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Abstract

The influence maximization problem is discovering a seed
set of nodes in a social network and making the spread
as large as possible based on influence propagation. The
current related algorithm based on the greedy strategy
maintains a better influence propagation but has high
time complexity and is not very scalable. This paper
proposes a new method to solve the influence maximiza-
tion problem by reducing the time complexity, called the
Two Rounds of Filtration Metric (TRFM) algorithm. The
main work is as follows:(1) A regional node metric is pro-
posed based on the local topology to measure the nodes,
which reduces the evaluation time. (2) The submodular
characteristic is applied to discover the TOP-K seed node
set from the candidate node set; meanwhile, the evalua-
tion measurement in the whole network maintains a bet-
ter influence propagation. The experimental results on
the actual data set verify the effectiveness of the TRFM
algorithm.

Keywords: Community Division; Greedy Strategy; Inde-
pendent Cascade Model; Influence Maximization; Social
Network

1 Introduction

1.1 Overview of Influence Maximization

Social networks are increasingly integrated into every as-
pect of our working life by the new generation of informa-
tion technology. Users can follow the star, make friends,
release information, and promote products through social
networks such as Weibo, WeChat, Twitter, and Facebook.
For example, a company develops a new cell phone and
hopes to promote it through some stars to influence more
people; As well as a company develops a new APP or a
new cell phone and hopes to promote it through some
famous bloggers to attract more users to participate by
word of mouth, etc. Ultimately, we hope to maximize the

influence of other users on social networks.

1.2 Problem of Influence Maximization

The applications mentioned above can be summarized as
the influence maximization problem, i.e., we can take a so-
cial network graph, for example, where the graph nodes
represent users in the social network, the edges of the
graph represent user relationships in the social network,
which can be described as a problem how to discover the
set of k initial nodes in the graph that maximizes the
spread of the final influence by given a specified propa-
gation model. Several researchers have carried out exten-
sive research work based on this problem. Kempe first
represented the influence maximization study through a
discrete optimization problem and proved it to be an NP-
Hard problem with the simple greedy algorithm to achieve
the optimal solution of (1-1/e). In subsequent research,
some researchers keep optimizing the greedy algorithm to
improve the performance further. Others propose some
heuristic algorithms from scalability and keep advancing
to deepen the research.

1.3 The Main Work of The Method in
This Paper

In this paper, the search space is reduced by two rounds
of node filtration, significantly reducing the running time.
The experimental results on the public dataset verify the
effectiveness of this paper, and the main work of this pa-
per is as follows:

1) Propose a two-round node filtration method:
Through the two-round filtration from the commu-
nity evaluation and node evaluation method, the
node search space is reduced, and the propagation
coverage is narrowed.

2) Propose the regional metric of nodes: The local met-
ric of nodes is formed by integrating and evaluating
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nodes’ neighborhood, radiation, and connectivity at-
tributes.

3) Proposed the greedy algorithm based on submodular-
ity property: Based on the submodularity property,
the set of candidate nodes in two rounds is evaluated
by the whole network metric, the set of Top-k nodes
is found, and which can substantially reduce the time
complexity.

The remaining sections in this paper are as follows:
Section 2 addresses the review of related research works.
Section 3 focuses on the greedy algorithm based on the
two-round filtration metric in this paper. Section 4 shows
the experimental comparison and result analysis. The fi-
nal section presents the related conclusions and prospects.

2 Related Work

In the early research process, node degree became the pre-
ferred influence node criterion in terms of network struc-
ture topology, and it was believed that nodes that might
be in the central position in the network or have specific
linking properties tend to bring better influence, such as
node degree, node centrality, and so on. However, the
generative characteristics of scale-free networks determine
that such nodes tend to be linked together preferentially,
leading to more extensive duplicate coverage of influence
propagation.

With the deepening of further research, based on ear-
lier sociological analysis and marketing-related studies,
influence propagation models (independent cascade model
and linear threshold model) for interactions between users
are constructed to evaluate influence, which can get a
whole network quantitative perspective by portraying the
activation states between nodes. The current research is
mainly divided into greedy algorithms and heuristic algo-
rithms.

2.1 Introduction to The Progress of
Greedy-Based Algorithms

Kempe [17] represented the influence maximization prob-
lem as a discrete optimization problem for the first time
and obtained the maximized influence propagation by a
greedy algorithm. On this basis, Leskovec [21] proposed
the celfGreedy algorithm to reduce the number of Monte
Carlo simulations by submodular characteristics, reducing
the time complexity to a more significant extent. Still, be-
cause its search space is the nodes of the entire network
topology, the computational performance is affected by
the data set. Its worst-case time complexity is approxi-
mately equal to that of the original greedy algorithm. In
response, Goyal [13] proposed the celfPlusGreedy algo-
rithm to evaluate the influence gain of nodes by further
reducing the number of Monte Carlo simulations. Still,
the reduced time complexity is more limited.

Subsequently, researchers continued to optimize the al-
gorisms from the topology; Chen [6] proposed the new
greedy algorithm to improve the efficiency by pre-deleting
edges, which was compared with the celfGreedy algorithm
and found to be advantageous only during the first round
of computation. Wang et al. [28] proposed the CGA and
OASNET methods using a greedy algorithm and dynamic
programming approach to find the seed nodes. However,
the simulation scope is limited to within the community,
which reduces the network-wide influence metric.

Later, researchers proposed optimization schemes
with different perspectives. Borgs et al. [4] proposed
a hypergraph-based influence propagation estimation
method, which still needs the validation of scene data.
Cohen et al. [8] proposed to reduce the time complexity
by selecting the node with the highest information gain
for every round. Laya et al. [2]proposed a fuzzy prop-
agation model to deal with the influence maximization
(IM) problem. Yang et al. [29]proposed an exchange im-
provement algorithm to improve further the quality of the
solution to the non-submodular influence maximization
problem. Jie et al. [24]proposed a novel influence maxi-
mization algorithm of node avoidance based on user in-
terest. Tang et al. [23] performed influence evaluation by
measuring the lowest boundary of the propagation scope,
and the running time was better than the CELF++ al-
gorithm. The running time is better than the CELF++
algorithm. Wang et al. [27] proposed the IV-Greedy al-
gorithm based on the multi-path asynchronous threshold
model MAT, which can achieve better experimental re-
sults on the dataset. Zhou et al. [30] reduced the num-
ber of Monte Carlo simulations for influence calculation
by constructing an upper bound function for the greedy
strategy. The experimental results showed that when the
size of the seed node set is small, the time complexity is
better than the CELF algorithm.

2.2 Introduction to The Progress of
Heuristic-Based Algorithms

To further improve the scalability of influence maximiza-
tion algorithms and better apply them to large-scale social
networks, researchers have also proposed some heuristic
algorithms, such as Median centrality [3] and k-core [20],
etc. Regarding topology, Chen et al. [6] proposed the
DegreeDiscount method based on the first-order neigh-
borhood influence of nodes, which works better experi-
mentally when the propagation probability is small. Sub-
sequently, Chen et al. proposed the LDAG [7] method to
select seed nodes by updating the local topology to im-
prove scalability. Still, the experimental results are easily
affected by the network topology [15]. Cordasco et al. [9]
proposed an efficient heuristic for the network structure of
the tree, annular graphs, and complete graphs algorithm.
They extended it to conduct influence calculations in di-
rected graph network structures [10].

Then propagation paths became the focus of research;
for example, Kimura et al. [19] proposed SPM/SP1M
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method based on the shortest path, and Narayanam et
al. [22] proposed Shapley value-based method, but both
algorithms are weak in scalability. Goyal et al. [12] offered
a way to find the shortest path from the node adjacency
region. Galhotra et al. [11] proposed a heuristic algorithm
based on adjacency paths that reduce the memory over-
head compared to the CELF++ algorithm.

Around the relational perspective among nodes, Agha
et al. [18] studied variable propagation probabilities based
on node heterogeneity. They proposed an optimization
model that simultaneously constrains the seed set and
propagation scope. Wang et al. [26] argued for enhancing
the consideration of group influence on nodes in multi-
relational social networks. Chen et al. [5] used reinforce-
ment learning based on the Markov decision process to
model the influence problem. Later, the research perspec-
tive was gradually expanded, Jiang et al. [14] proposed a
simulated annealing algorithm to optimize the influence
problem; Jung et al. [16] performed incremental influence
measurement on seed nodes, which can effectively reduce
memory overhead and running time.

3 The Proposed Method of This
Paper

3.1 Main Ideas

Some improved versions of the greedy algorithm by re-
searchers have reduced the time complexity to some ex-
tent. However, the running time is relatively high and
needs further improvement in real large-scale social net-
works. In this paper, we hope to provide a filtering mech-
anism to evaluate nodes from the community and topo-
logical perspectives, which can reduce the more extensive
repeated coverage of the propagation scope of the prefer-
entially linked nodes.

3.2 Variable Representation

A social network is modeled using an undirected graph
G= (V, E), where node v represents the users in the net-
work and edge e represents the association between users.
Table ?? lists the important variables used in this paper;
In this paper, S is used as the set of nodes selected to
maximize its influence propagation, which also becomes
the seed set. simCas(S) represents a stochastic process
based on the spread of the node set S’s influence; there-
fore, the result of its influence is also a random set of
nodes. The algorithm in this paper uses the graph G and
the number k as input to generate a seed set S. The aim
is to maximize the influence of other nodes based on the
selected seed set.

3.3 Node Evaluation

Community division will help us to filtrate meaningful
and dispersed communities, which can avoid repeated

coverage of the propagation scope due to the preferen-
tial linking of nodes. Hence, the research in this pa-
per involves the work related to community division, and
to improve the performance further, this paper adopts
Raghavan’s [25] label propagation method, which can be
achieved in linear time, as the method of community cal-
culation in this paper.

There is some difficulty in evaluating the global at-
tribute metric values of nodes in the whole network, which
will consume a lot of running time, so we want to pro-
vide a fine-grained method to measure the attributes of
nodes. In this paper, we consider candidate node bench-
mark metrics (BM) by the following three factors: node’s
adjacency attribute Lv, node’s radiation attribute Rv,
and node’s connectivity attribute Cv.

BM(v) =
Lv +Rv

2
∗ Cv (1)

The variable is described as follows:

� Dv: The node’s degree, reflecting the node’s number
of neighbors.

� Lv: The neighboring metrics of a node, i.e., the ratio
of the node’s degree to the sum of its neighbor’s de-
gree, reflects the strength of the node’s influence on
neighboring nodes;

� Rv: The radiation metrics of a node, i.e., the ratio
of the sum of the node’s neighboring degrees to the
sum of the community nodes, reflects the radiation
strength of the node in the region;

� Cv: The connectivity metrics of a node, i.e., the ratio
of the node’s betweenness centrality and the sum of
the node’s betweenness centrality in the community,
reflects the node’s connectivity strength in the region.

Lv =
Dv∑

W∈N(v) D(w)
(2)

Rv =

∑
W∈N(v) D(w)∑

W∈Com(v) D(w)
(3)

Cv =
Bet(v)∑

W∈Com(v) Bet(w)
(4)

where bvw represents whether node v is connected to node
w, 1 if connected, and 0 otherwise. Dv represents the
degree of node w, N(v) represents the set of neighboring
nodes of node v, Com(v) represents the set of community
nodes of node v, and Bet(v) represents the betweenness
centrality of node v.



International Journal of Network Security, Vol.26, No.3, PP.477-485, May 2024 (DOI: 10.6633/IJNS.202405 26(3).15) 480

Algorithm 1 The Two Rounds of Filtration Metric
(TRFM) Algorithm

Input: Graph G, the amount of seeds k
Output: Top-k vertices
1: initialize S = ∅, SG = ∅
2: community partition and get z candidate communi-

ties: C1, C2, . . . , Cz

3: for i = 1 to z do
4: in community Ci, compute the local value based on

Equation (2)
5: in community Ci, compute the radiation value

based on Equation (3)
6: in community Ci, compute the connection value

based on Equation (4)
7: compute benchmark value bv based on Equa-

tion (1), sort the candidate vertex and continually
add to the set SG

8: end for
9: for each vertex v ∈ SG\S do

10: MGv = 0
11: for i = 1 to R do
12: MGv+ = |SimCas(S ∪ {v})|
13: end for
14: MGv = MGv/R
15: store the vertex v with MGv into the Queue Q
16: end for
17: sort the Queue Q in the descending order
18: S = S ∪ {first vertex in Q} and remove first vertex

from Q
19: for i = 2 to k do
20: while true do
21: vf =first vertex, vs =second vertex in Q
22: if vs has not be evaluated in current round then
23: if MGvf in current round >= MGvs in pre-

vious / current round then
24: S = S ∪ {vf} and remove vf from Q
25: break
26: else
27: insert the vf into the Q based on its

marginal gain MGvf

28: end if
29: end if
30: end while
31: end for
32: return S

3.4 Metrics and Algorithm Execution

3.4.1 Regional Metrics for Two Rounds

In this paper, we propose Two Rounds of Region Met-
ric (TRFM); we hope to reduce the time complexity by
searching the range at the whole network level, and how to
locate the nodes’ candidate solutions becomes the key. In
the first round, we select some scaled subcommunities as
candidate communities through community partitioning,
which reduces the influence of repeated propagation due
to the nodes are often linked together preferentially in the

scale-free network; in the second round, we calculate the
local attribute metrics through candidate communities to
select some nodes with a higher ranking of benchmark
metric to join the candidate node set continuously, and
then always reduce the search scope to reduce time com-
plexity.

Based on the ”diminishing returns” property of the
submodular function, the Marginal Gain obtained by
adding a node v to the set S cannot be smaller than the
marginal gain obtained by adding the same element v to
the parent set T of S, denoted as f(S ∪ {v})− f(S) >=
f(T ∪ {v}) − f(T ). Based on the property of ”diminish-
ing returns,” the number of evaluations is reduced, and
the computational performance is improved by compar-
ing the marginal gain value of the current round with the
previous round. The time complexity is O(N) in the op-
timal case and O(KNRM) in the worst case. Therefore,
in this paper, the algorithm also introduces the idea of
submodular characteristics [21] to reduce the number of
Monte Carlo simulations, which can be in the algorithm
in two steps:

Find the first seed node: In the first round of calcula-
tion, the influence gain value is calculated for the set of
filtered nodes and stored in the queue in reverse order,
and the first node of the line is the first seed node we
found, and then the node is removed at the head of the
queue.

Find the remaining set of k − 1 seed nodes: Continue
to evaluate the marginal gain of nodes in each round and
update the queue by comparing the influence gain of the
first node in the current round with the influence gain of
the second node in the previous round, if the gain value
of the first node is more significant, we select the first
node as the seed node. Otherwise, we insert the node
into the corresponding position in the queue according to
its influence gain value. Then we iterate the comparison
of influence gain and update the node queue until the
remaining k − 1 seed nodes are found.

3.4.2 The Execution Process of The Algorithm

The algorithm in this paper is shown in Algorithm 1. Line
2 performs community division. Lines 4, 5, and 6 calcu-
late the nodes’ neighboring metrics, radiative metrics, and
connectivity metrics in the current community. The base-
line attributes of the nodes in the current community are
calculated in line 7, sorted, and added to the candidate
node set. In lines 9-18, the evaluation of influence gain
is computed for each node in the candidate node-set, and
the 1st seed node is found. In lines 19-29, the evalua-
tion calculation of the influence gain values of the nodes
stored in the queue is iterated until the k− 1th seed node
is found.

Complexity analysis: Line 2 community division
consumes O(M). Lines 3-8 consume O(MCNC). Lines
9-18 consume O(zRNC), and lines 18-32 compute sta-
tistically for the remaining k − 1 node sets with optimal
time complexity of O(NC) and worst time complexity of
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O(kzRNC). Overall, the optimal time complexity is thus
= O(M) +O(MCNC) +O(zRNC) +O(k) = O(zRNC)
and the worst time complexity is = O(M)+O(MCNC)+
O(zRNC) +O(kzRNC) = O(kzRNC).

4 Experimental Analysis

We conduct our experiments on publicly available
datasets and compare them with current heuristics and
greedy algorithms to verify the effectiveness of the pro-
posed method in two aspects: the range of influence and
the running time.

4.1 Experimental Setup

Operating system: Windows 10, processor: Intel (R) i5
1.8GHz, memory: 32G.

4.1.1 Experimental Data Set

The experimental data were obtained from the dataset of
Arxiv, a paper collaboration network [1], where a node
represents that the user published a paper and an edge
represents those two users co-authored the paper. The
dataset is as follows:

� Dblp: DBLP academic paper collaboration dataset,
where the number of nodes is about 14,485 and the
number of edges is 37,026.

� GrQc: A collaborative dataset of papers in general
relativity and quantum cosmology, where the number
of nodes is about 5,242 and the number of edges is
14,485.

� Hep: A combined dataset of articles in high energy
physics, where the number of nodes is about 15,233
and the number of advantages is 31,380.

� Phy: A collaborative dataset of papers in the field of
physics, where the number of nodes is about 14,997
and the number of edges is 57,866.

Table 2: Statistics of four real-world networks

DataSet #Vertice #Edge
Dblp 14,485 37,026
GrQc 5,242 14,485
Hep 15,233 31,380
Phy 14,997 57,866

We extracted the structure of four types of paper collab-
oration networks from the arXiv paper literature, each
node in the network represents an author, and each edge
represents the existence of two authors collaborating on
a paper. The structure of the four types of networks is
shown in Table 2.

4.1.2 Experimental Model

The goal of our algorithm is to perform validation in the
Independent Cascade (IC) model, so we use the following
two models to generate non-uniform information propa-
gation probabilities:

� UIC: i.e., Uniform Independent Cascade Model
(UIC) On each edge (v, w), we uniformly choose the
probability at random in the set 0.1,0.01, which cor-
responds to the level of influence;

� WIC:i.e., Weighted Independent Cascade Model
(WIC), in which the probability of influence on each
edge (v, w) is 1/dw, where dw is the number of de-
grees of entry of node w. However, the model can
generate asymmetric, non-uniform propagation prob-
abilities even if the original graph is undirected.

4.1.3 Comparison Method

� Random: As a basic comparison algorithm, k nodes
are randomly selected in graph G. The graph is re-
ferred to as Rand;

� MaxDegree: as a comparison algorithm, one that se-
lects k nodes with a maximum degree based on their
topology, abbreviated as HeuMD in the figure, with
time complexity of O(N);

� DegreeDiscount: proposed in the literature [6], a de-
gree discount heuristic, abbreviated as HeuDD in the
figure, with a running time of O(klogN +M);

� BetweennessCentrality: proposed in [3], a heuristic
based on the betweenness centrality of nodes, abbre-
viated as HeuBet in the figure, and the optimal run-
ning time is O(MN);

� CelfGreedy: proposed in [13] a greedy algorithm op-
timization scheme based on submodular properties,
abbreviated as Celf in the figure, and the optimal
running time is O(RMN).

� The method of this paper: The greedy algorithm
based on two rounds of filtration proposed in this
paper, referred to as TRFM in the figure, has an op-
timal running time of O(zRNC);

4.1.4 Evaluation Indicators

Influence range: To better obtain the influence propa-
gation scope of these algorithms, for each node seed set,
we got a more stable propagation scope by Monte Carlo
simulations 2000 times on UIC and WIC models, respec-
tively. The larger the influence propagation value, the
better the algorithms perform.

Runtime: We also compare the runtime of influence
propagation for the set of k=50 nodes. The smaller the
running time, the better the algorithm performs.
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4.2 Analysis of Results

4.2.1 Experimental Results Demonstration

Figure 1: Experimental comparison of algorithms based
on different data sets under the UIC model

Figure 2: Experimental comparison of algorithms based
on different data sets under the WIC model

Influence propagation: Figure 1 (based on the UIC
model) and Figure 2 (based on the WIC model) show
the scope of influence propagation based on various al-
gorithms on four different datasets. For straightforward
reading, in all the influence propagation legends, the leg-
ends rank the algorithms from the direction down accord-
ing to the scope of influence propagation (k=50). Figure 3
shows the running time comparison of the Celf algorithm
and TRFM algorithm when the k=50 seed set.

4.2.2 Analysis of Propagation Scope

First, the influence propagation scope based on the UIC
model and the WIC model is shown in Figure 1 and Fig-
ure 2, where the CELF algorithm shown in cyan as the

optimal coverage guarantees an approximate optimal so-
lution over the four data sets, and we used as the target
for the benchmark test and marked as 100%.

Secondly, the random strategy shown in black shows
the practical significance of the strategy selection that
must be employed. The maximum degree strategy is
shown in red; However, it offers a specific propagation
scope on the dblp dataset and Hep dataset; due to the
generative characteristics of the scale-free network, the
nodes with more significant degrees are often linked to-
gether preferentially, which quickly causes repeated cov-
erage of the propagation scope and cancels out part of
the propagation effect; therefore it has to perform poorly
on the GrQc dataset, Phy dataset, even inferior to the
random strategy.

Then, the betweenness centrality shown in blue and the
degree discounting algorithm shown in green, either based
on the UIC or WIC models, reflect a better and more
stable propagation scope as heuristic strategies. However,
there is still some distance to improve the propagation
scope compared to the optimal one.

Finally, the CELF algorithm under the greedy strat-
egy shown in cyan, and the TRFM algorithm based on
two rounds of filtration proposed in this paper shown in
pink, maintain excellent propagation scope on the four
data sets, and the performance can remain stable on both
the UIC model and the WIC model. The TRFM algo-
rithm proposed in this paper can significantly approxi-
mate the optimal solution of the CELF algorithm. Bench-
mark comparisons of the propagation scope of different
algorithms are shown in Table 3 and Table 4.

4.2.3 Running Time Analysis

Current algorithms: As shown in Figure 3 and Figure 4,
the CELF algorithm corresponds to the cyan histogram,
and the TRFM algorithm corresponds to the pink his-
togram. From the comparison of the data based on the
UIC model (as shown in Figure 3), compared with CELF,
the TRFM algorithm saves 96%, 89.3%, 92.9%, and 93.5%
of the running time; from the comparison of the data
based on WIC model (as shown in Figure 4), compared
with CELF, TRFM algorithm saves 97.1%, 91.5%, 92.2%,
95.8% of the running time; the TRFM algorithm proposed
in this paper substantially reduces the running time and
improves the running time by about 10 times to 30 times
compared with the CELF algorithm of greedy strategy
and maintains good stability.

Experiments on four publicly available datasets show
that the TRFM method proposed in this paper can ob-
tain a propagation scope that can approach the optimal
solution of CELF, whether based on the UIC model or the
WIC model, and, at the same time, substantially reduces
the computation time and maintains good stability.
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Table 3: Comparison of the propagation scope of different algorithms based on the UIC model

Data\Algorithm Rand HeuMD HeuMD HeuDD TRFM CRLF
Dblp 44.40% 97.10% 96.10% 96.80% 99.70% 100%
GrQc 52.80% 52.30% 88.40% 83.90% 100% 100%
Hep 60.70% 86.30% 90.80% 91.60% 100% 100%
Phy 34.40% 52.40% 77.50% 76.20% 100% 100%

Table 4: Comparison of the propagation scope of different algorithms based on the WIC model

Data\Algorithm Rand HeuMD HeuMD HeuDD TRFM CRLF
Dblp 26.60% 86.60% 85.10% 88.70% 100% 100%
GrQc 37.60% 34.30% 84.60% 70.10% 99.80% 100%
Hep 42.40% 69.80% 79.90% 76.90% 99.80% 100%
Phy 31.90% 28.20% 66.00% 47.20% 99.70% 100%

Figure 3: Comparison of the algorithm running time for
different data sets based on the UIC model

Figure 4: Comparison of the algorithm running time for
different data sets based on the WIC model

5 Conclusion and Outlook

As the problem of maximizing the influence of social net-
works is a hot research topic, this paper proposes the
TRFM algorithm with two rounds of filtration metrics,
which significantly reduces the time complexity compared
with current methods and approaches the optimal prop-
agation scope on four different datasets and has stable
performance. Nevertheless, there is still much room for
future research work; for example, solving the influence
maximization problem based on ”topic semantic model-
ing,” ”large-scale social networks,” ”dynamic online com-
puting,” etc. may provide ideas for the application of
social networks.
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