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Abstract

Spatial data query methods are essential in spatial
databases and intelligent transportation. The nearest
neighbor query is one of the most widely used methods
for spatial data query. However, the nearest neighbor
query and its variants suffer from low query efficiency, in-
efficient processing, and high computational cost. There-
fore, to address the shortcomings of the nearest neighbor
query and its variants in the obstacle space and road net-
work environments, the study proposes to add Voronoi
diagrams and grid Voronoi diagrams to these methods, us-
ing the filtering function of Voronoi diagrams to decrease
the quantity of queried points and enhance the query
efficiency. The results show that the Network Voronoi
Diagram-group k Nearest Neighbor (NVD-GkNN) algo-
rithm in the road network environment combined with
the grid Voronoi diagram has a CPU running time as long
as the Timing Algorithm (TA) and Incremental Euclidean
Restriction (IER) CPU running time. The Voronoi graph-
based nearest neighbor and its variants are designed to
improve the query efficiency, which also provides a way to
improve the efficiency of other spatial data query meth-
ods. The research aims to improve the query efficiency
of spatial databases, maintain data security of databases,
and assist in network security.

Keywords: Database; Indexing; kNN; Road Network En-
vironment; Voronoi Diagram

1 Introduction

With the technology boost in China, the fields of geo-
graphic information systems and intelligent transporta-
tion systems are also developing rapidly. Spatial data
query methods play an important role in these fields [3].
When dealing with complex spatial data, traditional data
query methods are not effective, so new data query meth-
ods need to be studied [13]. Nearest neighbor query is
one of the most widely used techniques for spatial data
query, and many variants of it have been developed, like

k-nearest neighbor query and reverse nearest neighbor
query [19]. However, most of these query methods suf-
fer from low query efficiency, inefficient processing and
high computational cost. In addition, nearest neighbor
query methods can be divided into two types according
to the data environment, one is based on the Euclidean
space and the other is based on the road network environ-
ment, and different query methods are applicable to differ-
ent data environments [14]. Voronoi diagrams are mainly
used to partition the space, and their filtering function
can decrease queried points’ quantity and enhance the
data query efficiency, which is effective in spatial query
and multimedia database [1]. The Voronoi diagram can
be used to decrease query points’ quantity and enhance
the data querying. In addition, Voronoi diagrams can
also reduce development and maintenance costs. Based
on the above background, the research innovatively com-
bines Voronoi diagrams and grid Voronoi diagrams with
nearest neighbor query and its variant query, and then
applies these algorithms to data query in obstacle space
and road network environments respectively. The Net-
work Voronoi Diagram-group k Nearest Neighbor (NVD-
GkNN) algorithm improves the query efficiency of group
k-nearest neighbor in road network environment, and the
reverse nearest neighbor in road network environment
combined with grid Voronoi diagrams is also enhanced.
The Network Voronoi Diagram-Reverse Nearest Neigh-
bor (NVD-RNN) algorithm performs better in certain sit-
uations. The k Nearest Neighbors-Obstacle (kNN-Obs)
algorithm combined with Voronoi diagrams in obstacle
space can improve its own query efficiency under certain
circumstances. The study aims to enhance the query ef-
ficiency and diminish the query cost of nearest neighbor
queries and their variants. The research aims to improve
the query efficiency of spatial databases, maintain data
security of databases, and assist in network security.
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2 Related Works

The querying of data in spatial databases is a popular re-
search area that has been explored by many researchers.
Eiter and other researchers used local dynamic maps to
set up spatial flow query responses in collaborative intel-
ligent transportation systems, which could complete data
flow queries oriented towards semantic concepts and spa-
tial relationships. In addition, the semantic enhancement
method of this study was conducted in ontology based
query responses. The experimental results showed that
the method designed by the research institute is feasi-
ble and can improve the efficiency of queries [6]. Sarode
and Reshmi proposed a group search optimization algo-
rithm based on neural networks to study data aggrega-
tion models, and developed a query based data aggre-
gation model based on this algorithm. The query rank-
ing in this study was determined based on latency and
throughput. The research results indicated that the data
aggregation model could improve throughput while re-
ducing latency, and its performance was significantly bet-
ter than traditional data aggregation models [16]. Jakob
and Guthe proposed to use GPUs for exact domain prob-
lems in point clouds in order to optimise the query per-
formance of kNNs on point clouds. The results showed
that this approach gave real-time capabilities for large
queries on very large point clouds, and the speed of the
queries was greatly improved [9]. Chen et al. proposed a
HorseIR-based approach to better querying of databases,
combining database queries with compiled code based on
dynamic arrays. Experimental results proved that this
method was usable for database queries [4]. Scholars such
as Shi and Yang proposed a spectral clustering based
method to classify the climate in China. This method
first analyzed the correlation between meteorological vari-
ables, and then constructed a similarity matrix graph
based on k-nearest neighbor and sparse subspace repre-
sentations. Finally, the study used a method of determin-
ing the number of clusters to conduct sensitivity analysis
on different parameters. The research results showed that
this classification method has high accuracy [18]. Experts
such as Jang et al. proposed an input variable initial-
ization method based on the k-nearest neighbor method
to achieve the optimal input of neural networks. This
method required finding the input that made the output
very close to the target output and processing it as the
initial input variable. The experimental results indicated
that the method designed by the research institute is sig-
nificantly superior to random initialization [10].

Shi and other researchers designed a flutter identifica-
tion method based on enhanced k-nearest neighbors to
identify flutter. This method compared the information
of different sensors based on a large number of experi-
ments, and extracted the features. Finally, the enhanced
k-nearest neighbor method was used to identify chatter
under different cutting conditions. The experimental re-
sults showed that the method designed by the research
institute could effectively identify flutter with high ac-

curacy [17]. Jg et al. proposed a generalised fragment
allocation strategy to avoid the current database frag-
ment allocation strategy that was prone to low-quality
allocation plans, which implemented multiple candidate
allocation schemes based on cost through PostgreSQL
improved genetic algorithms evaluation. The results of
the study showed that the performance of this strategy
was improved by a factor of 2-4 with good robustness
and scalability [11]. Ding and other experts proposed an
R-KWS method in view of the evaluation of combinato-
rial candidate networks in order to improve the efficiency
of existing database query methods, which could share
the overlapping parts between candidate networks. The
experiment indicated that this method can enhance the
query efficiency without losing the quality of the query re-
sults [5]. Gulzar et al. proposed an optimised and incom-
plete framework for Skyline that simplified the Skyline
process for databases with missing data, in order to avoid
the situation of Skyline query methods’ error when there
was missing data in the database. The results showed
the superiority of the framework and the number of con-
trol tests required to retrieve the skyline [8]. In order
to improve the performance of distance metric learning,
scholars such as Ruan et al. designed a nearest neighbor
search model for distance metric learning. This model
could construct metric optimization constraints by search-
ing for the optimal nearest neighbor number. In addition,
the study also designed a k-free nearest neighbor model
based on a support vector machine solver. The experi-
mental results showed that the performance of the nearest
neighbor search model designed by the research institute
for distance metric learning was significantly superior to
existing baseline methods [15].

In summary, there have been many studies on spatial
database data query methods, but most of them suffered
from low query efficiency, less efficient processing and
high computational cost. Based on these problems, the
study innovatively combines Voronoi diagrams and near-
est neighbor queries, aiming to make up for the shortcom-
ings of existing methods in different data environments.

3 Spatial Database Optimization
Based on NVD-GkNN Algo-
rithm

3.1 Optimal Design of Spatial Databases
Under Different kNN Algorithms

The Nearest Neighbor (NN) method plays an important
role in spatial data querying [20]. The traditional k-
Nearest Neighbor (kNN) algorithm uses the second-order
Ming’s distance as a measure of similarity between sam-
ples. By noting the observations of samples i and samples
j as xi = (xi1, xi2, · · · , xip) and xj = (xj1, xj2, · · · , xjp),
where each sample has a different variable, the Ming’s



International Journal of Network Security, Vol.26, No.5, PP.800-811, Sept. 2024 (DOI: 10.6633/IJNS.202409 26(5).10) 802

distance is described in Equation (1).

dij(q) = (

p∑
k=1

|xik − xjk|q)1/q (1)

In Equation (1), dij serves as the range between samples
i and samples j, q represents the order, k denotes the
first k variable for each sample, and k takes values in the
range [1, p]. Depending on the value of q, the Ming’s dis-
tance can be classified as Manhattan distance, Euclidean
distance and Chebyshev distance [12]. When the value of
q is 1, 1/q is 1. The first-order Ming’s distance can be
called the Manhattan distance, as shown in Equation (2).

dij(1) =

p∑
k=1

|xik − xjk| (2)

When the value of q is 2, 1/q is 1/2 and the second order
Minkowski distance can be called the Euclidean distance,
as in Equation (3).

dij(2) =

√√√√ p∑
k=1

(xik − xjk)2 (3)

The change in the Ming’s distance is greater when the q
value → ∞. At this point the Ming’s distance has been
transformed into the Chebyshev distance, as in Equa-
tion (4).

dij(∞) = lim
p→∞

(

p∑
k=1

|xik − xjk|q)1/q

= max
1≤k≤p

|xik − xjk| (4)

The traditional kNN has relatively good query perfor-
mance, but when the number of samples is relatively
large, it suffers from computational complexity and mem-
ory consumption problems. Based on these problems, the
study combines a kNN with optimised weights on the ba-
sis of the third-order Ming’s distance and applies it to the
filling of missing values. Equation (5) shows the details.

x̂m
ik =

K∑
j=1

D−1
ij∑K

V=1 D
−1
iv

xjk (5)

In Equation (5), xi = (xc
i , x

m
i ) is the vector to be filled, xc

i

represents the complete part of the vector, xm
i represents

the missing part of the vector, Dij serves as the range in
the vector i and the vector j, then x̂m

ik is the filled value
of xm

i . When the samples are close to each other, the fill
value obtained by the kNN algorithm satisfying and the
algorithm needs to be improved, as in Equation (6).

xm
ik =

K

(K − 1)2

K∑
j=1

(1− Dij∑K
V=1 Dij

xjk (6)

In Equation (6), xm
ik denotes the new filled value, Dij is

the third-order Ming’s distance formula.

Dij = dij(3) = (

p∑
k=1

|xik − xjk|3)1/3

K denotes the number of similar samples. The Euclidean
distance used in the traditional kNN algorithm does not
work well in mixed attribute data, compared to grey cor-
relation analysis which is more appropriate. It replaces
the Euclidean distance with a grey distance. In addition,
to deal with missing values in mixed attributes, a grey
weighted kNN filling method combining iterative kNN
and grey distances can be used. Before carrying out grey
correlation analysis on the data, the data needs to be pre-
processed with datacentering, as in Equation (7).{

x̂ij = xij − x̄i

x̂ij = xij − x̄j

(7)

In Equation (7), x̂ij = xij − x̄i is sample-centered, x̂ij =
xij − x̄j is attribute-centered, i takes the values of [1, p]
and j takes the values of [1, p]. xij and x̂ij each represent
the value of the ith sample in the jth attribute before
and after standardisation, x̄i represents the mean of all
attributes in the ith sample, and x̄j represents the mean
of all samples within the jth attribute.x̂ij =

xij−x̄i√∑q
j=1(xij−x̄i)2

x̂ij =
xij−x̄j√∑q

i=1(xij−x̄j)2

(8)

Equation (8) shows the outlier normalisation, which is
done by dividing the data normalised by the outlier after
datacentering. Equation (9) is data regularisation, which
is normalised by the standard deviation (SD).x̂ij =

xij−x̄i√∑q
j=1(xij−x̄i)2/(p−1)

x̂ij =
xij−x̄j√∑q

i=1(xij−x̄j)2/(q−1)

(9)

In addition, the data are pre-processed by means of Z-
score normalisation, which starts with the mean and SD
of the attributes, as shown in Equation (10).

δm =

√√√√(

n∑
i=1

(xim − m̄)2)/(n− 1) (10)

In Equation (10), δm serves as the SD of the attribute m,
n serves as the data points’ quantity in the data set, xim

represents the value of the attribute m for the ith sample,
and m̄ represents the mean of the attribute m. The Min-
Max normalisation method uses the linear variation of
the original data as the entry point for data processing,
one of which is the upper bound validity measure, as in
Equation (11).

x́p(j) =
xp(j)−min∀ xi(j)

max∀ xi(j)−min∀ xi(j)
(11)

In Equation (11), max∀ xi(j) serves as the maximum
value in the data, min∀ xi(j) represents the minimum
value, and x́p(j) serves as the value of the sample p af-
ter pre-processing on the attribute j. When the data at-
tribute is extremely small, a lower bound validity measure
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is used, as in Equation (12).

x́p(j) =
max∀ xi(j)− xp(j)

max∀ xi(j)−min∀ xi(j)
(12)

Equation (12) is called the lower bound validity measure,
where very small data are also called cost-based indica-
tors. In addition, the Min-Max standardisation method
involves a moderate validity measure, as in Equation (13).

x́p(j) =
|xp(j)− xspecified|

max∀ xi(j)−min∀ xi(j)
(13)

In Equation (13), xspecified is a pre-set value, as the upper
and lower bound validity measures have relatively similar
results, the moderate validity measure can also be used
when selecting the data processing method. Voronoi di-
agrams are mainly used for spatial partitioning and the
Voronoi diagram is constructed as shown in Figure 1 [7].

There are multiple methods for constructing Voronoi
diagrams and one of them was used for the study. As
shown in Figure 1(a), it is a part of a Voronoi diagram that
must be partitioned from the region where pk is located.
The region is divided by the vertical bisector of pk+1 and
pj , and forms two parts. The boundary between the ver-
tical bisector and the area where pk is located intersects
at two points and one of these points needs to replace the
other. This behaviour is repeated until the dashed poly-
gon shown in Figure 1(a) is formed. Figure 1(b) forms
the Voronoi polygon of pk+1 by deleting the polygon ver-
tices and the middle edge. A grid Voronoi diagram is
also a type of Voronoi, an example of which is shown in
Figure 2 [2].

Figure 2(a) shows the initial road network diagram
with the generation points from p1 to p3 and the intersec-
tions of the road network from p4 to p16. It is connected
via L. Figure 2(b) is a grid Voronoi diagram with each
line having a Voronoi link set corresponding to the gen-
eration point. The links may be in the generating point
Vlink only, or in different Vlink. When a link is in a differ-
ent Vlink, any one of the lines that does not pass through
L may be connected to it.

3.2 Design of the GkNN Spatial
Database Optimization Method
Based on Voronoi Diagrams

In different data environments, nearest neighbor query
methods can be separated into two kinds, the first is based
on the Euclidean space and the other is based on the road
network environment. For obstacle queries in Euclidean
space, the study used the kNN query method k Near-
est Neighbors-Obstacle (kNN-Obs) based on Voronoi di-
agram with the algorithm k NN-Obs q, k, P,O), where q
denotes the query point, P is the dataset, O represents
the set of obstacles and k is the value of the kNN query.
This method involves two aspects, the filtering process
and the refinement process. The filtering process mainly

generates a kNN candidate set, while the refining pro-
cess refines the objects in it through Voronoi diagrams,
and prunes the objects that do not meet the criteria. Be-
fore using the kNN algorithm, the originality of the data
needs to be maintained, so the randomly distributed data
is processed, as shown in Figure 3.

Figure 3(a) is a spatial data Euclidean diagram show-
ing the distribution of the data in the spatial dimension.
Figure 3(b) is a data redistribution diagram, showing the
differences and characteristics of the data before and af-
ter the distribution. After redistribution of the data, the
original local Voronoi diagram is then generated from this
data, as shown in Figure 4(a). However, the original local
Voronoi diagram is not particularly accurate, as it does
not take into account the relationship between the server
boundary points, so this Voronoi diagram needs to be op-
timised and the result is shown in Figure 4(b).

Both the multi-core technique and the optimised scan-
line algorithm are applied to the generation of the orig-
inal local Voronoi diagram. In Figure 4(a), L1 to L11
are the original generation points and S1 to S3 are the
servers. The Voronoi cells are the polygons where the
original generation points are located and the boundary
points of the S1 and S2 servers are L2 and L3. Optimisa-
tion of the original local Voronoi diagram requires finding
the clustering centers above each server. Then the closest
location data to the clustering centers needs to be find,
which is used as the server’s clustering result, and then it
is finally optimised. For the nearest collar variant query in
the road network environment, the study uses two types
of methods. The first one is the NVD-RNN based on the
grid Voronoi diagram, the algorithm is NVD-RNN q, S, k),
where q is the query point, S is the dataset and k is the
value of the RNN query. The steps in this method involve
filtering and refining, which results in a candidate set in
which all possible points are stored as results. Refine-
ment involves computing the points in the candidate set
and finding the final result, then filtering and refinement
are used recursively for each query. The Voronoi diagram
of the grid involved in this method is shown in Figure 5.

In Figure 5, the grid graph NVP (p2) has the query
point q, so its 1-RNN is p2. The resulting candidate set af-
ter filtering is {p7, p8, p9}, and then the refinement process
calculates the nearest distance between the query points
q and p + 7, p8, and p9. The filtering process involves
two while loops, the first of which terminates after all the
data in the dataset are looped through once, while the
second while loop requires all the data in the candidate
set to be looped through once before aborting. The refine-
ment process involves only one while loop and the data
in it is finite. The loop terminates when this data has
been looped through once. RNN is a variant of nearest
neighbor, and its query is shown in Figure ??(a).

In Figure ??(a), NN(c) denotes the result obtained by
NN query for point c and RNN(c) denotes the result ob-
tained by RNN query for point c. In addition, the data
used in both query methods are from a database or col-
lection of data identified in advance. In Figure ??(b), the
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Figure 1: The process of updating the Voronoi diagram

Figure 2: Instance of original and network Voronoi diagrams

Figure 3: Spatial data Euclidean diagram and schematic diagram before and after data redistribution

Figure 4: Original and improved local Voronoi diagrams for each server
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Figure 5: Instance of network Voronoi diagram

RNN query mainly involves a location query with over-
lapping parts among each circle. In the road network
environment, the second nearest neighbor variant query
is NVD-GkNN method. This method involves three as-
pects: dataset processing, filtering and refinement. The
processing of the dataset is shown in Equation (14).


∂dist(q,Q)

∂x =
∑n

i=1
x−xi√

(x−x1)2+(y−yi)2
= 0

∂dist(q,Q)
∂y =

∑n
i=1

y−yi√
(x−x1)2+(y−yi)2

= 0
(14)

(14) In Equation (14), q is the centre of mass of the
dataset Q, (x, y) serves as the coordinates of q and (xi, yi)
serves as the coordinates of any point in the dataset Q.
However, when the value of n is taken to be 2, Equa-
tion (14) does not give a closed solution and only an es-
timated value can be obtained, and the centre of mass q
can only be obtained as an approximation. Therefore, for
obtaining a good estimate, the coordinates of the centre
of mass need to be modified, as shown in Equation (15).

{
x = x− µ∂dist(q,Q)

∂x

y = y − µ∂dist(q,Q)
∂y

(15)

In Equation (15), x represents the modified prime hori-
zontal coordinates, y represents the modified prime ver-
tical coordinates, and µ represents the step size. The
algorithm for querying the GkNN of point sets in a road
network environment is NVD-GkNN (Q,P, k), where Q
represents the query point set, P represents the gener-
ated point set, and k is the value of the GkNN query. In
addition, the study also analysed the impact of adding
and removing points on GkNN. The algorithm for the
effect of added points on GkNN is ADDNVD-GkNN
(Q,P, k, w), where w is the added point in the generated
point set, while the algorithm for the effect of deleted
points on GkNN is DENVD-GkNN (Q,P, k, d), where d
is the deleted point in the range d(d ∈ P ).

4 Analysis of Spatial Database
Optimization Results Based on
Voronoi Diagrams and kNN

4.1 Analysis of the Results of kNN-based
Spatial Database Optimization

The study under the obstacle space mainly uses the kNN-
Obs algorithm. The following contentl is a comparative
analysis of the kNN-Obs algorithm and the Pruning al-
gorithm (PostPruning) algorithm, in terms of both the k
value and the obstacle dimension. Firstly, the impact of
different k values on the Central Processing Unit (CPU)
running time (RT) and page views was analysed, as shown
in Figure 7.

Figure 7(a) showed that the CPU runtime of the kNN-
Obs and PostPruning algorithms increased with the value
of k. The maximum value of the CPU runtime of the
kNN-Obs algorithm was between 3s and 4s, and the min-
imum value was close to 2s. The maximum value of the
CPU runtime of the PostPruning algorithm was between
4s and 5s, and the minimum value was around 1.1s. When
the value of k was less than 4s, the PostPruning algo-
rithm CPU runtime was shorter. When the value of k
was greater than 4s, the kNN-Obs algorithm CPU run-
time was shorter. Figure 7(b) illustrates that as the k
values of the kNN-Obs and PostPruning algorithms grad-
ually increased, their respective page views also increased.
The maximum value of page views for the kNN-Obs al-
gorithm was close to 150 and the minimum value was
close to 100. The maximum value of page views for the
PostPruning algorithm was close to 250 and the mini-
mum value was around 150. The overall number of page
views for the kNN-Obs algorithm was smaller than that
for the PostPruning algorithm. Therefore, on the whole,
the kNN-Obs algorithm outperformed the PostPruning
algorithm. The number of different obstacles also had an
impact on CPU runtime and page accesses, as shown in
Figure 8.

As can be seen in Figure 8(a), the CPU runtime of
the kNN-Obs and PostPruning algorithms gradually got
larger as the quantity of obstacles increases. The kNN-
Obs had a maximum CPU runtime of between 6s and
8s, with a minimum value close to 2s, while PostPruning
had a maximum CPU runtime of between 10s and 12s,
with a minimum value close to 4s. As can be seen in Fig-
ure 8(b), the number of page views for both the kNN-Obs
and PostPruning algorithms increased as the quantity of
obstacles increased. The kNN-Obs had a maximum value
of around 175 page views and a minimum value of close
to 100, while PostPruning had a extreme value around
150. In summary, the kNN-Obs algorithm outperformed
the PostPruning algorithm. In order to better validate
the performance of the kNN Obs algorithm, comparative
analysis was conducted from the accuracy and F1 value
of the algorithm. In the experimental environment, the
CPU frequency was 2.0 GHz, the memory was 4GB, and
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Figure 6: NN and RNN query graph and RNN graph for 10 data points in two dimensional space

Figure 7: The impact of k value on CPU runtime and page views

Figure 8: The impact of the number of obstacles on CPU runtime and page views
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the operating system was Windows 7. A total of 4 perfor-
mance tests of the algorithm were conducted. The com-
parison of accuracy and F1 values between the kNN Obs
algorithm and the PostPruning algorithm was shown in
Table 1.

From Table 1, the maximum accuracy of the kNN Obs
algorithm was 97.9%, while the minimum accuracy was
95.7%. The maximum accuracy of the PostPruning algo-
rithm was 94.6%, and the minimum accuracy was 92.9%.
The accuracy of the kNN Obs algorithm was generally
about 3% higher than that of the PostPruning algorithm.
The maximum F1 value of the kNN Obs algorithm was
0.981, and the minimum value was 0.964. The maximum
F1 value of the PostPruning algorithm was 0.921, and
the minimum value was 0.892. It can be seen that the F1
value of the kNN Obs algorithm was much higher than
that of the PostPruning algorithm, which also indicated
that the performance of the kNN Obs algorithm was su-
perior to that of the PostPruning algorithm.

4.2 Analysis of Spatial Database Opti-
mization Results Based on Voronoi
Diagrams and kNN

The study employed a grid Voronoi graph-based reverse
nearest neighbor algorithm, NVD-RNN, in a road net-
work environment. The CPU RT of the NVD-RNN algo-
rithm, the Expectation Propagation (EP) algorithm and
the Auto-Regression k Nearest Neighbors (ARkNN) algo-
rithm were compared and analysed. The outcomes of the
comparison of the three algorithms were shown in Fig-
ure 9.

In Figure 9, k was the number of target nodes to be ob-
tained and D represented the number of generated points.
From Figure 9(a), it indicated that the CPU RT of the
three algorithms increased gradually under the growth of
k value. The maximum CPU RT of the NVD-RNN al-
gorithm was close to 900s and the minimum value was
around 400s. The maximum CPU RT of the EP algo-
rithm was around 1100s and the minimum value was close
to 300s. The maximum CPU RT of the ARkNN algo-
rithm was over 1000s, with a minimum value of around
200s. The NVD-RNN algorithm CPU runtime started to
be smaller than the EP algorithm when the value of k
was greater than 7s, and the NVD-RNN algorithm CPU
runtime started to be smaller than the ARkNN algorithm
when the value of k was greater than 17s. Figure 9(b)
showed that the CPU runtime of the three algorithms
increased gradually as the value of D increased. The
maximum CPU runtime of the NVD-RNN algorithm was
about 3s and the minimum value was about 1.3s. The
maximum CPU runtime of the EP algorithm was about
5.3s and the minimum value was close to 3s, while the
maximum CPU runtime of the ARkNN algorithm was
close to 4s and the minimum value was about 2.1s. The
minimum value was about 2.1s. In summary, the NVD-
RNN algorithm was greatly superior to the rest algo-
rithms. In order to further validate the performance of the

NVD-RNN algorithm, the study selected Mean Squared
Error (MSE) and Root Mean Squared Error (RMSE) as
comparative indicators. The experimental environment
was also under the Windows 7 system, and the number of
experiments was also 4. The comparison of mean square
error and root mean square error of NVD-RNN algorithm,
ARkNN algorithm, and EP algorithm was shown in Ta-
ble 2.

From Table 2, it can be seen that the maximum MSE
value of the NVD-RNN algorithm was 1.25 and the min-
imum value was 1.13. The maximum MSE value of the
ARkNN algorithm was 2.01, and the minimum value was
1.87. The maximum MSE value of the EP algorithm was
2.51, and the minimum value was 2.37. The maximum
RMSE value of the NVD-RNN algorithm was 0.971, and
the minimum value was 0.863. The maximum RMSE
value of the ARkNN algorithm was 1.373, and the min-
imum value was 1.329. The RMSE of the EP algorithm
had a maximum value of 1.572 and a minimum value of
1.542. From this, it can be seen that the NVD-RNN algo-
rithm had significantly lower values in MES and RMSE
than the ARkNN algorithm and EP algorithm, which also
indicated that the NVD-RNN algorithm had better per-
formance. The k-nearest neighbor NVD-GkNN algorithm
for the Voronoi group under the road network was the sec-
ond algorithm. The following was a comparative analysis
of the NVD-GkNN algorithm, the Incremental Euclidean
Restriction (IER) algorithm and the Timing Algorithm
(TA) algorithm, as shown in Figure 10.

Figure 10(a) illustrated that the CPU runtime of all
three algorithms increased as the value of k increased.
The maximum CPU runtime of the NVD-GkNN algo-
rithm was about 2s and the minimum value was about
0.6s. The maximum CPU runtime of the IER algorithm
was about 3.2s and the minimum value was about 0.8s.
The maximum value of the TA algorithm CPU runtime
was about 4.6s and the minimum value was about 2.1s.
On the whole, the NVD-GkNN algorithm CPU runtime
was always below the other two algorithms’ value. Fig-
ure 10(b) shows that as the value of k gradually grew,
the page accesses of the three algorithms also gradually
increased. The maximum value of page accesses for the
NVD-GkNN algorithm was around 280 and the minimum
value was around 130. The maximum value of page ac-
cesses for the IER algorithm was around 340 and the
minimum value was around 150. The maximum value
of page accesses for the TA algorithm was around 450
and the minimum value was around 280. On the whole,
the page views of the NVD-GkNN algorithm were consis-
tently lower than those of the other two algorithms. In
summary, it can be seen that the NVD-GkNN algorithm
had a clear advantage. In addition to comparing the im-
pact of different k values for the three algorithms on CPU
runtime and page accesses, the study also compared the
influence of the query point set Q on CPU runtime and
page accesses for the three algorithms, as shown in Fig-
ure 11.

Figure 11(a) demonstrated that the CPU runtime of
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Table 1: Comparison of accuracy and F1 values between the kNN Obs algorithm and the PostPruning algorithm

Number of experiments
Algorithm 1 2 3 4

Precision F1 Precision F1 Precision F1 Precision F1
PostPruning 93.7% 0.903 94.6% 0.892 92.9% 0.913 93.2% 0.921
kNN-Obs 95.8% 0.964 96.4% 0.976 95.7% 0.981 97.9% 0.975

Figure 9: The impact of changes in k and D values on CPU running time

Table 2: Comparison of mean square error and root mean square error of NVD-RNN algorithm, ARkNN algorithm
and EP algorithm

Number of experiments
Algorithm 1 2 3 4

MSE RMSE MSE RMSE MSE RMSE MSE RMSE
NVD-RNN 1.21 0.971 1.17 0.863 1.25 0.954 1.13 0.874
ARkNN 1.87 1.373 1.97 1.329 2.01 1.356 1.89 1.337

EP 2.37 1.542 2.45 1.568 2.51 1.572 2.47 1.556

Figure 10: The impact of k value on CPU runtime and page views



International Journal of Network Security, Vol.26, No.5, PP.800-811, Sept. 2024 (DOI: 10.6633/IJNS.202409 26(5).10) 809

Figure 11: The impact of query point set Q on CPU running time and page views

all three algorithms grew as the value of Q increased.
The maximum CPU runtime of the NVD-GkNN algo-
rithm was about 2.5s and the minimum value was about
1.2s. The maximum CPU runtime of the IER algorithm
was about 4.3s and the minimum value was about 1.7s.
The maximum value of the TA algorithm CPU runtime
was about 5.2s and the minimum value was about 3.1s.
As can be seen from Figure 11(b), the page views of all
three algorithms increased with the value of Q. The max-
imum value of page views for the NVD-GkNN algorithm
was about 270 and the minimum value was about 80. The
maximum value of page views for the IER algorithm was
about 550 and the minimum value was about 180. The
maximum value of page views for the TA algorithm was
about 560 and the minimum value was about 190. In sum-
mary, it can be seen that the NVD-GkNN algorithm had
more obvious advantages. In the following, the dynamic
update algorithm, TA algorithm and IER algorithm were
compared, as shown in Table 3 and Table 4.

Table 3: Performance comparison of dynamic update al-
gorithm (ADDNVD-GkNN) with TA and IER algorithms

Algorithm P
1000 1001

ADDNVD-GkNN 1.262 1.972
TA 3.102 6.165
IER 1.857 3.283

As can be seen from Table 3 and Table 4, the com-
parison in the ADDNVD-GkNN algorithm, the DENVD-
GkNN algorithm and the other two algorithms was per-
formed mainly in two dimensions: execution time and
page accesses. When the number of page views was 1000,
the execution time of the ADDNVD-GkNN algorithm was
1.84s and 0.595s faster than the TA algorithm and the
IER algorithm’s value, respectively. When the number of
page views was 1001, the execution time of the ADDNVD-
GkNN algorithm was 4.193s and 1.311s faster than the TA

Table 4: Performance comparison of dynamic update al-
gorithm (DENVD-GkNN) with TA and IER algorithms

Algorithm P
2000 1999

DENVD-GkNN 2.009 2.168
TA 4.326 8.186
IER 2.634 5.154

algorithm and the IER algorithm’s value, respectively. In
summary, it can be seen that ADDNVD-GkNN algorithm
outperformed the TA algorithm and the IER algorithm.
When the quantity of page views was 2000, the execu-
tion time of the DENVD-GkNN algorithm was 2.317s and
0.625s faster than the TA and IER algorithms’ value, re-
spectively. When the number of page views was 1999,
the execution time of the DENVD-GkNN algorithm was
6.018s and 2.986s faster than the TA and IER algorithms’
value, respectively. It can be seen that the DENVD-
GkNN algorithm was faster than the TA and IER algo-
rithms. GkNN algorithm had an advantage over the TA
algorithm and the IER algorithm.

5 Conclusion

To address the shortcomings of the nearest neighbor query
and its variants in the obstacle and road network envi-
ronments, the study combines Voronoi diagrams and grid
Voronoi diagrams with the nearest neighbor query and its
variants. These methods are then used to query spatial
data in the obstacle space and road network environments
and compared with existing spatial database query meth-
ods. The results show that after a value of k greater
than 4s, the kNN-Obs algorithm’s minimum CPU run-
time was 0.2s less than the PostPruning algorithm, and
the maximum runtime was 1.2s less. The kNN-Obs has a
minimum of 50 and a maximum of around 100 fewer page
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views than the PostPruning algorithm. After a value of
k greater than 7s, the CPU runtime of the NVD-RNN
algorithm is at least about 100s less than that of the EP
algorithm, and at most about 180s less. After a value of k
greater than 17s, the CPU runtime of the NVD-RNN al-
gorithm is at least about 50s less than that of the ARkNN
algorithm. Under the influence of the k value, the CPU
runtime of the NVD-GkNN algorithm is at least 0.1s and
1.2s less than that of the IER and TA algorithms, and at
most 1.2s and 1.4s less. The page views under the NVD-
GkNN algorithm are at least 10 and 20 less than that
of the IER and TA algorithms, and at most 90 and 110
less. Under the influence of the Q set, the CPU RT of the
NVD-GkNN algorithm is at least 0.3s and 1.9s less than
that of the IER and TA algorithms, and at most 2.8s and
3.5s less than that of the IER and TA algorithms. The
page views under the NVD-GkNN algorithm are at least
50 and 65 less than that of the IER and TA algorithms,
and at most 290 and 300 less. The research results have
improved the query efficiency of spatial databases, main-
tained data security of the database, and also contributed
to network security. Future research can continue to ex-
plore the spatial data query method based on Voronoi di-
agram, improve the existing query method and enhance
the query efficiency.
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