob[A(g, ga, gb) = gab : a, b∈RZ∗

q].

CDH assumption: There exists no probabilistic,
polynomial-time algorithm that (t, ε)-breaks CDH prob-

lem in G. In other words, for every probabilistic,
polynomial-time algorithm A, SuccCDH

G,A ≤ ε for sufficiently
small ε > 0.

2.2 Security Model

We now briefly describe the formal security model of Bel-
lare et al. [6] as standardized by Bresson et al. [12, 13]
and refer the reader to [6, 12, 13] for more details.

A protocol P for password-based group key agreement
assumes that there is a set P = {U1, U2, . . . , Un} of n users
(n is fixed), who share a low entropy secret password pw

drawn uniformly from a small dictionary of size N . The
adversary is given control over all communication in the
external network.

We assume that users do not deviate from the protocol
and adversary never participates as a user in the proto-
col. This adversarial model allows concurrent execution
of the protocol among n users. The interaction between
the adversary A and the protocol participants occur only
via oracle queries, which model the adversary’s capabil-
ities in a real attack. These queries are as follows (Πi

U

denotes the i-th instance of user U and ski
U denotes the

session key after execution of the protocol by Πi
U):

– Send(U, i, m): The adversary can carry out an ac-
tive attack by this query. The adversary may in-
tercept a message and then either modify it, create
a new one or simply forward it to the intended par-
ticipant. The output of the query is the reply (if
any) generated by the instance Πi

U upon receipt of
message m. The adversary is allowed to prompt the
unused instance Πi

U to initiate the protocol by invok-
ing Send(U, i, “Start”).

– Execute({(U1, i1), . . . , (Un, in)}): This query reflects
the adversary’s ability to passively eavesdrop on hon-
est execution of password-based group key agreement
protocol among unused instances Πi1

U1
, . . . , Πin

Un
and

outputs the transcript of the execution. A transcript
consists of the messages that were exchanged during
the honest execution of the protocol.

– Reveal(U, i): If a group key ski
U has previously been ac-

cepted by Πi
U , then it is retured to the adversary un-

conditionally by Πi
U . Otherwise a value NULL is re-

turned. This query allows the adversary to learn ses-
sion keys from previous and concurrent executions,
modeling improper exposure of past session keys and
insuring independence of different session keys in dif-
ferent execution.

– Corrupt(U): This query models the attacks resulting
in the password pw to be revealed. A gets back from
this query pw, but does not get any internal data on
U . This is weak corruption model. There is another
notion, called strong corruption model where the in-
ternal data of U also gets revealed on Corrupt(U)
query. This query models the security level of for-
ward secrecy which means the adversary does not

International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 26

learn any information about previous established ses-
sion key when making a Corrupt query.

– Test(U, i): This query is allowed only once, at any time
during the adversary’s execution. A bit b ∈ {0, 1} is
chosen uniformly at random. The adversary is given
ski

U if b = 1, and a random session key if b = 0. This
oracle measures the adversary’s ability to distinguish
a real session key from a random one.

Note that one cannot prevent the adversary to guess
the password on-line because the passwords have low en-
tropy. The Execute query does not carry out any on-line
guessing attack since the adversary is passive there. So
only the Send queries count such on-line password guess.
Now if qS is the maximum number of Send queries that
an adversary may ask, then qS represents the number of
flows the adversary may have built by himself and thus
the number of passwords he would have tried.

One can define the session identity sidi
U for instance

Πi
U to be

sidi
U := S = {(U1, i1), . . . , (Un, in)}

such that (U, i) ∈ S and Πi1
U1

, . . . , Πin

Un
are involved in the

session to agree upon a common key. The session identity
uniquely identifies a session. Note that all the instances
involved in a session have same session identity. We also
assume that an instance of a user participates in at most
one session. This means that the session identities of an
instance for different sessions are mutually disjoint. We
also define a boolean function acci

U which is set to be
1 by Πi

U upon normal termination of the session and 0
otherwise.

The correctness of the protocol P means that if the in-
stances Πi1

U1
, . . . , Πin

Un
having same session identity accept,

then the instances must conclude with the same session
key. In other words, if sid

ij

Uj
= sidik

Uk
for 1 ≤ j, k ≤ n

such that acc
ij

Uj
= 1 for 1 ≤ j ≤ n, then sk

ij

Uj
= skik

Uk
for

1 ≤ j, k ≤ n.
The Send, Execute, Reveal and Corrupt queries are

asked several times, but Test query is asked only once and
on a fresh instance. We say that an instance Πi

U is fresh
if (1) no Corrupt query has been made by the adversary
since the begining of the game; and (2) Πi

U has computed
a session key and neither Πi

U nor its partners have been
asked a Reveal query (i.e. the adversary queried neither
Reveal(U, i) nor Reveal(U ′, j) with (U ′, j) ∈ sidi

U , U ′ ∈ P).
A fresh instance should have computed a session key that
is accepted by the instance.

Finally adversary outputs a guess bit b′. Such an ad-
versary is said to win the game if b = b′ where b is the
hidden bit used by the Test oracle.

Let Succ denote the event that the adversary A wins
the game for a protocol P . We define

AdvA,P := |2 Prob[Succ] − 1|

to be the advantage of the adversary A in attacking the
protocol P where the probability space is over all the ran-
dom coins of the adversary and all the oracles.

We denote by AdvAKA
P (t, qE , qS) the maximum advan-

tage of any adversary attacking protocol P , running in
time t and making qE calls to the Execute oracle and
qS calls to the Send oracle. Next we define the security
against dictionary attack for a password-based protocol
as follows [20]:

Definition 1. A password based group key agreement pro-
tocol P is secure against dictionary attack if for every
dictionary D,

AdvAKA
P (t, qE , qS) ≤

qS

|D|
+ ε(l)

where ε is a negligible function in the security parameter
l of the system.

This means that the advantage of an adversary essen-
tially grows with the ratio of number of interactions to
number of passwords. A polynomially-many calls to the
Execute and the Reveal oracles are of no help to an adver-
sary. So the best that an adversary can do is just trying
its luck by guessing the password in active on-line (im-
personation) attacks.

Remark 2. Session identity is required to identify a
session uniquely and all participants executing a session
should hold the same session identity. Conventionally,
session idetity sidi

U for an instance Πi
U is set to be the

concatenation of all (broadcasted) messages sent and re-
ceived by Πi

U during its course of execution. This essen-
tially assumes that all the partners of Πi

U hold the same
concatenation value of sent and received messages which
may not be the case in general. Our definition of session
identity is different and can be applied for more general
protocols.

Remark 3. We will make the assumption that in each
session at most one instance of each user participates.
Further, an instance of a particular user participates in
exactly one session. This is not a very restrictive as-
sumption, since a user can spawn an instance for each
session it participates in. On the other hand, there is an
important consequence of this assumption. Suppose there
are several sessions which are being concurrently executed.
Let the session ID’s be sid1, . . . , sidk. Then for any in-
stance Πi

U , there is exactly one j such that (U, i) ∈ sidj

and for any j1 6= j2, we have sidj1 ∩ sidj2 = ∅. Thus at
any particular point of time, if we consider the collection
of all instances of all users, then the relation of being in
the same session is an equivalence relation whose equiva-
lence classes are the session IDs. Moreover, an instance
Πi

U not only knows U , but also the instance number i –
this being achieved by maintaining a counter.

Remark 4. In a password-based group key agreement
protocol, a fixed set of participants share a low quality
password among themselves drawn uniformly from a rel-
atively small dictionary. When a new user wants to join
the group, he has to know the common password shared
by the group. Similarly, when a member wants to leave,

International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 27

the rest of the participants should choose a new password.
Handling dynamic operations (cf. join/leave) in password
based setting are thus messy and complicated. A password
setup algorithm is required to be executed by the set of
participants each time a membership change occurs. This
can essentially make the protocol vulnerable to dictionary
attacks since the size of the dictionary is small.

3 Protocol

Our protocol is based on the group key agreement pro-
tocol of Kim, Lee, Lee [31]. We modify their protocol to
password-based group key agreement and provide a con-
crete security proof in both the random oracle model and
the ideal cipher model under CDH assumption. We adopt
the formal security model of Bellare et al. [6] (as standard-
ized by Bresson et al. [13]) to prove the security against
dictionary attacks.

Suppose a set of n users P = {U1, U2, . . . , Un} share
a low entropy secret password pw drawn uniformly from
a small dictionary of size N and wish to establish a high
entropy common session key among themselves. We iden-
tify a user Ui with it’s instance Πdi

Ui
(for some integer di)

during a protocol execution and Un+i is taken to be Ui.

Let G = 〈g〉 be a multiplicative group of some large
prime order q and G = G \ {1}. Then G = {gx|x ∈
Z∗

q }. We take a cryptographically secure hash function

H : {0, 1}∗ → {0, 1}l where l is a security parameter,
l ≤ |q| (|q| is the bit length of q). We also consider three
block ciphers (Ek,Dk), (E ′

k,D′
k) and (E ′′

k ,D′′
k) where k is

a password uniformly drawn from a small dictionary of
size N . Here Ek, E ′

k and E ′′
k are keyed permutations over

G, {0, 1}2l and {0, 1}l respectively whilst Dk, D′
k and D′′

k

are the respective inverses of Ek, E ′
k and E ′′

k . We denote
the concatenation of A, B ∈ {0, 1}l by A|B. Figure 1
illustrates our password-based protocol for n = 5. The
formal description of the protocol is given below.

Procedure PwdKeyAgree (U [1, . . . , n])
(Round 1):
U0 = Un, Un+1 = U1;

1. for i = 1 to n do in parallel

2. Ui(= Πdi

Ui
) chooses xi∈RZ∗

q and nonce ki∈R{0, 1}l;
3. Ui computes Xi = gxi and Yi = Epw(Xi);
3. Ui sends Yi to Ui−1 and Ui+1;
4. end for

(Round 2):
Y0 = Yn, Yn+1 = Y1;

5. for i = 1 to n − 1 do in parallel
6. Ui on receiving Yi−1 from Ui−1 and Yi+1 from Ui+1

computes Xi−1 = Dpw(Yi−1), Xi+1 = Dpw(Yi+1) ;
7. Ui computes KL

i = H(Xxi

i−1), KR
i = H(Xxi

i+1),

Xi = KR
i ⊕ KL

i , Y i = E ′
pw(ki|Xi);

8. Ui sends Y i to the rest of the users;
9. end for
10.Un on receiving Yn−1 from Un−1 and Yn+1 from Un+1

computes Xn−1 = Dpw(Yn−1), Xn+1 = Dpw(Yn+1) ;

11.Un computes KL
n = H(Xxn

n−1), KR
n = H(Xxn

n+1),
Xn = kn ⊕ KR

n , Y n = E ′′
pw

(

Xn

)

;

12.Un sends Y n to the rest of the users;
Note that KR

i = KL
i+1 for 1 ≤ i ≤ n − 1 and KR

n = KL
1 ;

(Key Computation):
13.for i = 1 to n do in parallel
14. for j = 1 to n − 1, j 6= i do
15. Ui computes D′

pw(Y j) and extracts Xj , kj ;
16. end for
17. Ui computes Xn = D′′

pw(Y n);
18.end for
19.for i = 1 to n do in parallel
20. for j = 1 to i − 1 do
21. Ui computes KL

i−j = KL
i−j+1 ⊕ Xi−j ;

Note that KL
i−j = KR

i−j−1 and KL
1 = KR

n .
22. end for

Thus Ui has recovered KR
n .

23.end for
24.for i = 1 to n do in parallel
25. Ui computes kn = Xn ⊕ KR

n and the session key

skdi

Ui
= H(k1|k2| . . . |kn);

26.end for
end PwdKeyAgree

We consider the users U1, . . . , Un participating in the
protocol, are on a ring and Ui−1, Ui+1 are respectively
the left and right neighbors of Ui for 1 ≤ i ≤ n (U0 =
Un, Un+1 = U1). In the first round, each user Ui chooses
randomly a private key xi∈RZ∗

q and a nonce ki∈R{0, 1}l,
computes Xi = gxi, encrypts it using the password and
sends the encrypted value to his neighbors Ui−1, Ui+1. In
the second round, each user Ui recovers Xi−1, Xi+1 by
decrypting the encrypted values that he receives from his
neighbors, computes his left key KL

i = H(Xxi

i−1) and right

key KR
i = H(Xxi

i+1). User Ui, for 1 ≤ i ≤ n− 1 computes

Xi = KR
i ⊕ KL

i and sends Y i = E ′
pw(ki|X i) to the rest

of the users in the second round. In contrast, user Un

computes Xn = kn ⊕ KR
n and sends Y n = E ′′

pw(Xn) in
this round. We note that right key of Ui is same as the
left key of Ui+1. Finally each user Ui on receiving the
encrypted messages Y j from all the users, decrypts those
and extracts Xj , for 1 ≤ j ≤ n and n − 1 nonces kj ,
1 ≤ j ≤ n − 1. User Ui then recovers the nonce kn by
computing KR

n as follows making use of his own left key
KL

i and right key KR
i .

Ui computes KL
i−j = KL

i−j+1 ⊕ Xi−j for 1 ≤ j ≤ i −

1. Note that KL
i−j = KR

i−j−1 and KL
1 = KR

n . Thus

Ui recovers the right key KR
n of Un. Then Ui computes

the nonce kn = Xn ⊕ KR
n and computes the session key

skdi

Ui
= H(k1|k2| . . . |kn).

Remark 5. The procedure PwdKeyAgree is obtained by
modifying the unauthenticated protocol of Kim et al. [31]
by introducing encryption-based authentication mecha-
nism. The direct replacement of the signature scheme
used in [31] by a symmetric encryption scheme using the
password as secret key does not yield a secure password-
based protocol and one can mount an off-line dictionary

International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 28

U1 U2 U3 U4 U5

• • • • •
pw pw pw pw pw

x1, k1 x2, k2 x3, k3 x4, k4 x5, k5

Epw(gx1) Epw(gx2) Epw(gx3) Epw(gx4) Epw(gx5) : Round-1

Communications: Ui sends Epw(gxi) to Ui−1, Ui+1, 1 ≤ i ≤ 5, U0 = U5, U6 = U1

Ui on decryption recovers gxi−1 , gxi+1, 1 ≤ i ≤ 5, x0 = x5, x6 = x1

Ui computes KL
i = H(gxi−1xi), KR

i = H(gxixi+1), 1 ≤ i ≤ 5, x0 = x5, x6 = x1

Ui, 1 ≤ i ≤ 4 computes Xi = KR
i ⊕ KL

i and U5 computes X5 = k5 ⊕ KR
5

E ′
pw

(

k1|X1

)

E ′
pw

(

k2|X2

)

E ′
pw

(

k3|X3

)

E ′
pw

(

k4|X4

)

E ′′
pw

(

X5

)

: Round-2

Communications: Ui, 1 ≤ i ≤ 4 sends E ′
pw

(

ki|Xi

)

to Uj , 1 ≤ j ≤ 5, j 6= i

and U5 sends E ′′
pw

(

X5

)

to Uj , 1 ≤ j ≤ 4

Ui, 1 ≤ i ≤ 5 on decryption recovers kj |Xj , 1 ≤ j ≤ 4, j 6= i and X5 and extracts kj , 1 ≤ j ≤ 4
Ui, 1 ≤ i ≤ 5 recovers KR

5 and and computes k5 = X5 ⊕ KR
5

The session key sk = H(k1|k2|k3|k4|k5)

Figure 1: Password-based group key agreement among n = 5 users

attack as follows: Observe that in the unauthenticated
version of the protocol of Kim et al. [31] with n users,
each user Ui for 1 ≤ i ≤ n − 1 sends ki|Ti whilst
user Un sends kn ⊕ KR

n |Tn in the second round, where
Ti = KL

i ⊕KR
i for 1 ≤ i ≤ n. We thus obtain the relation

T1⊕T2⊕. . .⊕Tn = 0. Now when we introduce encryption-
based authentication mechanism using the password as the
secret key, the ciphertexts in the second round communi-
cation are simply the encryption of ki|Ti for 1 ≤ i ≤ n−1
and the encryption of kn⊕KR

n |Tn. Thus the plaintexts are
co-related instead of being random. This redundancy en-
ables an adversary to make the protocol vulnerable to dic-
tionary attacks by guessing the password off-line and veri-
fying whether the decrypted values (k1|Ti for 1 ≤ i ≤ n−1,
kn ⊕KR

n |Tn) in the second round communication leads to
T1 ⊕ T2 ⊕ . . . ⊕ Tn = 0. If so, the adversary’s guess for
password is correct. To prevent such attacks, we remove
the redundancy by restricting Un to send the encryption
of only kn ⊕KR

n instead of kn ⊕KR
n |Tn in this round. As

a result, the key computation is appropriately modified.

Remark 6. Generally, while executing this protocol, we
identify a user Ui with its instance Πdi

Ui
, where di is the

instance number of the user in the session being executed.
At the start of the protocol, the session identity siddi

Ui
may

not be known. This set may be build up (by each par-
ticipant) as the protocol proceeds. Moreover, when an
instance Πi

U aborts the protocol, it sets acci
U = 0 and

ski
U = NULL. The procedure PwdKeyAgree may be appro-

priately modified to include these. The details are omitted.
Note that the algorithms are correct provided the users
are honest, i.e. they do not deviate from the protocol (we

additionally assume that the adversary never participates
as a user). Then after the execution of the protocol, the
group of users agree upon a common session key.

4 Security Analysis

We will show that our password based authenticated
group key agreement protocol is secure in the model as
described in Subsection 2.2. Our protocol is based on the
CDH assumption and security is achieved in both the ran-
dom oracle model and the ideal cipher model. However,
this proof does not deal with forward secrecy. We leave
it for full version.

Theorem 1. The password based encrypted key agree-
ment protocol P described above satisfies the following:

Adv
AKA
P (t, qE , qH , qE , qS) ≤

q2

E

min{(q − 1), 2l}
+

2qS

N
+ B

B = 4qHq
2

SSucc
CDH
G (t)

where t is the time bound of the protocol execution P ,
N is the size of the dictionary of all possible passwords
and qE , qH , qE , qS are respectively the maximum number
of encryption/decryption, hash, Execute and Send queries
an adversary may make.

Proof. Suppose A is an adversary attacking the password
based encrypted protocol P . We incrementally define a
sequence of games starting from the real game G0 and
ending up at G4. We define the following two events for
game Gi, 0 ≤ i ≤ 4:

International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 29

– Si := the event that b = b′ where b is the hidden bit
involved in the Test query and b′ is it’s guess output
by the adversary A in game Gi.

– Encrypti := the event that A makes a Send query on
a message that is encrypted by A itself by guessing
the password (i.e. A gets the encryption capability
by guessing the password) in game Gi.

The probability of the event Encrypti measures the
security against dictionary attack.

Game G0: This is the real attack and is initialized by
drawing a password pw from the set of all possible pass-
words. The adversary A is given all the instances of users
in order to cover concurrent execution of the protocol P .
The adversary also has access of several oracles: hash ora-
cle, encryption/decryption oracles, Execute, Send, Reveal

and Test oracles and can submit a polynomial number of
queries to these oracles. Finally, A outputs its guess b′

for the bit b involved in the Test query. In this case, A’s
advantage is equal to the advantage in the real protocol
P . Hence by definition,

AdvAKA
A,P = 2 Prob[S0] − 1.

Game G1: In this game, the Send, Execute, Reveal and
Test queries are simulated as in the real attack. We simu-
late the hash oracle and the encryption/decryption oracles
as in the game G0 by maintaining a hash list Hlist of size
qH , an encryption list Elist of size qE and a decryption list
Dlist as follows (the lists are initially empty).

– Hash query: For a hash query H(m) such that a record
(∗, m, r) appears in Hlist, the answer is r. Otherwise,
choose a random r ∈ {0, 1}l and set H(m) = r. The
record (δ, m, r) is added to Hlist where δ ∈ {0, 1} is
a bit indicating the originator of the query: δ = 0 if
the query comes from the simulator and δ = 1 if the
query comes from the adversary.

– Encryption query: For an encryption query Ek(X)
(E is either E or E ′ or E ′′) such that a record
(δ, k, X, Λ, Y) appears in Elist (δ is either 0 or 1
and Λ is either E or D), the answer is Y . Other-
wise, a random ciphertext Y of length |X | is chosen
and the record (δ, k, X, E, Y) is added to Elist where
δ ∈ {0, 1}. If the query comes from the simulator, δ

is set to be 0; else the query is directly asked by the
adversary and δ is set to be 1.

– Decryption query: For a decryption query Dk(Y)
(D is either D or D′ or D′′) such that a record
(δ, k, X, Λ, Y) appears in Elist (δ is either 0 or 1 and
Λ is either E or D), the answer is X . Otherwise, the
following rule is applied to obtain the answer X .
Case 1: if D = D, then X = gr where r is chosen
randomly from Z∗

q .
Case 2: if D = D′, then X = r1|r2 where r1, r2 ∈
{0, 1}l are chosen uniformly at random.
Case 3: if D = D′′, then X = r where r ∈ {0, 1}l is

chosen uniformly at random.
The record (k, Y, D, X) is added to Dlist and the
record (0, k, X, D, Y) is added to Elist. Note that
a record (k, Y, D, X) appears in Dlist if and only if
Dk(Y) is asked first before the corresponding encryp-
tion query. For game Gi, the event Encrypti occurs
when there exists a record (1, pw, X, ∗, Y) in Elist,
such that Y has been submitted to a Send query.
Hence the corresponding record (pw, Y, D, X) does
not appear in Dlist.

From this simulation, we easily see that the games G1

and G0 are perfectly indistinguishable, unless the permu-
tation property (bijection) of block cipher does not hold.
This means that there exists a single ciphertext (respec-
tively plaintext) for two different plaintexts (respectively
ciphertexts). Now since the encryption and decryption
lists are at most of size qE , the probability that the per-
mutation property of block cipher does not hold is at most

q2
E

2min{(q−1),22l,2l}
. We abort the game G1 when such a col-

lision occurs (and b′ is set to be a random bit). Hence

|Prob[S1] − Prob[S0]| ≤
q2
E

2 min{(q − 1), 2l}

Game G2 : This game is same as the game G1 except
that we abort when Encrypt1 occurs in game G1. In
other words, we delete the protocol executions whenever
a Send(U, i, Y) query is asked and a record of the form
(1, pw, X, ∗, Y) appears in Elist. Then

|Prob[S2] − Prob[S1]| ≤ Prob[Encrypt1].

Note that in games G0, G1, G2, the following distribu-
tion holds for transcript, session key pair:

Dist :=

x1, . . . , xn ←− Z∗
q ; k1, . . . , kn ←− {0, 1}l

X1 = gx1 , X2 = gx2 , . . . , Xn = gxn ;
Y1 = Epw(X1), . . . , Yn = Epw(Xn);
KR

1 = KL
2 = H(gx1x2), KR

2 = KL
3 = H(gx2x3),

. . . , KR
n = KL

1 = H(gxnx1); : (T, sk)

X1 = k1|K
L
1 ⊕KR

1 , . . . , Xn−1

= kn−1|K
L
n−1 ⊕KR

n−1, Xn = kn ⊕KR
n ;

Y 1 = E ′pw(X1), . . . , Y n−1 = E ′pw(Xn−1), Y n

= E ′′pw(Xn);

T = (Y1, . . . , Yn; Y 1, . . . , Y n);
sk = H(k1|k2| . . . |kn)

Game G3: This game is exactly same as the game G2

except that we use an instance (A = ga, B = gb) of
CDH problem with its solution C = gab and the given
values a, b in the simulation according to the following
distribution of transcript, session key pair.

International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 30

Dist′ :=

c1, c2, x3, . . . , xn ←− Z∗
q ; k1, . . . , kn ←− {0, 1}l

X1 = Ac1 , X2 = Bc2 , X3 = gx3 , . . . , Xn = gxn ;
Y1 = Epw(X1), . . . , Yn = Epw(Xn);
KR

1 = KL
2 = H(Cc1c2), KR

2 = KL
3 = H(Bc2x3),

KR
3 = KL

4 = H(gx3x4) . . . , : (T, sk)
KR

n−1 = KL
n = H(gxn−1xn),

KR
n = KL

1 = H(Axnc1);

X1 = k1|K
L
1 ⊕KR

1 , . . . , Xn−1

= kn−1|K
L
n−1 ⊕KR

n−1, Xn = kn ⊕KR
n ;

Y 1 = E ′pw(X1), . . . ,

Y n−1 = E ′pw(Xn−1), Y n = E ′′pw(Xn);

T = (Y1, . . . , Yn; Y 1, . . . , Y n);
sk = H(k1|k2| . . . |kn)

The encryption, decryption, hash, Execute, Reveal and
Test queries are simulated as in game G2. Let us now
explicitely describe the send queries. All the Send queries
are simulated as in the real game execept the send queries
of users Un, U1, U2, U3. Let us denote the initial send
query by Send0 and the send queries of first and second
round by Send1 and Send2 respectively. Send0 query is
invoked simply to prompt an unused instance to initial-
ize the protocol. Send0 and Send2 queries have no out-
put. For any query of the form Send2(U, d, Y) for an
instance Πd

U , one invokes the decryption oracle to com-
pute X = D′

pw(Y) (or D′′
pw(Y)). The oracle goes into an

expecting state. Note that we do not allow the event En-

crypt to occur, i.e. adversary is not given the power of
encrypting a message by itself guessing the password. So
any subsequent send query (i.e. after Send0(∗, ∗, “Start”)
query) is on a properly encrypted message which is en-
crypted by the simulator (and not by the adversary) on
querying the encryption oracle.

Consider send queries for instance Πd1

U1
which are limit-

ted to any of the followings:
Send0(U1, d1, “Start”), Send1(U1, d1, Y2), Send1(U1, d1,

Yn), and Send2(U1, d1, Y i) for 1 ≤ i ≤ n, i 6= 1. The
Send0 and Send2 queries are simulated as usual. In re-
sponse to Send1(U1, d1, Y1) and
Send1(U1, d1, Yn) queries, one invokes the decryp-
tion and hash oracles as in game G2 to compute
X2 = Dpw(Y2), K

R
1 = KL

2 = H(Cc1c2) and Xn =
Dpw(Yn), KL

1 = KR
n = H(Ac1xn) respectively. If one of

these two send queries are yet not asked, then the oracle
goes into an expecting state; otherwise encryption oracle
is invoked to output Y 1 = E ′

pw(k1|KL
1 ⊕ KR

1).

For instance Πd2

U2
, Send1(U2, d2, Y1) and Send1(U2, d2,

Y3) are answered as follows: One invokes the decryption
oracle Dpw on Y1, Y3 as usual to get X1, X3 respectively
and hash oracle to obtain KL

2 = KR
1 = HCc1c2), KR

2 =
KL

3 = H(Bc2x3).If both these send queries are taken
place, then the encryption oracle is invoked to output
Y 2 = E ′

pw(k2|KL
2 ⊕ KR

2); else the oracle goes into an ex-
pecting state.

On Send1(U3, d3, Y2) and Send1(U3, d3, Y4) queries for
instance Πd3

U3
, X2, X4 are obtained by querying Dpw on

Y2, Y4 respectively. The output is Y 3 = E ′
pw(k3|KL

3 ⊕KR
3)

where KL
3 = KR

2 = H(Bc2x3) and KR
3 = KL

4 = H(gx3x4),
provided both the send queries are asked. Otherwise the

oracle goes into an expecting state.
Similarly on Send1(Un, dn, Y1) and Send1(Un, dn, Yn−1)

queries for instance Πdn

Un
, X1 and Xn−1 are recovered

by invoking decryption oracle Dpw on Y1 and Yn−1 re-
spectively and hash oracle is invoked to compute KL

n =
KR

n−1 = H(gxnxn−1), KR
n = KL

1 = H(Ac1xn). The output

is Y n = E ′′
pw(kn ⊕ KR

n), provided both the send queries
are asked. Otherwise the oracle goes into an expecting
state.

These simulations are still perfect as soon as new ran-
dom c1, c2 are drawn and xi for 3 ≤ i ≤ n are random.
Thus as long as c1, c2, xi for 3 ≤ i ≤ n are random, the
simulation is indistinguishable from that in real attack
scenario, i.e. the distributions Dist and Dist′ are equiva-
lent. Hence

Prob[S3] = Prob[S2]

and also

Prob[Encrypt3] = Prob[Encrypt2] = Prob[Encrypt1].

Game G4: In this game, we do exactly as above except
that any hash value involving KR

1 (= KL
2), asked by

the users are answered independently from the random
oracles. More explicitely, we are given an instance
(A = ga, B = gb) of CDH problem without its solution
C = gab and without the values a, b. Now, whenever
two successive users U1 and U2 compute X1 = gx1 ,
X2 = gx2 respectively choosing x1, x2 randomly from
Z∗

q , we simulate as in G3, i.e. with X1 = Ac1 and
X2 = Bc2 where c1, c2 are random values in Z∗

q . The
exponents xj for other users Uj are chosen at random
from Z∗

q . The only difference of this game with G3 is

that the hash value involving KR
1 (= KL

2), asked by the
users (simulator), is answered with a random value r

from {0, 1}l instead of quering the hash oracle. Here the
adversary A may ask the same hash query which is still
answered by quering the random oracle. Thus we have
the folowing distribution of transcript, session key pair.

Dist′′ :=

c1, c2, x3, . . . , xn ←− Z∗
q ; k1, . . . , kn ←− {0, 1}l

X1 = Ac1 , X2 = Bc2 , X3 = gx3 , . . . , Xn = gxn ;
Y1 = Epw(X1), . . . , Yn = Epw(Xn);
KR

1 = KL
2 = r∈{0, 1}l, KR

2 = KL
3 = H(Bc2x3),

KR
3 = KL

4 = H(gx3x4) . . . , : (T, sk)
KR

n−1 = KL
n = H(gxn−1xn), KR

n = KL
1

= H(Axnc1);

X1 = k1|K
L
1 ⊕KR

1 , . . . , Xn−1

= kn−1|K
L
n−1 ⊕KR

n−1, Xn = kn ⊕KR
n ;

Y 1 = E ′pw(X1), . . . , Y n−1 = E ′pw(Xn−1),

Y n = E ′′pw(Xn);

T = (Y1, . . . , Yn; Y 1, . . . , Y n);
sk = H(k1|k2| . . . |kn)

We define an event AskH as follows:

– AskH := the event that the adversary A has discovered
that the broadcasted message involving hash value
KR

1 is incorrect by using its hash oracle queries.

International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 31

The adversary A can find an inconsistency in the hash
value involving KR

1 if A can submit a correct guess for
Cc1c2 to the hash oracle. This is because of the fact that
the same hash query asked by the adversary A, is still
answered by quering the random hash oracle whereas that
asked by the simulator is answered with the random value
r ∈ {0, 1}l. Thus if AskH occurs, then Hlist will contain
a record of the form (1, Cc1c2 , r1) for some r1 6= r. We
abort the game if AskH occurs and A’s output b′ is chosen
randomly. Thus, as long as the event AskH does not occur,
the distributions Dist′ and Dist” are equivalent.

Hence

|Prob[S4] − Prob[S3]| ≤ Prob[AskH]

and

|Prob[Encrypt4] − Prob[Encrypt3]| ≤ Prob[AskH].

Now given (A = ga, B = gb), one can output a cor-
rect Diffie-Hellman value C = gab if both the following
two events occur: (1) two successive users U1, U2 com-
pute X1 = Ac1 and X2 = Bc2 and use random value as
a hash value involving KR

1 (= KL
2) instead of querying

the hash oracle and (2) the adversary A makes a hash
query (among at most qH) on a correctly guessed value
Cc1c2 . By guessing Cc1c2 that has been asked by the
adversary, and the corresponding hash query, simulator
extracts C = (Cc1c2)(c1c2)

−1

. Hence

SuccCDH
G,A(t) ≥

1

qHq2
S

Prob[AskH].

In this game, A’s output bit b′ is totally random. So

Prob[S4] =
1

2
.

Combining all the probability bounds obtained from all
the games, we get

|Prob[S0]−
1

2
| ≤

q2

E

2min{(q − 1), 2l}
+ Prob[Encrypt

4
] + B

B = 2qHq
2

SSucc
CDH
G,A(t).

Now to find Prob[Encrypt4], we argue as follows. The
event Encrypt4 occurs whenever a Send(U, i, Y) query is
asked by the adversary A where a record of the form
(1, pw, X, ∗, Y) appears in Elist. We note that A may
ask at most qS Send queries and so is able to build at
most qS data (encryptions) by itself. Hence at most qS

passwords it might have tried in the on-line guessing. In
other words, at most qS impersonation attempts can be
done by A by guessing the password. Moreover, from the
point of view of the adversary A, the plaintexts to be
encrypted are completely indistinguishable from random
plaintexts drawn from the domain of corresponding en-
cryption functions as long as the exponents from Z∗

q and

the nonces from {0, 1}l chosen by the simulator in game
G3 or G4 are random. Hence an off-line exhaustive search

on passwords will not get any bias on the actual password
pw and a polynomially-many calls to the Execute and the
Reveal oracles will be of no help to A. Thus the simu-
lation is completely independent from the password pw

from information theoretic sense. This implies that the
probability that a message, submitted to a Send query, is
encrypted by the adversary itself guessing the password
is at most qS

N
. So we have

Prob[Encrypt4] ≤
qS

N

where qS is the maximum number of Send queries the
adversary may ask, i.e. maximum number of imperson-
ation attempts that adversary can make. This yields the
statement of the theorem. �

5 Mutual Authentication

Mutual authentication is desirable to confirm each other’s
knowledge of the agreed common key for each pair of par-
ties in the group before preceeding to use the common
key as a session key. Mutual authentication thus enables
to convince to each of two parties that the other knows
the password. We note that our protocol as presented
in Section 3 achieves key agreement only, not mutual au-
thentication. However, one can trivially add mutual au-
thentication by using the shared agreed key to construct
a simple “authenticator” for the other parties. There are
various well-known classical approaches for constructing
such “authenticators” [12, 15] that converts any key agree-
ment protocol into a protocol that provides mutual au-
thentication. For instance, we can adopt the following
methodology for verification of the common session key
sk.

Each user Ui chooses a random challange Ci; com-
putes σ = H1(sk) where H1 is a cryptographically secure
one way hash function; a tag τi = Macσ(ID|Ci) where
ID = U1|U2| · · · |Un and Mac is a secure Message Authen-
tication Code generation function; and sends Ci|τi to the
rest of the users. Each user Uj , on receiving Ci|τi, ver-
ifies τi on Ci for all i, 1 ≤ i ≤ n, i 6= j (making use of
his own common secret sk). If verification succeeds, then
Uj computes the session key sk0 = H0(sk) where H0 is
another cryptographically secure one way hash function;
otherwise Uj aborts the protocol. These modifications
add one more round to our protocol. The details of the
security is omitted.

6 Efficiency

Efficiency of a protocol is related to the costs of commu-
nication and computation. Communication cost involves
counting total number of rounds and total messages trans-
mitted through the network during a protocol execution.
Number of rounds is a critical concern in practical envi-
ronments where number of group members is large. Table

International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 32

Table 1: Protocol comparison
Protocol Communication Computation Hardness Security

R BL PTP Exp H XOR Enc Dec Assumption Model
BCP [13] n n|e| 2n − 2 2n - - 1 2 TG-CDH,M-DDH i.c.m,r.o.m

Our protocol 2 2|e| n + 1 3 4 n − 1 2 n + 1 CDH i.c.m, r.o.m

Notes:
n: total number of users in a group
R: total number of rounds
BL: maximum bit length of messages sent per user
PTP: maximum number of point-to-point communication per user
Exp: maximum number of modular exponentiations computed per user
H: maximum number of hash function evaluation per user
XOR: maximum number of XOR operations computed per user
Enc: maximum number of symmetric key encryptions per user
Dec: maximum number of symmetric key decryptions per user
|e|: maximum size of an encrypted plaintext

1 compares our protocol and Bresson et al.’s password-
based group key agreement protocol (BCP) [13] where the
following notations are used (TG-CDH stands for Trigon
Group Computational Diffie-Hellman Problem, M-DDH
stands for Multi Decision Diffie Hellman Problem, i.c.m
denotes ideal cipher model and r.o.m stands for random
oracle model).

Our protocol requires only 2 rounds which makes our
protocol efficient from communication point of view. Each
user sends one message in each round. The maximum bits
that a member sends during the execution of the proto-
col is 2|e| where |e| is the maximum size of an encrypted
plaintext (either by applying E or E ′ or E ′′). As men-
tioned earlier, we consider the users U1, . . . , Un partici-
pating in the protocol are on a ring and Ui−1, Ui+1 are re-
spectively the left and right neighbors of Ui for 1 ≤ i ≤ n

(U0 = Un, Un+1 = U1). User Ui, 1 ≤ i ≤ n − 1, sends
a message in round 1 only to the users Ui−1, Ui+1 and a
message in round 2 to the rest of the n − 1 users whilst
the last user Un sends one message in each round to all
the n − 1 users. Each group member performs at most 3
modular exponentiations, 4 one-way hash function eval-
uations, n − 1 XOR operations, 2 encryptions and n + 1
decryptions. The operations dependent on the number
of group members are the XOR operation and symmetric
key decryption operation. The total cost of computation
is highly reduced due to the use of XOR operation in
our protocol as compared to other multi-party password-
based authenticated key agreement protocol [13]. We use
symmetric key encryption and decryption, cost of which
are low compared to signature generation and verification.
Bandwidth of messages communicated are also shorter as
signatures are not appended to them. Hence our proto-
col achieves efficiency in both communication and com-
putation aspects. Our constant round protocol can be
applied for a large group of participants as compared to
multi-party password-based protocol of Bresson et al. [13]
(which becomes impractical if n > 100).

7 Conclusion

We have presented an efficient and secure password-based
authenticated group key agreement protocol. The secu-
rity is achieved in the formal security model of Bellare et
al. [6]. We use the proof technique of Bresson et al. [13].
The protocol is proven to be secure under CDH assump-
tion in both the random oracle model and the ideal cipher
model. To obtain secure password-based efficient group
key agreement protocol under standard assumption with-
out using random oracle is an interesting research topic
and this area requires to be studied for further improve-
ment.

References

[1] M. Abdalla, M. Bellare and P. Rogaway, “DHIES:
An encryption scheme based on the Diffie-Hellman
problem,” in CT-RSA 2001, pp. 143-158, 2001.

[2] M. Abdalla, P. A. Fouque and D. Pointcheval,
“Password-based authenticated key exchange in the
three-party setting,” in PKC 2005, LNCS 3386, pp.
65-84, Springer-Verlag, 2005.

[3] N. Asokan and P. Ginzboorg, “Key agreement in ad-
hoc networks,” Computer Communications, vol. 23,
no. 18, pp. 1627–1637, 2000.

[4] M. Bellare and P. Rogaway, “Entity authentication
and key distribution,” in Crypto’93, LNCS 773, pp.
231-249, Springer-Verlag, 1994.

[5] M. Bellare and P. Rogaway, “Provably secure session
key distribution: the three party case, in STOC’95,
pp. 57-66, ACM Press, 1995.

[6] M. Bellare, D. Pointcheval and P. Rogaway, “Au-
thenticated key exchange secure against dictionary
attacks,” in B. Preneel, editor, Eurocrypt 2000,
LNCS 1807, pp. 139–155, Springer-Verlag, 2000.

[7] S. M. Bellovin and M. Merritt, “Augmented en-
crypted key exchange: A password-based protocol
secure against dictionary attacks and password file

International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 33

compromise,” in Proceedings of the 1st ACM Con-
ference on Computer and Communication Security,
pp. 244–250, 1993.

[8] Bluetooth, Specification of Bluetooth System, Dec.
1999, available at http://www.bluetooth.com/ devel-
oper/specification
/specification.asp.

[9] M. Boyarsky, “Public-key cryptography and pass-
word protocols: The multi-user case,” in ACM Se-
curity (CCS’99), pp. 63–72, 1999.

[10] V. Boyko, P. MacKenzie and S. Patel, “Provably
secure password-authenticated key exchange using
Diffie-Hellman,” in Eurocrypt 2000, LNCS 1807, pp.
156–171, Springer-Verlag, May 2000.

[11] E. Bresson, O. Chevassut and D. Pointcheval, “New
security results on encrypted key exchange,” in PKC
2004, LNCS 2947, pp. 145–158, Springer-Verlag,
Mar. 2004.

[12] E. Bresson, O. Chevassut and D. Pointcheval, “Proof
of security for password-based key exchange (IEEE
P1363 AuthA protocol and extensions),” in ACM-
CCS’03, pp. 241-250, 2003.

[13] E. Bresson, O. Chevassut and D. Pointcheval,
“Group Diffie-Hellman key exchange secure against
dictionary attack, in Asiacrypt’02, LNCS 2501, pp.
497–514, Springer-Verlag, 2002.

[14] E. Bresson, O. Chevassut, and D. Pointcheval,
“Provably authenticated group Diffie-Hellman key
exchange - the dynamic case,” in Asiacrypt 2001,
LNCS 2248, pp. 290–309, Springer-Verlag, 2001.

[15] E. Bresson, O. Chevassut, D. Pointcheval, and
J. J. Quisquater, “Provably authenticated group
Diffie-Hellman key exchange,” in Proceedings of 8th
Annual ACM Conference on Computer and Commu-
nications Security, pp. 255–264, 2001.

[16] M. Burmester and Y. Desmedt, “A secure and ef-
ficient conference key distribution system,” in EU-
ROCRYPT’94, LNCS 950, pp. 275–286, Springer-
Verlag, 1995.

[17] J. W. Byun, I. R. Jeong, D. H. Lee and C. S. Park,
“Password-authenticated key exchange between
clients with different passwords,” in ICICS’02, LNCS
2513, pp. 134–146, Springer-Verlag, Dec. 2002.

[18] R. Dutta and R. Barua, “Constant round dynamic
group key agreement,” in ISC 2005, LNCS, Springer-
Verlag, to appear on Sept. 2005, Singapore.

[19] Y. Ding and P. Horster, “Undetectable on-line pass-
word guessing attacks,” ACM SIGOPS Operating
Systems Review, vol. 29, no. 4, pp. 77–86, Oct. 1995.

[20] R. Gennaro and Y. Lindell, “A framework for
password-based authenticated key exchange,” in Eu-
rocrypt 2003, LNCS 2656, pp. 524–543, Springer-
Verlag, May 2003.

[21] O. Goldreich and Y. Lindell, “Session-key genera-
tion using human memorable passwords only,” in
Crypto 2001, LNCS 2139, pp. 408–432, Springer-
Verlag, Aug. 2001.

[22] L. Gong, “Optimal authentication protocols resistant
to password guessing attacks,” in CSFW’95, IEEE
Computer Society, pp. 24–29, Kenmare, County
Kerry, Ireland, Mar. 1995.

[23] L. Gong, T. M. A. Lomas, R. M. Needham and
J. H. Saltzer, “Protecting poorly chosen secrets from
guessing attacks,” IEEE Journal of Selected on Com-
munications, vol. 11, no. 5, pp. 648–656, June 1993.

[24] S. Halevi and H. Krawczyk, “Public key cryptogra-
phy and password protocols,” ACM Transactions on
Information and System Security, pp. 524-543, 1999.

[25] D. P. Jablon, “Strong password-only authenticated
key exchange,” SIGCOMM Computer Communica-
tion Review, vol. 26, no. 5, pp. 5–26, 1996.

[26] M. Jakobsson and S. Wetzel, “Security weaknesses
in bluetooth,” in Proceedings of the RSA Cryptog-
rapher’s Track (RSA CT’01), RSA Data Security,
LNCS 2020, pp. 176–191, Springer-Verlag, 2001.

[27] S. Jiang and G. Gong, “Password-based Key ex-
change With mutual authentication,” in SAC 2004,
LNCS 3006, pp. 291-306, Springer-Verlag, 2004.

[28] J. Katz, R. Ostrovsky and M. Yung, “Efficient
password-authenticated key exchange using human-
memorable passwords,” in Eurocrypt 2001, LNCS
2045, pp. 475–494, Springer-Verlag, May 2001.

[29] J. Katz and M. Yung, “Scalable protocols for au-
thenticated group key exchange,” in CRYPTO 2003,
LNCS 2729, pp. 110-125, Springer-Verlag, 2003.

[30] C. Kaufman, R. Perlman and M. Speciner, Network
security, Prentice Hall, 1997.

[31] H. J. Kim, S. M. Lee and D. H. Lee, “Constant-
round authenticated group key exchange for dynamic
groups,” in Asiacrypt’04, LNCS 3329, pp. 245-259,
Sringer-Verlag, 2004.

[32] J. Kim, S. Kim, J. Kwak and D. Won, “Crypt-
analysis and improvement of password authenticated
key exchange scheme between clients with different
passwords,” in ICCSA’04, LNCS 3043, pp. 895–902,
Springer-Verlag, May 2004.

[33] H. Krawczyk, “SIGMA: The “SIGn-and-MAc” ap-
proach to authenticate Diffie-Hellman and its use in
the ike protocols,” in Crypto’03, LNCS 2729, pp.
400–425, Springer-Verlag, Aug. 2003.

[34] S. M. Lee, J. Y. Hwang and D. H.L‘ee, “Efficient
password-based group key exchange,” in proceed-
ings of TrustBus 2004, LNCS 3184, pp. 191–199,
Springer-Verlag, 2004.

[35] C. L. Lin, H. M. Sun and T. Hwang, “Three-party
encrypted key exchange: attacks and solution,” ACM
SIGOPS Operating Systems Review, vol. 34, no. 4,
pp. 12–20, Oct. 2000.

[36] C. L. Lin, H. M. Sun, M. Steiner and T. Hwang,
“Three-party encrypted key exchange without server
public keys,” IEE Communications Letters, vol. 5,
no. 12, pp. 497–499, Dec. 2001.

[37] S. Lucks, “Open key exchange: How to defeat dic-
tionary attacks without encrypting public keys,” in
Proceedings of the Workshop of Security Protocols,
LNCS 1361, pp. 79-90, Springer-Verlag, 1997.

International Journal of Network Security, Vol.3, No.1, PP.23–34, July 2006 (http://isrc.nchu.edu.tw/ijns/) 34

[38] P. MacKenzie, S. Patel and R. Swaminathan,
“Password-authenticated key exchange based on
RSA,” in Asiacrypt 2000, LNCS 1976, pp. 599–613,
Springer-Verlag, Dec. 2000.

[39] P. D. Mackenzie, The PAK suit: Protocols for
password-authenticated key exchange, Contributions
to IEEE P1363.2, 2002.

[40] P. D. Mackenzie, T. Shrimpton and M. Jakobsson,
“Threshold password-authenticated key exchange,”
in Crypto 2002, LNCS 2442, pp. 385–400, Springer-
Verlag, Aug. 2002.

[41] P. MacKenzie and R. Swaminathan, Secure Network
Authentication with Password Identification, Submis-
sion to IEEE P1363a, Aug. 1999, Available from
http://grouper.ieee.org/groups/1363/.

[42] A. Menezes, P. V. Oorschot and S. Vanstone, Hand-
book of Applied Cryptography, CRG Press, 1997.

[43] NIST, AES, Dec. 2000, Available at
http://www.nist.gov/aes.

[44] K. Obraczka, G. Tsudik and K. Viswanath, “Pushing
the limits of multicast in ad hoc networks,” in Intena-
tional Conference on Distributed Computing System,
pp. 719-722, Apr. 2001.

[45] S. Patel, “Number theoritic attacks on secure pass-
word schemes,” in Proceedings of the 1997 IEEE
Sympossium on Security and Privacy, pp. 236–247,
1997.

[46] C. E. Perkins, Ad hoc networking Addition Wesley,
2001.

[47] M. D. Raimondo and R. Gennaro, “Provably secure
threshold password-authenticated key exchange,” in
Eurocrypt 2003, LNCS 2656, pp. 507–523, Springer-
Verlag, May 2003.

[48] V. Shoup, On formal models for secure key exchange,
Technical Report RZ 3120, IBM, 1999.

[49] J. G. Steiner, B. C. Neuman and J. L. Schiller, “Ker-
beros: An authentication service for open networks,”
in Proceedings of the USENIX Winter Conference,
pp. 191–202, Dallas, TX, USA, 1998.

[50] M. Steiner, G. Tsudik and M. Waidner, “Refinement
and extension of encrypted key exchange,” ACM
SIGOPS Operating Systems Review, vol. 29, no. 3,
pp. 22–30, July 1995.

[51] G. Tsudik and E. V. Herreweghen, “Some remarks on
protecting weak keys and poorly-chosen secrets from
guessing attacks,” in SRDS’93: The 12th Symposium
on Reliable Distributed Systems, IEE Computer So-
ciety, Princeton, New Jersey, USA, pp. 136–142, Oct.
1993

[52] S. Wang, J. Wang and M. Xu, “Weakness of a
password-authenticated key exchange protocol be-
tween clients with different passwords,” in ACNS’04,
LNCS 3089, pp. 414–425, Springer-Verlag, June
2004.

[53] T. Wu, “The secure remote password protocol,” in
1998 Internet Society Symposium on Network and
Distributed System Security, pp. 97–111, 1998.

[54] H. T. Yeh, H. M. Sun and T. Hwang, “Efficient three-
party authentication and key agreement protocols re-
sistant to password guessing attacks,” Journals of
Information Science and Engineering, vol. 19, no. 6,
pp. 1059–1070, Nov. 2003.

[55] M. Zhang, “Password authenticated key exchange
using quadretic residues,” in Proceedings of ACNS
2004, LNCS 3089, pp. 233–247, Springer-Verlag,
June 2004.

[56] L. Zhou and Z. J. Hass, “Securing ad hoc networks,”
IEEE Network Magazine, vol. 13, no. 6, pp. 24-30,
1999.

Ratna Dutta was born in Calcutta,
India. She has completed her B.Sc
(Honours in Mathematics) in 1996 and
M.Sc. (in Applied Mathematics) in
1998 from University of Calcutta, In-
dia. She has joined in 2000 for her
Ph.D in Discrete Mathematics and
Theoretical Computer Science in Stat-

Math Unit of Indian Statistical Institute, Calcutta, India
and submitted her thesis on Cryptology in August, 2005.
Currently she is a Senior Research Fellow at Indian Sta-
tistical Institute.

Rana Barua received his B.Sc and
M.Sc in Mathematics from University
of Calcutta, India, in 1973 and 1975
respectively. He received his Ph.D de-
gree in Descriptive Set Theory from
Indian Statistical Institute in 1987. He
is currently a professor at Indian Sta-
tistical Institute. He has worked in

Descriptive Set Theory and Logic, Automata Theory,
Simple Voting Games and his current research interests
include Cryptography.

