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Abstract

The network covert timing channel utilizes inter-packet
delay to encode binary data to achieve information leak-
age and other purposes. In recent years, Covert Tim-
ing Channels (CTCs) have been demonstrated to be ap-
plicable across various protocols and networks, posing a
significant threat to network security. Simultaneously,
new CTCs have challenged the efficacy of CTC detec-
tion schemes. The recent ϵ-κlibur and ϵ-κlibur-O chan-
nels exhibit structural and characteristic similarities to
legitimate channels, rendering ML-based detection meth-
ods like GAS and Snap ineffective. In this paper, we
investigate an approach based on Gramian Angular Field
(GAF), Markov Transition Field (MTF), and Recurrence
Plot (RP) image processing. We further employ the
knowledge-distilled and compressed image classification
model MobileVit for detection. Our approach achieves a
detection rate 98.24% for seven different channels within
a sampling window of 64 IPDs. Experimental results
demonstrate our proposed scheme’s generality, sensitiv-
ity, and effectiveness.

Keywords: Covert Time Channel; Image Classification
Network; Knowledge Distillation; MobileViT

1 Introduction

The network covert timing channel (CTC) is a tech-
nique that achieves information hiding through the ma-
nipulation of inter-packet delays based on constructed
rules. In the past decade, numerous studies have uti-
lized various protocols to implement CTCs. For instance,
CTCs have been established through VoLTE traffic [46]
and the MQTT protocol in the Internet of Things [27].
Moreover, CTCs have been implemented in diverse sce-
narios and networks, such as Vehicle Ad-Hoc Networks
(VANETs) [38] and CAN bus communication in vehicu-
lar networks [12].

The characteristics of CTC make it have both positive

and negative effects. CTCs are concealed, private and
they possess low active drop rates. Malicious software
employs CTCs to obfuscate its presence, making it chal-
lenging to detect [25]. On the other hand, CTCs can serve
legitimate purposes, such as enabling reliable covert com-
munications within MTS systems [20] or evading censor-
ship [4]. They can also be applied in automotive control
networks to enhance robustness and ensure stable com-
munication [41].

Current detection methods for network covert timing
channels predominantly rely on statistical and deep learn-
ing approaches. Statistical solutions extract statistical
features, effectively detecting specific CTCs but lacking
generality and sensitivity, particularly with larger sam-
pling windows [17]. With hardware advancements, deep
learning-based CTC detection schemes have emerged,
demonstrating substantial effectiveness [10], although
cost reduction remains an ongoing concern. Recently, Se-
bastian et al. [47] proposed ϵ-κlibur and ϵ-κlibur-O chan-
nels, imitating the distribution structure of normal Inter-
Arrival Times (IATs and IPDs are the same) to under-
mine CTC detection performance. ML-based methods
like Snap and GAS fail to effectively detect these chan-
nels. While enhanced ϵ-similarity has been proposed to
improve ϵ-κlibur detection performance without signifi-
cantly compromising original CTC detection. But it lacks
generality, yielding AUC values between 0.80 and 0.88 for
TRCTC. Therefore, new CTC detection solutions must
simultaneously address both sensitivity and generality.

Inter-packet delay (IPD) represents univariate sequen-
tial data and CTC detection aims to classify it. This pa-
per proposes leveraging IPD characteristics by transform-
ing sequential data into images for classification. Inspired
by significant achievements in computer vision, Wang et
al. [43] introduced the encoding of time series data into
various image types, such as GAF and MTF. By con-
verting 12 standard datasets into combined GAF-MTF
images, they demonstrated that the tiled CNN-based im-
age classification model outperformed concurrent state-of-
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the-art methods. GAF retains time dependencies between
consecutive IPDs, MTF captures IPD probability tran-
sition patterns and Recursive Plot (RP) preserves non-
stationarity and inherent similarity of IPDs. In previous
work, our team applied GAF, MTF and RP image pro-
cessing techniques for CTC detection. The combination
of GAF-MTF-RP images yielded the best classification
results [15]. Our approach achieved effective detection
on publicly available and locally collected datasets, uti-
lizing the MobileVit network as the optimal model and
a sampling window of 64 IPDs. Building upon this prior
research, this paper conducts detection for ϵ-κlibur and ϵ-
κlibur-O. We also use knowledge distillation to compress
the MobileVit model. In summary, the key contributions
of this paper can be summarized as follows:

� We introduce detection methods for ϵ-κlibur and ϵ-
κlibur-O, leveraging GAF, MTF and RP to extract
feature matrices from sequential data IPD. These
three matrices are combined into a three-channel im-
age for classification.

� We employ knowledge distillation on the MobileVit
network. Compared to a teacher network, using three
teacher networks to train MobileVit network yields
the best results. Distilled models offer advantages in
terms of scale and speed, facilitating faster detection
and reduced deployment costs.

� We conduct a series of comparative experiments,
training the distilled network with optimal param-
eters, achieving the highest accuracy in classifying
seven different channels. Furthermore, our distilled
network outperforms popular distillation networks
like Deit [40] and FasterNet [8] for this specific clas-
sification task.

The remaining sections of this paper are organized as
follows: Section 2 discusses related work. In Section 3,
we provide a detailed presentation of the detection ap-
proach, including its conceptual framework and intricate
details. Section 4 outlines the configuration of our pro-
posed scheme, including parameter settings and presents
the results of our experimental analysis, which are subse-
quently showcased and analyzed. Finally, Section 5 con-
cludes our work, summarizing the key findings and con-
tributions.

2 Related Work

Research on the distribution patterns of normal traffic’s
inter-packet delay has shown that it does not adhere to
a normal distribution. Early studies proposed that IPD
follows distributions such as Pareto [31] and gamma dis-
tributions [29]. Recently Weibull distribution has been
considered for studying anomalous IPD for Intrusion De-
tection Systems (IDS) [35]. We use the traffic data from
GAS [17]. It has two datasets. Both datasets follow long-
tailed distributions, while Backbone traffic has larger de-
viation than Lab, indicating more disperse IPDs and more

fluctuant timing behavior [17]. It is sourced from CAIDA
and some similar datasets have demonstrated adherence
to the Weibull distribution such as MAWI, NUST [35].
Additionally, other laws like Benford’s Law [30] and Zipf’s
Law [39] have also been employed to model normal traffic
IPD characteristics. Some IDS systems construct mod-
els for binary classification based on the distribution pat-
terns of normal IPD, without studying the IPD of CTCs.
However, CTCs possess different IPD characteristics from
normal traffic, allowing them to easily bypass IDS. In
the aforementioned studies, variations in IPD distribu-
tion structure are observed due to different paths, periods
and environments of the collected datasets. This vari-
ation may lead to differing findings. Similar challenges
exist in current CTC detection research and CTC detec-
tion schemes which need to be validated across different
datasets. Therefore, for CTC research, we advocate for
the release of more publicly available datasets.

In recent literature on CTC classification research,
CTCs are mainly categorized into Fixed-IPD Channels,
Dynamic-IPD Channels, Combinatorial-IPD Channels
and Delayed-IPD Channels [17]. These are represented by
IPCTC [6], Jitterbug [34], LNCTC [33] and TRCTC [5],
respectively, which are commonly studied as the primary
detection targets.

2.1 Channel Classification

This paper primarily investigates and introduces six types
of covert timing channels, including four typical CTCs
and two recent CTCs.

2.1.1 IPCTC

Cabuk et al. [6] proposed IP Covert Timing Channel
(IPCTC), where the sender and the receiver select pa-
rameter ω as the time interval for sending packets. For
sending a bit 1, the sender sends a packet within ω time.
For sending a bit 0, the sender remains silent for ω time.

2.1.2 Jitterbug

Shah et al. [34] proposed the passive CTC JitterBug. The
sender and the receiver choose parameter ω. For sending
a bit 1, the sender increases the time interval to a multiple
of ω. For sending a bit 0, the sender increases the delay
to a multiple of ω/2, while avoiding multiples of ω.

2.1.3 LNCTC

Sellke et al. [33] proposed the LNCTC, using parameters
L-bit and N consecutive IPDs. L-bits are embedded into
N consecutive IPDs. The consecutive IPDs are of the set
T . T =

{
D, D + 20 ∗ d, · · · , D + 2L ∗ d

}
. The sender

and the receiver negotiate to determine the value of D
and d.
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2.1.4 TRCTC

Cabuk et al. [5] proposed a time-replay covert timing
channel (TRCTC), which uses a legal traffic IPD set S.
S is divided into two equal parts, S0 and S1. When the
sender needs to send a bit 0, an IPD is randomly selected
from S0 to introduce a delay before sending bit 0. Simi-
larly, when sending a bit 1, an IPD is selected from S1.

2.1.5 ϵ-κlibur

Sebastian et al. [47] proposed ϵ-κlibur, modifying delays
without compromising transmission bandwidth or relia-
bility. Given an IPD list D, D = {d1, d2, · · · , di} , mod-

ified delays are obtained as D =
{
d

′

1, d
′

2, · · · , d
′

i

}
. A

threshold t is set. If di ≤ t and di > t, or di > t and
d

′

i ≤ t. The count of errors increases. The impact score
I = E/D, where smaller I is acceptable. Modifications
are applied according to certain rules, with τ and 2τ as
examples for CTC IPD lists. If di is not greater than t, d

′

i

is drawn from a normal distribution N (0, (threshold/7))
and takes positive values. If d

′

i at this point exceeds t, d
′

i

is set to t. If the original di is greater than t, d
′

i is drawn
from (1.5τ, 2.4τ) with a step size of 0.001. The author
maintains I at 0.

2.1.6 ϵ-κlibur-O

Building upon ϵ-κlibur, an additional outlier value of 10τ
is introduced to extend the distribution of time. This step
makes the IPD distribution of ϵ-κlibur-O more similar to
that of normal channels, as real-world conditions often
involve fluctuations, causing delays to occasionally stand
out.

Senders and receivers agree upon parameter modifi-
cations that still allow distinguishing between sending 1
and 0 using a threshold t. However, detection schemes
are unaware of t and the IPD distribution of ϵ-κlibur and
ϵ-κlibur-O closely resembles that of normal channels. As
a result, detection performance is reduced.

2.2 CTC Detection Scheme Classification

CTC detection methods vary based on their distinctive
features. This paper categorizes them as five parts.

2.2.1 Regularity, ϵ-similarity and Entropy-based
Detection

ϵ-similarity [6] detection and compressibility [7] were pro-
posed very early for CTC detection. Wendzel et al. [44]
used compressibility score, ϵ-similarity and regularity for
changing countermeasures in CTC detection. Gianvec-
chio et al. [11] proposed entropy-based CTC detection
and Conditional Entropy Estimation (CEE) for detection.
These are classical detection methods, they are often ef-
fective for one or two channels and require a large detec-
tion window.

2.2.2 Non-parametric Detection Methods

Mou et al. [28] proposed a sliding serial port detection
scheme based on wavelet transform and Support Vec-
tor Machines (SVM). Liu et al. [21] proposed a detec-
tion approach utilizing Discrete Wavelet Multi-Resolution
Transformation (DWMT). Rezaei et al. [32] detected
CTCs by three non-parametric statistical tests, Spear-
man Rho, Wilcoxon Signed-Rank and Mann-Whitney-
Wilcoxon rank sum test.

2.2.3 Machine Learning Based Detection Meth-
ods

Shrestha et al. [36] proposed a SVM classifier training
fingerprinting CTC flows for detection. iglesias et al. [16]
utilized decision trees to classify traffic. Li et al. [18] col-
lected eight statistical features of IPD as communication
fingerprints for classification by a Random Forest classi-
fier.

Darwish et al. [9] proposed a deep learning-based hi-
erarchical statistical classification detection method for
CTCs. Han et al. [9] utilized K-Nearest Neighbors (KNN)
for classification based on various statistical indicators.
Al-Eidi et al. [2] proposed a hybrid model of CNN and
LSTM for CTC detection using IPD sequential data. li
et al. [19] proposed similar model using CNN and Trans-
former architectures for detection .

2.2.4 Image Processing and Sequential Data
Processing-based Detection

Snap is the first CTC solution using image processing [1].
Wu et al. [45] proposed an approach based on sequen-
tial data, firstly transforming it into symbol time series,
computing State Transition Probability Matrices (STPM)
and finally classifying based on similarity scores. Sun et
al. [37] proposed a detection approach for CTCs using
GAF images and GAN network(CD-ACGAN). Based on
Snap, Al-Eidi et al. [3] proposed a CNN image classifica-
tion model for detection.

2.2.5 Other Detection Methods

Lu et al. [24] proposed a multi-dimensional feature de-
tection analyzed from the perspectives of shape, change
pattern and data statistics. Wang et al. [42] proposed a
detection scheme for CTCs based on perceptual hashing.

2.3 Image Classification Networks

Image classification has been an active research trend
worldwide, greatly facilitated by the emergence of arti-
ficial intelligence. The introduction of deep learning algo-
rithms has brought various innovations in image classifi-
cation. Each year witnesses the emergence of important
networks for image classification. Notable examples in-
clude ResNet [13], Swin Transformer [22], Convnext [23]
and MobileVit [26] etc.
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Figure 1: The proposed scheme

2.4 Knowledge Distillation

Knowledge distillation was proposed by Geoffrey Hin-
ton [14], compresses knowledge learned by multiple mod-
els into a single model that is easier to deploy. Currently,
knowledge distillation has been applied to lightweight net-
works like Deit and FasterNet in image classification.

3 Approach

This section provides a detailed description of our de-
tection scheme. First, we extract three matrices of IPD,
GAF, MTF and RP. These matrices are subsequently nor-
malized and mapped to pixels, forming a three-channel
image. Let the sequential data of IPD be represented by
X = {x1, x2 · · ·xn}, with a length of N . The proposed
scheme is depicted as Figure 1.

3.0.1 GAF

Mapping X to the range[−1, 1]:

∼
pi =

(xi −max(X) + xi −min(X))

max(X)−min(X)

Encoding values as cosine angles and time stamps as radii,
thus representing Cartesian coordinates in polar form:{

∅i = arccos
(

∼
pi

)
,−1 ≤ ∼

pi ≤ 1

ri =
i
N , 1 ≤ i ≤ N

The GAF matrix is represented by the sum of triangles
between each pair of points, preserving their correlation:

G =


cos (∅1 +∅1) cos (∅1 +∅2) · · · cos (∅1 +∅n)
cos (∅2 +∅1) cos (∅2 +∅2) · · · cos (∅2 +∅1)

· · · · · · · · · · · ·
cos (∅n +∅1) cos (∅n +∅2) · · · cos (∅n +∅n)



3.0.2 MTF

Dividing X into Q quantile units, represented by quantiles
q (i, j ∈ {1, 2, . . . , Q}), each xi corresponding to a qi value in
the one-dimensional data sequence. Each xi+1 corresponding
to a qj . Wij is used to denote the probability that qi followed
by qj :

Wij = P (xt ∈ qi|xt+1 ∈ qj) , 1 ≤ t ≤ N − 1

The Markov transition matrix is constructed by these proba-
bilities:

M =


Wij |x1 ∈ qi, x1 ∈ qj · · · Wij |x1 ∈ qi, xn ∈ qj
Wij |x2 ∈ qi, x1 ∈ qj · · · Wij |x2 ∈ qi, xn ∈ qj

· · · · · · · · ·
Wij |xn ∈ qi, x1 ∈ qj · · · Wij |xn ∈ qi, xn ∈ qj


3.0.3 RP

Reconstructing the one-dimensional time series into an m-
dimensional phase space. For a time series X, its sampling
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Figure 2: Knowledge distillation process

Figure 3: Our modified MobileViT structure

time interval is determined as ∆t, along with embedding di-
mension m and delay time τ , to reconstruct X. The recon-
structed dynamic system is defined as:

Xi =
[
xi, xi+τ , ..., xi+(m−1)τ

]
, i = 1, 2, 3, ..., n− (m− 1) τ

Calculating the distance Sij between xi and xj in the recon-
structed phase space:

Sij = ∥xi − xj∥ , j = 1, 2, 3, ..., n− (m− 1) τ

∥•∥ represents the norm. Computing the recursive value:

R (i, j) = Θ (ε− Sij)

ε is the threshold. Θ(•) is the Heaviside function. Θ (x ≥ 0) =
1,Θ(x < 0) = 0, RP is composed of these recursive values.

3.0.4 Knowledge Distillation

For the GAF-MTF-RP images transformed from IPD, mul-
tiple models with different weights were trained, including
ResNet, Swin-Transformer and ConvNeXt, which generally
outperformed lightweight models [15]. However, these heavy-
weight models showed drawbacks in terms of model size, train-
ing time and detection time. In this study, ResNet, Swin-
Transformer and ConvNeXt were selected as teacher networks,
with MobileVit chosen as the lightweight student network.
The experiments employed ResNet50, the tiny version of Swin-
Transformer and the small version of ConvNeXt, all following
the original paper’s structures. Figure 2 shows the knowledge
distillation flow chart.

During the experimental process, our student network, Mo-
bileVit, was tailored to accommodate 64-pixel images. While
ensuring accuracy, we aimed to minimize the number of layers
and parameters to meet scalability and speed requirements.
Our optimized student network, MobileVit, differs from the
xx-small (xxs) model of MobileVit by transitioning from a
5-layer architecture to a 3-layer architecture, resulting in a
significant reduction in parameter count. Our modified Mo-
bileViT structure is shown in Figure 3. In the 3rd layer, a
transformer block is present, with a total of 4 heads in the
multi-head self-attention mechanism. The sequence length of
intermediate tokens within the Feed-Forward Network (FFN)
is set to 128.

After passing through the teacher networks and undergoing
softmax, the resulting probability distribution had significant
disparities, contributing minimally to the loss function. The
concept of ”temperature” was introduced to smooth the Log-
its. The smoothing formula is as follows:

qi =
exp (zi/T )∑
j exp (zj/T )

zi represents the value of the i-th Logit, T is the distillation
temperature and qi is the probability value. Furthermore, the
distillation loss is computed and then backpropagation opti-
mizes the student neural network. The distillation loss formula
is as follows:

Ldis = LKL

(
qteacheri , qstudent

i

)
LKL() is the KL divergence, qteacheri is the smoothed value

of the i-th teacher network and qteacheri the smoothed value of
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Figure 4: Statistical images of seven channels

the i-th student network. For combining multiple teacher net-
works, a set of weights wk is introduced, calculated as follows:

wk = softmax (vk) =
exp vk∑nt
k=1 exp vk

,

nt∑
k=1

wk = 1, wk ∈ [0, 1]

where nt represents the number of teacher networks, which is
three. The outputs obtained from each teacher network after
processing the input data are weighted accordingly:

zi = x1

⊗
w1 + x2

⊗
w2 + · · ·+ xnt

⊗
wnt

4 Evaluation and Results

4.1 Dataset and Environment

The dataset used in this study is obtained from the GAS
method’s publicly available dataset [15]. We use the dataset
from WAN. Its IPD is more dispersed, more fluctuating and
more difficult to detect than the traffic generated by the exper-
iment. The Python version is 3.9, the Torch version is 1.11.0
and the GPU used is the NVIDIA GeForce RTX 3080. The
learning rates for ResNet, Swin-T, ConvNeXt and MobileVit
are set to 0.0001. The batch size is 64 and the number of
epochs is 100.

4.2 Evaluation Metrics

We use the following four metrics to measure the performance
of our classification models, TP (True Positive) represents im-
ages that are correctly predicted as a CTC by MobileVit. TN
(True Negative) represents images that are correctly predicted
as legitimate traffic by MobileVit. FP (False Positive) rep-
resents images that are incorrectly predicted as a CTC. FN
(False Negative) represents images that are incorrectly pre-
dicted as legitimate traffic. These metrics were used to calcu-
late the performance indicators of the models:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision = TP/ (TP + FP )

Recall = TP/ (TP + FN)

F1− Score = 2× Precision ×Recall/ (Precision +Recall)

4.3 Image Processing

A dataset created using the backbone traffic from GAS and
tools used in ϵ-κlibur and ϵ-κlibur-O was employed to produce
ϵ-κlibur and ϵ-κlibur-O flow IPD. The statistical images for
the seven data types are as Figure 4.

From the line chart, certain patterns such as relativity, pe-
riodicity and stability can be observed. These characteristics
serve as the basis for IPD classification. IPCTC exhibits pe-
riodic patterns with upward segments, while JitterBug and
Normal channels have many sharp sections, indicating signifi-
cant fluctuations. LNCTC shows less pronounced periodicity,
with the distribution primarily in the middle range of 0.012
to 0.06. TRCTC’s IPD distribution has significant gaps, as it
randomly delays an IPD time to send either 0 or 1, resulting
in uneven distribution due to the delay of one small TRCTC
segment among the larger Normal segments. For normal flow
data and TRCTC, some IPD values are very small, close to 0,
making them difficult to observe in the images. In real envi-
ronments, most data packets are transmitted quickly, resulting
in generally lower IPD values. ϵ-κlibur’s IPD distribution is
coherent, lacking severe fluctuations. ϵ-κlibur-O also exhibits
uneven distribution but with more prominent extreme values
compared to Normal and fewer than TRCTC. While classifi-
cation based on the line chart is not accurate, transforming se-
quential data into images yields seven distinct images as shown
in Figure 5.

4.4 Detection Effect of Teacher and Stu-
dent Networks

Initially, the effects of the three networks without distillation
were compared. As seen in the Figure 6, ConvNeXt achieved
the highest overall accuracy of 98.43%, followed by Swin-T
and ResNet at 98.33% and 98.18% respectively. MobileVit
had the lowest accuracy at 97.15%. Compared to heavyweight
networks, the lightweight MobileVit had lower accuracy. Ad-
ditional parameters and layers of heavyweight networks con-
tributed to their stronger learning capability in this image clas-
sification task.

Distillation was performed using one-to-one and three-to-
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Figure 5: Transformed images of seven channels

Figure 6: Seven channels accuracy of undistilled networks

one network configurations, as illustrated in Figure 7. In
the one-to-one network, the highest accuracy achieved when
ResNet trained MobileVit was 98.06%. Swin-T and ConvNeXt
both had an accuracy of 98.01%, with little difference. In the
three-to-one network, the highest accuracy was 98.24% (with
T = 7, α = 0.3), surpassing the accuracy of individual teacher
networks. Soft labels provided by the three networks played
a role in training the student network. Although the accu-
racy of the distillation network model decreased compared to
the individual teacher network for classification, using multiple
teacher networks enhanced the accuracy by 1.09% compared
to the standalone student network, proving that the distilled
MobileVit benefited from the knowledge of the teacher net-
works.

To find the best distillation network model, T and α were
adjusted. The resulet is shown in Figure 8. When T = 7,
the average accuracy of each channel reached a maximum of
98.24%. The next best accuracy was 98.10% when T = 10,
followed by (T = 3) > (T = 5) > (T = 1), with accuracies of
98.02%, 97.98% and 97.67% respectively. The comprehensive
accuracy of the combined parameters α = 0.3 was 98.24%,
higher than 98.13% with α = 0.5 and 98.01% with α = 0.7.
According to Figure 8 and Figure 9, the optimal values were
T=7 and α = 0.3.

4.5 Epoch and Accuracy Curves

In the field of image classification networks, Deit and Faster-
Net are two popular lightweight image classification networks
that achieve good classification results on ImageNet-1K. In

this experiment, the distilled MobileVit was compared to Deit
and FasterNet. Deit achieved a peak accuracy of 96.27%, while
FasterNet reached 98.06%. The code was obtained from the
original paper. For this classification task, MobileVit outper-
formed in terms of classification accuracy. The comparison
results are shown in Figure 10.

4.6 Detection Metrics for MobileVit in
Different Channels

We collected various evaluation indicators of the scheme un-
der seven channels and the results are shown in Table 1. In
terms of various channel metrics, MobileVit achieved detection
metrics above 98% for all channels except ϵ-κlibur-O, demon-
strating effective detection. Specific attention was given to ϵ-
κlibur and ϵ-κlibur-O. For ϵ-κlibur, the model’s classification
accuracy was close to 99%.

Although the IPD distribution of ϵ-κlibur is close to that
of legitimate channel traffic, differences still exist. We believe
that the differences in the construction process, where authors
modified di smaller than t using a normal distribution, might
be improved by using a Weibull distribution. In the case of
ϵ-κlibur-O, the detection accuracy was only 93.75%, making
it more likely to be classified as TRCTC and normal chan-
nels. We attribute this to the same obstacles encountered by
the Snap method when detecting ϵ-κlibur-O. The presence of
outliers in ϵ-κlibur-O affects the correlations between values,
leading to lower classification accuracy.

4.7 Compare with Other CTC Detection
Methods

We compared nine CTC detection methods, as shown in Fig-
ure 11. Among them, five are classical methods often used for
comparison: ϵ-similarity, K-S, Regularity, Entropy and CEE.
These five methods have very low average detection accuracy
for the seven channels because they typically work effectively
for only one or two channels and require a larger IPD sam-
pling window. In this study, all methods sampled 64 IPDs
as a window, limiting their detection performance. Compared
to Darwish’s hierarchical statistics and deep learning methods
(referred to as DNN), their detection accuracy is 86%. DNN’s
accuracy is lower for the detection of ϵ-κlibur and ϵ-κlibur-O
channels, leading to an average accuracy that is not very high.
SnapCatch, which extracts image features in a relatively sim-
ple way and distinguishes images based on eight statistical
values, also has lower average detection accuracy compared to
our approach. In comparison to Sun’s DC-ACGAN method,
although there are similarities in the image feature extraction,
the difference in the performance of the image classification
network leads to our method achieving higher average accu-
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Figure 7: Seven channels accuracy of distilled networks

Figure 8: Seven channels accuracy with different T

Figure 9: Seven channels accuracy with different α.

Figure 10: Experimental results compared with Deit and
FasterNet

Figure 11: Accuracy of different CTC detection methods

racy. During the restoration phase, GAN network training is
unstable, with significant accuracy fluctuations and requiring
a longer training period. For the GAS method, because it was
originally designed for blind detection, adapting it from binary
to multi-class methods resulted in an accuracy of 87%, with
lower detection accuracy for ϵ-κlibur and ϵ-κlibur-O channels.
In summary, compared to the other eight detection methods,
our detection scheme achieves the highest average detection
accuracy for each channel.

4.8 Network Params and FLOPs

We employed the thop library in Python to meticulously doc-
ument the parameters and computational load of the networks
utilized in our experiments, as outlined in Table 2. Notably,
within the context of this study, the optimized MobieVit model
exhibited a significant reduction in parameters, distinguishing
itself as the network with the least parameter count and com-
putational load among all the networks investigated.
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Table 1: Evaluation indicators of seven channels

Channel Class Accuracy Precision Recall F1 Score
IPCTC 99.55% 99.49% 99.50% 99.50%
JitterBug 98.47% 99.33% 97.99% 98.66%
LNCTC 99.94% 99.75% 99.90% 99.82%
Normal traffic 98.03% 97.83% 97.08% 97.40%
TRCTC 98.92% 97.25% 99.16% 98.20%
ϵ-κlibur 98.99% 96.08% 98.86% 96.95%
ϵ-κlibur-O 93.75% 98.79% 93.03% 96.46%
Total 98.24% 98.36% 97.93% 98.14%

Table 2: Network Params and FLOPs

Network Params FLOPs
Swin-T 27.50 737.61

ConvNext 27.83 364.62
Resnet 21.29 300.27
Deit 5.68 93.06

FasterNet 3.91 29.24
Ours 0.16 14.72

5 Conclusion

In conclusion, this study adopted a novel approach to trans-
forming sequential data into images using GAF-MTF-RP, a
three-channel image representation of IPD. The multi-teacher
distillation was applied to the MobileVit network for detect-
ing various covert channels. Through parameter tuning, we
achieved classification accuracy above 98% for six types of
channels, although not as high for ϵ-κlibur-O. However, our
approach demonstrates higher generality compared to GAS
and Snap, requiring only a detection window size of 64 for
high sensitivity. GAS uses 250 IPDs on average to achieve
effective detection and Snap uses 256 IPDs. Our distilled Mo-
bileVit model outperforms some popular distillation networks
in this classification task.

Looking ahead, we aim to enhance the classification perfor-
mance on ϵ-κlibur-O. Additionally, we plan to investigate the
inherent structure of images from normal channels and utilize
semi-supervised image classification networks to achieve blind
detection capabilities.
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